On enumeration of restricted permutations of genus zero

Tung-Shan Fu

National Pingtung University, Taiwan

Based on joint work with S.-P. Eu, Y.-J. Pan and C.-T. Ting

JCCA 2018, Sendai
A hypermap can be represented by a pair of permutations \((\sigma, \alpha)\) on \([n] := \{1, 2, \ldots, n\}\) that generate a transitive subgroup of the symmetric group \(S_n\).
A hypermap can be represented by a pair of permutations \((\sigma, \alpha)\) on \([n] := \{1, 2, \ldots, n\}\) that generate a transitive subgroup of the symmetric group \(S_n\).

\[
\sigma = (1)(2, 3)(4, 5, 6) \quad \text{(counterclockwise)} \quad \text{– vertices}
\]

\[
\alpha = (1, 2, 4)(3, 6)(5) \quad \text{(clockwise)} \quad \text{– hyperedges}
\]

\[
\alpha^{-1}\sigma = (1, 4, 5, 3)(2, 6) \quad \text{– faces}
\]
The genus of the hypermap \((\sigma, \alpha)\) is the nonnegative integer \(g_{\sigma,\alpha}\) defined by the equation

\[
n + 2 - 2g_{\sigma,\alpha} = z(\sigma) + z(\alpha) + z(\alpha^{-1}\sigma),
\]

where \(z(\sigma)\) is the number of cycles of \(\sigma\).
The genus of the hypermap \((\sigma, \alpha)\) is the nonnegative integer \(g_{\sigma, \alpha}\) defined by the equation

\[
n + 2 - 2g_{\sigma, \alpha} = z(\sigma) + z(\alpha) + z(\alpha^{-1}\sigma),
\]

where \(z(\sigma)\) is the number of cycles of \(\sigma\).

<table>
<thead>
<tr>
<th>permutations</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>((1)(2, 3)(4, 5, 6))</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>((1, 2, 4)(3, 6)(5))</td>
</tr>
<tr>
<td>(\alpha^{-1}\sigma)</td>
<td>((1, 4, 5, 3)(2, 6))</td>
</tr>
</tbody>
</table>

\[
g_{\sigma, \alpha} = \frac{1}{2} (6 + 2 - 3 - 3 - 2) = 0.
\]
A special case, called the hypermonopole, is a hypermap \((\sigma, \alpha)\) where \(\sigma\) is the \(n\)-cycle \(\zeta_n = (1, 2, \ldots, n)\).

The genus \(g_\alpha\) of a permutation \(\alpha\) is defined as the genus of the hypermonopole \((\zeta_n, \alpha)\), i.e.,

\[
 n + 1 - 2g_\alpha = z(\alpha) + z(\alpha^{-1}\zeta_n).
\]

<table>
<thead>
<tr>
<th>permutations</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma = \zeta_7) (1, 2, 3, 4, 5, 6, 7)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha = (1, 2, 7)(3)(4, 5, 6))</td>
<td>3</td>
</tr>
<tr>
<td>(\alpha^{-1}\zeta_7) (1)(2, 3, 6)(4)(5)(7)</td>
<td>5</td>
</tr>
</tbody>
</table>

\[
g_\alpha = \frac{1}{2} (7 + 1 - 3 - 5) = 0.
\]
genus 0 permutations with restrictions

<table>
<thead>
<tr>
<th>n</th>
<th>S_n</th>
<th>Alt_n</th>
<th>Der_n</th>
<th>Inv_n</th>
<th>Bax_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>3</td>
<td>6</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>132</td>
<td>11</td>
<td>15</td>
<td>51</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>429</td>
<td>11</td>
<td>36</td>
<td>127</td>
<td>429</td>
</tr>
</tbody>
</table>

↑↑↑↑↑

Catalan Schröder Riordan Motzkin Catalan
Genus 1 Baxter Permutations Enumeration

<table>
<thead>
<tr>
<th>n</th>
<th>S_n</th>
<th>Bax_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>420</td>
<td>214</td>
</tr>
<tr>
<td>7</td>
<td>2310</td>
<td>941</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\uparrow \\
\frac{(2n + 3)!}{6(n + 1)!n!} \\
\text{unknown}
\end{array}
\]

