On enumeration of restricted permutations of genus zero

Tung-Shan Fu

National Pingtung University, Taiwan

Based on joint work with S.-P. Eu, Y.-J. Pan and C.-T. Ting
JCCA 2018, Sendai

hypermaps

A hypermap can be represented by a pair of permutations (σ, α) on $[n]:=\{1,2, \ldots, n\}$ that generate a transitive subgroup of the symmetric group \mathfrak{S}_{n}.

hypermaps

A hypermap can be represented by a pair of permutations (σ, α) on $[n]:=\{1,2, \ldots, n\}$ that generate a transitive subgroup of the symmetric group \mathfrak{S}_{n}.

$$
\begin{array}{lll}
\sigma=(1)(2,3)(4,5,6) & \text { (counterclockwise) } & \text { - vertices } \\
\alpha=(1,2,4)(3,6)(5) & \text { (clockwise) } & \text { - hyperedges } \\
\alpha^{-1} \sigma=(1,4,5,3)(2,6) & \text { - facse }
\end{array}
$$

genus of a hypermap

The genus of the hypermap (σ, α) is the nonnegative integer $g_{\sigma, \alpha}$ defined by the equation

$$
n+2-2 g_{\sigma, \alpha}=z(\sigma)+z(\alpha)+z\left(\alpha^{-1} \sigma\right)
$$

where $z(\sigma)$ is the number of cycles of σ.

genus of a hypermap

The genus of the hypermap (σ, α) is the nonnegative integer $g_{\sigma, \alpha}$ defined by the equation

$$
n+2-2 g_{\sigma, \alpha}=z(\sigma)+z(\alpha)+z\left(\alpha^{-1} \sigma\right)
$$

where $z(\sigma)$ is the number of cycles of σ.

permutations	
$\sigma \quad(1)(2,3)(4,5,6)$	z
$\alpha \quad(1,2,4)(3,6)(5)$	3
$\alpha^{-1} \sigma$	$(1,4,5,3)(2,6)$
	2
$g_{\sigma, \alpha}=\frac{1}{2}(6+2-3-3-2)=0$.	

hypermonopoles

A special case, called the hypermonopole, is a hypermap (σ, α) where σ is the n-cycle $\zeta_{n}=(1,2, \ldots, n)$.

The genus g_{α} of a permutation α is defined as the genus of the hypermonopole (ζ_{n}, α), i.e.,

$$
n+1-2 g_{\alpha}=z(\alpha)+z\left(\alpha^{-1} \zeta_{n}\right)
$$

permutations		z
$\sigma=\zeta_{7}$	$(1,2,3,4,5,6,7)$	1
α	$(1,2,7)(3)(4,5,6)$	3
$\alpha^{-1} \zeta_{7}$	$(1)(2,3,6)(4)(5)(7)$	5

$$
g_{\alpha}=\frac{1}{2}(7+1-3-5)=0 .
$$

genus 0 permutations with restrictions

n	\mathfrak{S}_{n}	Alt_{n}	Der_{n}	lnv_{n}	Bax_{n}
2	2	1	1	2	2
3	5	1	1	4	5
4	14	3	3	9	14
5	42	3	6	21	42
6	132	11	15	51	132
7	429	11	36	127	429
	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
	Catalan	Schröder	Riordan	Motzkin	Catalan

genus 1 Baxter permutations enumeration?

n	\mathfrak{S}_{n}	Bax $_{n}$
3	1	1
4	10	8
5	70	45
6	420	214
7	2310	941
	\uparrow	\uparrow
	$\frac{(2 n+3)!}{6(n+1)!n!}$	unknown

(Cori-Hetyei)

Enumeration of genus zero permutations with restrictions

noncrossing partitions

Two disjoint subsets B and B^{\prime} of $[n]$ are crossing if there exist $a, b \in B$ and $c, d \in B^{\prime}$ such that $a<c<b<d$. Otherwise, B and B^{\prime} are noncrossing.

noncrossing partitions

Two disjoint subsets B and B^{\prime} of $[n]$ are crossing if there exist $a, b \in B$ and $c, d \in B^{\prime}$ such that $a<c<b<d$. Otherwise, B and B^{\prime} are noncrossing.

