Skew Hook Formula for *d*-Complete Posets

Soichi OKADA (Nagoya University)

joint work with Hiroshi NARUSE (University of Yamanashi) based on arXiv:1802.09748

Japanese Conference on Combinatorics and its Applications Sendai, May 21, 2018

Young Diagrams and Standard Tableaux

For a partition λ , we define its diagram by

$$D(\lambda) = \{(i, j) \in \mathbb{Z}^2 : 1 \le j \le \lambda_i\}.$$

Let λ and μ be partitions such that $\lambda \supset \mu$ (i.e., $D(\lambda) \supset D(\mu)$). A standard tableau of skew shape λ/μ is a filling T of the cells of $D(\lambda) \setminus D(\mu)$ with numbers $1, 2, \ldots, n = |\lambda| - |\mu|$ satisfying

- each integer appears exactly once,
- the entries in each row and each column are increasing.

Example

1	2	4	6			2	3
3	5	8		1	CI	6	
7				4			

are standard tableaux of shape (4,3,1) and skew shape (4,3,1)/(2) respectively.

Frame-Robinson-Thrall's Hook Formulas for Young Diagrams

Theorem (Frame–Robinson–Thrall) The number f^{λ} of standard tableaux of shape λ is given by

$$f^{\lambda} = \frac{n!}{\prod_{v \in D(\lambda)} h_{\lambda}(v)}, \quad n = |\lambda|,$$

where $h_{\lambda}(i,j) = \lambda_i + \lambda'_j - i - j + 1$ is the hook length of (i,j) in $D(\lambda)$.

Example The hook of (1,2) in ${\cal D}(4,3,1)$ and the hook lengths are given by

6	4	3	1
4	2	1	
1			

Hence we have

$$f^{(4,3,1)} = \frac{8!}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1} = 70.$$

Naruse's Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number $f^{\lambda/\mu}$ of standard tableaux of skew shape λ/μ is given by

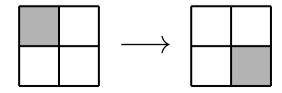
$$f^{\lambda/\mu} = n! \sum_{D} \frac{1}{\prod_{v \in D(\lambda) \setminus D} h_{\lambda}(v)}, \quad n = |\lambda| - |\mu|,$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$.

• If a subset $D\subset D(\lambda)$ and u=(i,j) satisfy (i,j+1), (i+1,j), $(i+1,j+1)\in D(\lambda)\setminus D$, then we define

$$\alpha_u(D) = D \setminus \{(i,j)\} \cup \{(i+1,j+1)\}.$$

• We say that D is an excited diagram of $D(\mu)$ in $D(\lambda)$ if D is obtained from $D(\mu)$ after a sequence of elementary excitations $D \to \alpha_u(D)$.



Naruse's Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number $f^{\lambda/\mu}$ of standard tableaux of skew shape λ/μ is given by

$$f^{\lambda/\mu} = n! \sum_{D} \frac{1}{\prod_{v \in D(\lambda) \setminus D} h_{\lambda}(v)}, \quad n = |\lambda| - |\mu|,$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$.

Example If $\lambda=(4,3,1)$ and $\mu=(2)$, then there are three excited diagrams of $D(\mu)$ in $D(\lambda)$:

6	4	3	1
4	2	1	
1			

6	4	3	1
4	2	1	
1			•

and we have

$$f^{(4,3,1)/(2)} = 6! \left(\frac{1}{3 \cdot 1 \cdot 4 \cdot 2 \cdot 1 \cdot 1} + \frac{1}{4 \cdot 3 \cdot 1 \cdot 4 \cdot 2 \cdot 1} + \frac{1}{6 \cdot 4 \cdot 3 \cdot 1 \cdot 4 \cdot 1} \right) = 40.$$

Reverse Plane Partitions

For a poset P, a P-partition is a map $\pi:P\to\mathbb{N}$ satisfying

$$x \le y \text{ in } P \implies \pi(x) \ge \pi(y) \text{ in } \mathbb{N}.$$

Let $\mathcal{A}(P)$ be the set of P-partitions, and write $|\pi| = \sum_{x \in P} \pi(x)$ for $\pi \in \mathcal{A}(P)$.

The Young diagrams can be regarded as posets by defining

$$(i,j) \ge (i',j') \iff i \le i', j \le j'.$$

If $P = D(\lambda) \setminus D(\mu)$, then P-partitions are called reverse plane partitions of shape λ/μ .

Example

$$\pi = \begin{bmatrix} 3 & 3 \\ 0 & 1 & 3 \\ 2 & \end{bmatrix}$$

is a reverse plane partition of shape (4,3,1)/(2) and $|\pi|=12$.