(Cori-Hetyei)
Enumeration of genus zero permutations with restrictions
Two disjoint subsets B and B' of $[n]$ are **crossing** if there exist $a, b \in B$ and $c, d \in B'$ such that $a < c < b < d$. Otherwise, B and B' are **noncrossing**.
Two disjoint subsets B and B' of $[n]$ are crossing if there exist $a, b \in B$ and $c, d \in B'$ such that $a < c < b < d$. Otherwise, B and B' are noncrossing.

A noncrossing partition of $[n]$ is a set partition of $[n]$, denoted by $\{B_1, B_2, \ldots, B_k\}$, such that the blocks B_j are pairwise noncrossing.
Theorem (Cori 1975)

Let $\alpha \in S_n$. Then $g_\alpha = 0$ if and only if the cycle decomposition of σ gives a noncrossing partition of $[n]$, and each cycle of α is increasing.
Theorem (Cori 1975)

Let $\alpha \in S_n$. Then $g_\alpha = 0$ if and only if the cycle decomposition of σ gives a noncrossing partition of $[n]$, and each cycle of α is increasing.

For example, $\alpha = 3 \ 2 \ 9 \ 4 \ 6 \ 7 \ 8 \ 5 \ 1 = (1, 3, 9)(5, 6, 7, 8)$ is associated with the following noncrossing partition.
Let $\sigma = \sigma_1 \cdots \sigma_n \in S_n$. The inversion number of σ is defined by

$$\text{inv}(\sigma) := \#\{(\sigma_i, \sigma_j) : \sigma_i > \sigma_j, 1 \leq i < j \leq n\}.$$
Let $\sigma = \sigma_1 \cdots \sigma_n \in S_n$. The inversion number of σ is defined by

$$\text{inv}(\sigma) := \# \{(\sigma_i, \sigma_j) : \sigma_i > \sigma_j, 1 \leq i < j \leq n\}.$$

Let $\mathcal{G}_n \subset S_n$ be the subset consisting of the permutations of genus zero. We observe that

$$\sum_{\sigma \in \mathcal{G}_n} (-1)^{\text{inv}(\sigma)} = \begin{cases} 0 & \text{ if } n \text{ is even} \\ C_{\lfloor n/2 \rfloor} & \text{ if } n \text{ is odd}, \end{cases}$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the nth Catalan number.
LRMin-distribution for genus 0 permutations

Let \(\text{LRMin}(\sigma) \) denote the number of \textit{left-to-right minima} of \(\sigma \), i.e.,

\[
\text{LRMin}(\sigma) := \# \{ \sigma_j : \sigma_i > \sigma_j, 1 \leq i < j \}.
\]

The distribution of genus zero permutations w.r.t LRMin:

| \(n \) | \(|G_n| \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---------|----------|----|----|----|----|----|----|----|----|
| 1 | 1 | 1 | | | | | | | |
| 2 | 2 | 1 | 1 | | | | | | |
| 3 | 5 | 2 | 2 | 1 | | | | | |
| 4 | 14 | 5 | 5 | 3 | 1 | | | | |
| 5 | 42 | 14 | 14 | 9 | 4 | 1 | | | |
| 6 | 132 | 42 | 42 | 28 | 14 | 5 | 1 | | |
| 7 | 429 | 132| 132| 90 | 48 | 20 | 6 | 1 | |
The sign-balance of LRMin-distribution for G_n:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>−1</td>
<td>1</td>
<td>−1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>−2</td>
<td>2</td>
<td>−2</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>−2</td>
<td>0</td>
<td>−2</td>
<td>0</td>
<td>−1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>−5</td>
<td>5</td>
<td>−5</td>
<td>5</td>
<td>−3</td>
<td>3</td>
<td>−1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Theorem (Eu-Fu-Pan-Ting 2018)

For all \(n \geq 1 \), the following identities hold.