A noncrossing partition of $[n]$ is a set partition of [n], denoted by $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$, such that the blocks B_{j} are pairwise noncrossing.

a characterization of genus zero perm.

Theorem (Cori 1975)

Let $\alpha \in \mathfrak{S}_{n}$. Then $g_{\alpha}=0$ if and only if the cycle decomposition of σ gives a noncrossing partition of [n], and each cycle of α is increasing.

a characterization of genus zero perm.

Theorem (Cori 1975)

Let $\alpha \in \mathfrak{S}_{n}$. Then $g_{\alpha}=0$ if and only if the cycle decomposition of σ gives a noncrossing partition of [n], and each cycle of α is increasing.

For example, $\alpha=329467851=(1,3,9)(5,6,7,8)$ is associated with the following noncrossing partition.

sign-balance for genus 0 permutations

Let $\sigma=\sigma_{1} \cdots \sigma_{n} \in \mathfrak{S}_{n}$. The inversion number of σ is defined by

$$
\operatorname{inv}(\sigma):=\#\left\{\left(\sigma_{i}, \sigma_{j}\right): \sigma_{i}>\sigma_{j}, 1 \leq i<j \leq n\right\}
$$

sign-balance for genus 0 permutations

Let $\sigma=\sigma_{1} \cdots \sigma_{n} \in \mathfrak{S}_{n}$. The inversion number of σ is defined by

$$
\operatorname{inv}(\sigma):=\#\left\{\left(\sigma_{i}, \sigma_{j}\right): \sigma_{i}>\sigma_{j}, 1 \leq i<j \leq n\right\}
$$

Let $\mathcal{G}_{n} \subset \mathfrak{S}_{n}$ be the subset consisting of the permutations of genus zero. We observe that

$$
\sum_{\sigma \in \mathcal{G}_{n}}(-1)^{\operatorname{inv}(\sigma)}= \begin{cases}0 & n \text { even } \\ C_{\left\lfloor\frac{n}{2}\right\rfloor} & n \text { odd }\end{cases}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the nth Catalan number.

LRMin-distribution for genus 0 permutations

Let $\operatorname{LRMin}(\sigma)$ denote the number of left-to-right minima of σ, i.e.,

$$
\operatorname{LRMin}(\sigma):=\#\left\{\sigma_{j}: \sigma_{i}>\sigma_{j}, 1 \leq i<j\right\}
$$

The distribution of genus zero permutations w.r.t LRMin:

n	$\left\|\mathcal{G}_{n}\right\|$	1	2	3	4	5	6	7	8
1	1	1							
2	2	1	1						
3	5	2	2	1					
4	14	5	5	3	1				
5	42	14	14	9	4	1			
6	132	42	42	28	14	5	1		
7	429	132	132	90	48	20	6	1	

signed LRMin-distribution for \mathcal{G}_{n}

The sign-balance of LRMin-distribution for \mathcal{G}_{n} :

n	1	2	3	4	5	6	7	8	9
2	1	-1							
3	0	0	-1						
4	-1	1	-1	1					
5	0	0	1	0	1				
6	2	-2	2	-2	1	-1			
7	0	0	-2	0	-2	0	-1		
8	-5	5	-5	5	-3	3	-1	1	
9	0	0	5	0	5	0	3	0	1

a refined sign-balance result

Theorem (Eu-Fu-Pan-Ting 2018)

For all $n \geq 1$, the following identities hold.
(1) $\sum_{\sigma \in \mathcal{G}_{2 n+1}}(-1)^{i n v(\sigma)} q^{\operatorname{LRMin}(\sigma)}=(-1)^{n} q \sum_{\sigma \in \mathcal{G}_{n}} q^{2 \cdot \operatorname{LRMin}(\sigma)}$,
(2) $\sum_{\sigma \in \mathcal{G}_{2 n}}(-1)^{i n v(\sigma)} q^{L R M i n(\sigma)}=(-1)^{n}\left(1-\frac{1}{q}\right) \sum_{\sigma \in \mathcal{G}_{n}} q^{2 \cdot \operatorname{LRMin}(\sigma)}$,

Dyck paths

Let \mathcal{D}_{n} denote the set of Dyck paths of length n, i.e., the lattice paths from $(0,0)$ to (n, n), using $(0,1)$ step and $(1,0)$ step, that stays weakly above the line $y=x$.
For a Dyck path $\pi \in \mathcal{D}_{n}$, let

- area $(\pi)=$ the number of unit squares enclosed by π and the line $y=x$,
- fpeak $(\pi)=$ the height of the first peak of π.