Univariate Generating Functions of Reverse Plane Partitions

Theorem (Stanley) For a partition λ , the generating function of reverse plane partitions of shape λ is given by

$$\sum_{\pi \in \mathcal{A}(D(\lambda))} q^{|\pi|} = \frac{1}{\prod_{v \in P} (1 - q^{h_{\lambda}(v)})}.$$

Theorem (Morales–Pak–Panova) For partitions $\lambda \supset \mu$, the generating function of reverse plane partition of skew shape λ/μ is given by

$$\sum_{\pi \in \mathcal{A}(D(\lambda) \setminus D(\mu))} q^{|\pi|} = \sum_{D} \frac{\prod_{v \in B(D)} q^{h_{\lambda}(v)}}{\prod_{v \in D(\lambda) \setminus D} (1 - q^{h_{\lambda}(v)})},$$

where D runs over all excited diagrams of $D(\mu)$ in $D(\lambda)$, and B(D) is the set of excited peaks of D.

Using the theory of P-partitions, we can derive the hook formula for standard tableaux from those for reverse plane partitions.

Generalization of Hook Formulas

The Frame–Robinson–Thrall-type hook formula holds for shifted Young diagrams and rooted trees. Proctor introduced a wide class of posets, called d-complete posets.

Theorem (Peterson–Proctor) Let P be a d-complete poset. Then we can define the hook lengths $h_P(v)$ for $v \in P$ so that the number of linear extensions of P is given by

$$\#\{\text{linear extensions of }P\}=rac{n!}{\prod_{v\in P}h_P(v)},\quad n=\#P,$$

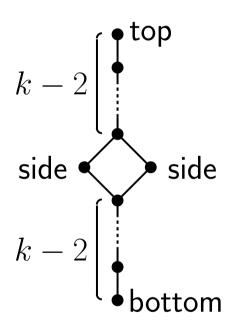
and the univariate generating function of P-partitions is given by

$$\sum_{\pi \in \mathcal{A}(P)} q^{|\pi|} = \frac{1}{\prod_{v \in P} (1 - q^{h_P(v)})}.$$

Goal Generalize Naruse's and Morales–Pak–Panova's skew hook formulas to d-complete posets (in other words, generalize Peterson–Proctor's hook formula to skew setting).

Double-tailed Diamond

• The double-tailed diamond poset $d_k(1)$ $(k \ge 3)$ is the poset depicted below:



- A d_k -interval is an interval isomorphic to $d_k(1)$.
- ullet A d_k^- -convex set is a convex subset isomorphic to $d_k(1)-\{\mathrm{top}\}$.

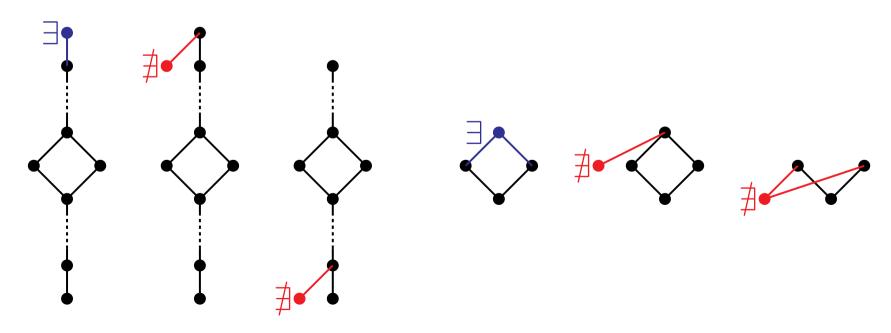
d-Complete Posets

Definition A finite poset P is d-complete if it satisfies the following three conditions for every $k \geq 3$:

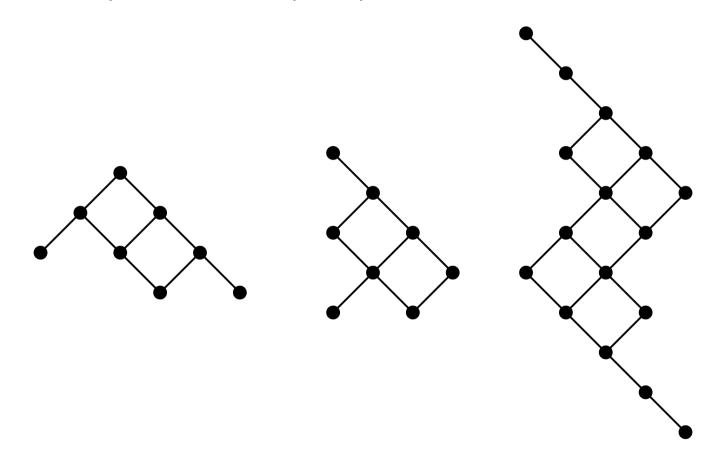
(D1) If I is a d_k^- -convex set, then there exists an element v such that v covers the maximal elements of I and $I \cup \{u\}$ is a d_k -interval.

(D2) If I = [v, u] is a d_k -interval and u covers w in P, then $w \in I$.

(D3) There are no d_k^- -convex sets which differ only in the minimal elements.



Example Shapes (Young diagrams, left), shifted shapes (shifted Young diagrams, middle) and swivels (right) are *d*-complete posets.



Hook Lengths

Let P be a connected d-complete poset. For each $u \in P$, we define the hook length $h_P(u)$ inductively as follows:

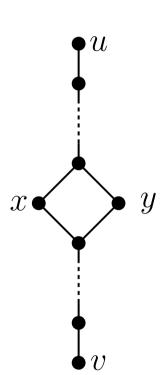
(a) If u is not the top of any d_k -interval, then we define

$$h_P(u) = \#\{w \in P : w \le u\}.$$

(b) If u is the top of a d_k -interval [v, u], then we define

$$h_P(u) = h_P(x) + h_P(y) - h_P(v),$$

where x and y are the sides of [v, u].