1. \[
\sum_{\sigma \in G_{2n+1}} (-1)^{\text{inv}(\sigma)} q^{LRMin(\sigma)} = (-1)^n q \sum_{\sigma \in G_n} q^{2 \cdot LRMin(\sigma)},
\]

2. \[
\sum_{\sigma \in G_{2n}} (-1)^{\text{inv}(\sigma)} q^{LRMin(\sigma)} = (-1)^n \left(1 - \frac{1}{q}\right) \sum_{\sigma \in G_n} q^{2 \cdot LRMin(\sigma)},
\]
Let D_n denote the set of Dyck paths of length n, i.e., the lattice paths from $(0, 0)$ to (n, n), using $(0, 1)$ step and $(1, 0)$ step, that stays weakly above the line $y = x$.

For a Dyck path $\pi \in D_n$, let

- $\text{area}(\pi) =$ the number of unit squares enclosed by π and the line $y = x$,
- $\text{fpeak}(\pi) =$ the height of the first peak of π.
Let \mathcal{D}_n denote the set of **Dyck paths** of length n, i.e., the lattice paths from $(0, 0)$ to (n, n), using $(0, 1)$ step and $(1, 0)$ step, that stays weakly above the line $y = x$.

For a Dyck path $\pi \in \mathcal{D}_n$, let

- $\text{area}(\pi) =$ the number of unit squares enclosed by π and the line $y = x$,
- $f_{\text{peak}}(\pi) =$ the height of the first peak of π.

Figure: A Dyck path π with $\text{area}(\pi) = 9$ and $f_{\text{peak}}(\pi) = 3$.
Theorem (Stump 2013)

There is a bijection $\phi : \sigma \rightarrow \pi$ of G_n onto D_n such that

1. $\text{area}(\pi) = \text{inv}(\sigma)$,
2. $\text{fpeak}(\pi) = \text{LRMin}(\sigma)$.
There is a bijection \(\phi : \sigma \rightarrow \pi \) of \(G_n \) onto \(D_n \) such that
1. \(\text{area}(\pi) = \text{inv}(\sigma) \),
2. \(\text{fpeak}(\pi) = \text{LRMin}(\sigma) \).

Figure: The corresponding Dyck path of \(\sigma = (1, 3, 9)(5, 6, 7, 8) \).
A peak/valley at \((i, j)\) is said to be **even** (**odd**, respectively) if \(i + j\) is even (odd, respectively).

Figure: The red peaks/valleys are even..
Establish an involution $\gamma : \pi \to \pi'$ on \mathcal{D}_n by changing the last even peak (or valley) into a valley (or peak). Then

- $|\text{area}(\pi') - \text{area}(\pi)| = 1$,
- $f_{\text{peak}}(\pi') = f_{\text{peak}}(\pi)$.

Figure: The map $\gamma : \pi \to \pi'$.
the fixed points of the map γ
Let \(\text{ferr}(\pi) \) denote the number of unit squares above the Dyck path \(\pi \) within the \(n \times n \) square, i.e., \(\text{area}(\pi) = \frac{n(n-1)}{2} - \text{ferr}(\pi) \).

\[
\gamma(\pi) = \pi \in \mathcal{D}_{2n+1} \rightarrow \text{ferr}(\pi) \text{ is even} \rightarrow \text{area}(\pi) \equiv n \pmod{2}
\]
the fixed points of the map γ - odd case

$$\sum_{\sigma \in \mathcal{G}_7} (-1)^{\text{inv}(\sigma)} q^{\text{LRMin}(\sigma)} = -q^7 - 2q^5 - 2q^3$$

$$= -q \sum_{\sigma \in \mathcal{G}_3} q^{2 \cdot \text{LRMin}(\sigma)}.$$
the fixed points of the map γ - even case

$$\sum_{\sigma \in G_6} (-1)^{\text{inv}(\sigma)} q^{LR\text{Min}(\sigma)} = \left(-1 + \frac{1}{q}\right) \sum_{\sigma \in G_3} q^{2 \cdot LR\text{Min}(\sigma)}.$$
Thanks for your attention.