Dyck paths

Let \mathcal{D}_{n} denote the set of Dyck paths of length n, i.e., the lattice paths from $(0,0)$ to (n, n), using $(0,1)$ step and $(1,0)$ step, that stays weakly above the line $y=x$.
For a Dyck path $\pi \in \mathcal{D}_{n}$, let

- area $(\pi)=$ the number of unit squares enclosed by π and the line $y=x$,
- fpeak $(\pi)=$ the height of the first peak of π.

Figure: A Dyck path π with $\operatorname{area}(\pi)=9$ and $\operatorname{fpeak}(\pi)=3$.

a bijection between genus 0 permutations and Dyck paths

Theorem (Stump 2013)

There is a bijection $\phi: \sigma \rightarrow \pi$ of \mathcal{G}_{n} onto \mathcal{D}_{n} such that
(1) $\operatorname{area}(\pi)=\operatorname{inv}(\sigma)$,
(2) $\operatorname{fpeak}(\pi)=L R M i n(\sigma)$.

a bijection between genus 0 permutations and Dyck paths

Theorem (Stump 2013)

There is a bijection $\phi: \sigma \rightarrow \pi$ of \mathcal{G}_{n} onto \mathcal{D}_{n} such that
(1) $\operatorname{area}(\pi)=\operatorname{inv}(\sigma)$,
(2) $\operatorname{fpeak}(\pi)=L R M i n(\sigma)$.

Figure: The corresponding Dyck path of $\sigma=(1,3,9)(5,6,7,8)$.

even/odd peaks and valleys on Dyck paths

A peak/valley at (i, j) is said to be even (odd, respectively) if $i+j$ is even (odd, respectively).

Figure: The red peaks/valleys are even..

a sign-reversing involution on Dyck paths

Establish an involution $\gamma: \pi \rightarrow \pi^{\prime}$ on \mathcal{D}_{n} by changing the last even peak (or valley) into a valley (or peak). Then

- $\left|\operatorname{area}\left(\pi^{\prime}\right)-\operatorname{area}(\pi)\right|=1$,
- fpeak $\left(\pi^{\prime}\right)=\operatorname{fpeak}(\pi)$.

Figure: The map $\gamma: \pi \rightarrow \pi^{\prime}$.

the fixed points of the map γ

the fixed points of the map γ

Let ferr (π) denote the number of unit squares above the Dyck path π within the $n \times n$ square, i.e., $\operatorname{area}(\pi)=\frac{n(n-1)}{2}-\operatorname{ferr}(\pi)$.

$$
\gamma(\pi)=\pi \in \mathcal{D}_{2 n+1} \rightarrow \operatorname{ferr}(\pi) \text { is even } \rightarrow \operatorname{area}(\pi) \equiv n \quad(\bmod 2)
$$

the fixed points of the map γ - odd case

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{G}_{7}}(-1)^{\operatorname{inv}(\sigma)} q^{\mathrm{LRMin}(\sigma)} & =-q^{7}-2 q^{5}-2 q^{3} \\
& =-q \sum_{\sigma \in \mathcal{G}_{3}} q^{2 \cdot \operatorname{LRMin}(\sigma)}
\end{aligned}
$$

the fixed points of the map γ - even case

$\sum_{\sigma \in \mathcal{G}_{6}}(-1)^{\operatorname{inv}(\sigma)} q^{\operatorname{LRMin}(\sigma)}=\left(-1+\frac{1}{q}\right) \sum_{\sigma \in \mathcal{G}_{3}} q^{2 \cdot \operatorname{LRMin}(\sigma)}$.

Thanks for your attention.

