On enumeration of restricted permutations of genus zero

Tung-Shan Fu

National Pingtung University, Taiwan

Based on joint work with S.-P. Eu, Y.-J. Pan and C.-T. Ting

JCCA 2018, Sendai

A hypermap can be represented by a pair of permutations (σ, α) on $[n] := \{1, 2, \ldots, n\}$ that generate a transitive subgroup of the symmetric group \mathfrak{S}_n . A hypermap can be represented by a pair of permutations (σ, α) on $[n] := \{1, 2, \ldots, n\}$ that generate a transitive subgroup of the symmetric group \mathfrak{S}_n .

 $\begin{array}{ll} \sigma = (1)(2,3)(4,5,6) & ({\rm counterclockwise}) & - \; {\rm vertices} \\ \alpha = (1,2,4)(3,6)(5) & ({\rm clockwise}) & - \; {\rm hyperedges} \\ \alpha^{-1}\sigma = (1,4,5,3)(2,6) & - \; {\rm facse} \end{array}$

The genus of the hypermap (σ, α) is the nonnegative integer $g_{\sigma,\alpha}$ defined by the equation

$$n+2-2g_{\sigma,\alpha} = z(\sigma) + z(\alpha) + z(\alpha^{-1}\sigma),$$

where $z(\sigma)$ is the number of cycles of σ .

The genus of the hypermap (σ, α) is the nonnegative integer $g_{\sigma,\alpha}$ defined by the equation

$$n+2-2g_{\sigma,\alpha}=z(\sigma)+z(\alpha)+z(\alpha^{-1}\sigma),$$

where $z(\sigma)$ is the number of cycles of σ .

permutations				
σ	(1)(2,3)(4,5,6)	3		
α	(1, 2, 4)(3, 6)(5)	3		
$\alpha^{-1}\sigma$	(1, 4, 5, 3)(2, 6)	2		
$g_{\sigma,\alpha} = \frac{1}{2}$	$\frac{1}{5}(6+2-3-3-2)$) = 0.		

A special case, called the hypermonopole, is a hypermap (σ, α) where σ is the *n*-cycle $\zeta_n = (1, 2, \dots, n)$.

The genus g_α of a permutation α is defined as the genus of the hypermonopole $(\zeta_n,\alpha),$ i.e.,

$$n+1-2g_{\alpha} = z(\alpha) + z(\alpha^{-1}\zeta_n).$$

permutations			
$\sigma = \zeta_7$	$\left(1,2,3,4,5,6,7 ight)$	1	
α	(1, 2, 7)(3)(4, 5, 6)	3	
$\alpha^{-1}\zeta_7$	(1)(2,3,6)(4)(5)(7)	5	

$$g_{\alpha} = \frac{1}{2} \left(7 + 1 - 3 - 5 \right) = 0.$$

genus 0 permutations with restrictions

n	\mathfrak{S}_n	Alt_n	Der_n	Inv_n	Bax_n	
2	2	1	1	2	2	
3	5	1	1	4	5	
4	14	3	3	9	14	
5	42	3	6	21	42	
6	132	11	15	51	132	
7	429 11		36	127	429	
	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	
	Catalan	Schröder	Riordan	Motzkin	Catalan	

genus 1 Baxter permutations enumeration?

n	\mathfrak{S}_n	Bax_n
3 4	1	1
	10	8
5	70	45
6	420	214
7	2310	941
	$ \uparrow \\ (2n+3)! $	↑
	$\frac{1}{6(n+1)!n!}$	unknown
	$(C \cdot I I \cdot I)$	

(Cori-Hetyei)

Enumeration of genus zero permutations with restrictions

noncrossing partitions

Two disjoint subsets B and B' of [n] are crossing if there exist $a, b \in B$ and $c, d \in B'$ such that a < c < b < d. Otherwise, B and B' are noncrossing.

Two disjoint subsets B and B' of [n] are crossing if there exist $a, b \in B$ and $c, d \in B'$ such that a < c < b < d. Otherwise, B and B' are noncrossing.

A noncrossing partition of [n] is a set partition of [n], denoted by $\{B_1, B_2, \ldots, B_k\}$, such that the *blocks* B_j are pairwise noncrossing.

Theorem (Cori 1975)

Let $\alpha \in \mathfrak{S}_n$. Then $g_\alpha = 0$ if and only if the cycle decomposition of σ gives a noncrossing partition of [n], and each cycle of α is increasing.

Theorem (Cori 1975)

Let $\alpha \in \mathfrak{S}_n$. Then $g_\alpha = 0$ if and only if the cycle decomposition of σ gives a noncrossing partition of [n], and each cycle of α is increasing.

For example, $\alpha = 329467851 = (1,3,9)(5,6,7,8)$ is associated with the following noncrossing partition.

Let $\sigma = \sigma_1 \cdots \sigma_n \in \mathfrak{S}_n$. The inversion number of σ is defined by

$$\mathsf{inv}(\sigma) := \#\{(\sigma_i, \sigma_j) : \sigma_i > \sigma_j, 1 \le i < j \le n\}.$$

Let $\sigma = \sigma_1 \cdots \sigma_n \in \mathfrak{S}_n$. The inversion number of σ is defined by

$$\mathsf{inv}(\sigma) := \#\{(\sigma_i, \sigma_j) : \sigma_i > \sigma_j, 1 \le i < j \le n\}.$$

Let $\mathcal{G}_n \subset \mathfrak{S}_n$ be the subset consisting of the permutations of genus zero. We observe that

$$\sum_{\sigma \in \mathcal{G}_n} (-1)^{\mathsf{inv}(\sigma)} = \begin{cases} 0 & n \text{ even} \\ C_{\lfloor \frac{n}{2} \rfloor} & n \text{ odd,} \end{cases}$$

where $C_n = \frac{1}{n+1} \binom{2n}{n}$ is the *n*th Catalan number.

-

Let LRMin(σ) denote the number of *left-to-right minima* of σ , i.e.,

$$\mathsf{LRMin}(\sigma) := \#\{\sigma_j : \sigma_i > \sigma_j, 1 \le i < j\}.$$

The distribution of genus zero permutations w.r.t LRMin:

n	$ \mathcal{G}_n $	1	2	3	4	5	6	7	8
1	1	1							
2	2	1	1						
3	2 5 14	2	2	1					
4	14	5	5	3	1				
5	42	14	14	9	4	1			
6	132	42	42	28	14	5	1		
7	429	132	132	90	48	20	6	1	

The sign-balance of LRMin-distribution for \mathcal{G}_n :

n	1	2	3	4	5	6	7	8	9
2	1	-1							
3	0	0							
4	-1	1	-1	1					
5	0	0	1	0	1				
6	2	-2	2	-2	1	-1			
7	0	0	-2	0	-2	0	-1		
8	-5	5		5	-3	3	-1	1	
9	0	0	5	0	5	0	3	0	1

Theorem (Eu-Fu-Pan-Ting 2018)

For all $n \ge 1$, the following identities hold. $\sum_{\sigma \in \mathcal{G}_{2n+1}} (-1)^{inv(\sigma)} q^{LRMin(\sigma)} = (-1)^n q \sum_{\sigma \in \mathcal{G}_n} q^{2 \cdot LRMin(\sigma)},$ $\sum_{\sigma \in \mathcal{G}_{2n}} (-1)^{inv(\sigma)} q^{LRMin(\sigma)} = (-1)^n \left(1 - \frac{1}{q}\right) \sum_{\sigma \in \mathcal{G}_n} q^{2 \cdot LRMin(\sigma)},$

Dyck paths

Let \mathcal{D}_n denote the set of Dyck paths of length n, i.e., the lattice paths from (0,0) to (n,n), using (0,1) step and (1,0) step, that stays weakly above the line y = x.

- For a Dyck path $\pi \in \mathcal{D}_n$, let
 - area(π) = the number of unit squares enclosed by π and the line y = x,
 - $fpeak(\pi) = the height of the first peak of <math>\pi$.

Dyck paths

Let \mathcal{D}_n denote the set of Dyck paths of length n, i.e., the lattice paths from (0,0) to (n,n), using (0,1) step and (1,0) step, that stays weakly above the line y = x.

- For a Dyck path $\pi \in \mathcal{D}_n$, let
 - area(π) = the number of unit squares enclosed by π and the line y = x,
 - $fpeak(\pi) = the height of the first peak of <math>\pi$.

Figure: A Dyck path π with area $(\pi) = 9$ and fpeak $(\pi) = 3$.

Theorem (Stump 2013)

There is a bijection $\phi : \sigma \to \pi$ of \mathcal{G}_n onto \mathcal{D}_n such that

1 area
$$(\pi) = inv(\sigma)$$
,

2
$$fpeak(\pi) = LRMin(\sigma).$$

Theorem (Stump 2013)

There is a bijection $\phi : \sigma \to \pi$ of \mathcal{G}_n onto \mathcal{D}_n such that

1 area
$$(\pi) = inv(\sigma)$$
,

2
$$fpeak(\pi) = LRMin(\sigma).$$

Figure: The corresponding Dyck path of $\sigma = (1,3,9)(5,6,7,8)$.

even/odd peaks and valleys on Dyck paths

A peak/valley at (i, j) is said to be even (odd, respectively) if i + j is even (odd, respectively).

Figure: The red peaks/valleys are even..

a sign-reversing involution on Dyck paths

Establish an involution $\gamma : \pi \to \pi'$ on \mathcal{D}_n by changing the last even peak (or valley) into a valley (or peak). Then

- $|\operatorname{area}(\pi') \operatorname{area}(\pi)| = 1$,
- $\operatorname{fpeak}(\pi') = \operatorname{fpeak}(\pi).$

Figure: The map $\gamma : \pi \to \pi'$.

the fixed points of the map γ

the fixed points of the map γ

Let ferr(π) denote the number of unit squares above the Dyck path π within the $n \times n$ square, i.e., area $(\pi) = \frac{n(n-1)}{2} - \text{ferr}(\pi)$.

$$\gamma(\pi) = \pi \in \mathcal{D}_{2n+1} \to \mathsf{ferr}(\pi) \text{ is even } \to \operatorname{area}(\pi) \equiv n \pmod{2}$$

the fixed points of the map γ - odd case

$$\begin{split} \sum_{\sigma \in \mathcal{G}_7} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{LRMin}(\sigma)} &= -q^7 - 2q^5 - 2q^3 \\ &= -q \sum_{\sigma \in \mathcal{G}_3} q^{2 \cdot \mathsf{LRMin}(\sigma)}. \end{split}$$

the fixed points of the map γ - even case

$$\sum_{\sigma \in \mathcal{G}_6} (-1)^{\mathsf{inv}(\sigma)} q^{\mathsf{LRMin}(\sigma)} = \left(-1 + \frac{1}{q}\right) \sum_{\sigma \in \mathcal{G}_3} q^{2 \cdot \mathsf{LRMin}(\sigma)}.$$

Thanks for your attention.