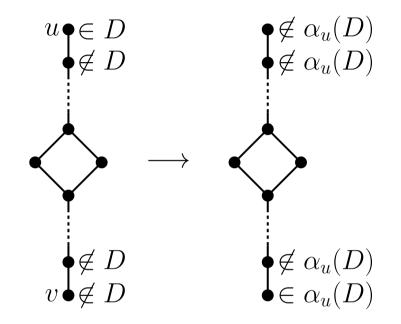


Excited Diagrams for *d***-Complete Posets**

Let P be a connected d-complete poset.

 \bullet We say that $u \in D$ is D-active if there is a $d_k\text{-interval}\ [v,u]$ with $v \not\in D$ such that

$$z \in [v,u]$$
 and
$$\begin{cases} z \text{ is covered by } u \\ \text{or} \\ z \text{ covers } v \\ \implies z \not\in D. \end{cases}$$



• If $u \in D$ is D-active, then we define

$$\alpha_u(D) = D \setminus \{u\} \cup \{v\}.$$

Let F be an order filter of P.

• We say that D is an excited diagram of F in P if D is obtained from F after a sequence of elementary excitations $D \to \alpha_u(D)$.

Excited Peaks for *d***-Complete Posets**

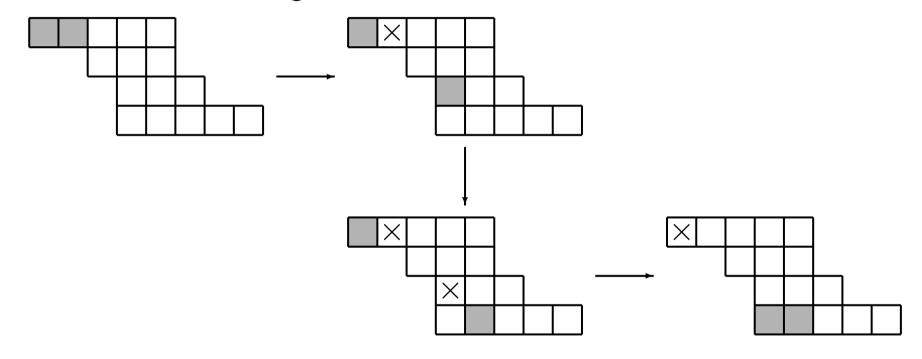
Let P be a d-complete poset and F an order filter of P. To an excited diagram D of F in P, we associate a subset $B(D) \subset P$, called the subset of excited peaks of D, as follows:

- (a) If D = F, then we define $B(F) = \emptyset$.
- (b) If $D' = \alpha_u(D)$ is obtained from D by an elementary excitation at $u \in D$, then

$$B(\alpha_u(D)) = B(D) \setminus \left\{z \in [v,u] : \begin{array}{l} z \text{ is covered by } u \\ \text{or } z \text{ covers } v \end{array} \right\} \cup \{v\},$$

where [v, u] is the d_k -interval with top u.

Example If P is the Swivel and an order filter F has two elements, then there are 4 excited diagrams of F in P.



Here the shaded cells form an exited diagram and a cell with \times is an excited peak.

Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset and F an order filter of P. Then the univariate generating function of $(P \setminus F)$ -partitions is given by

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} q^{|\pi|} = \sum_{D} \frac{\prod_{v \in B(D)} q^{h_P(v)}}{\prod_{v \in P \setminus D} (1 - q^{h_P(v)})},$$

where D runs over all excited diagrams of F in P. More generally, the multivariate generating function of $(P \setminus F)$ -partitions is given by

$$\sum_{\pi \in \mathcal{A}(P \backslash F)} \prod_{v \in P} \left(z_{c(v)} \right)^{\pi(v)} = \sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}[H_P(v)]}{\prod_{v \in P \backslash D} (1 - \boldsymbol{z}[H_P(v)])},$$

where D runs over all excited diagrams of F in P and $\boldsymbol{z}[H_P(v)]$ is the hook monomial.

Main Theorem

Theorem (Naruse–Okada) Let P be a connected d-complete poset and F an order filter of P. Then the multivariate generating function of $(P \setminus F)$ -partitions is given by

$$\sum_{\pi \in \mathcal{A}(P \backslash F)} \prod_{v \in P} \left(z_{c(v)} \right)^{\pi(v)} = \sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}[H_P(v)]}{\prod_{v \in P \backslash D} (1 - \boldsymbol{z}[H_P(v)])},$$

where D runs over all excited diagrams of F in P.

Remark

- If $F = \emptyset$, we recover Peterson–Proctor's hook formula, and our generalization provides an alternate proof.
- If $P=D(\lambda)$ and $F=D(\mu)$ are Young diagrams, then the above theorem reduces to Morales–Pak–Panova's skew hook formula after specializing $z_i=q$ $(i\in I)$.

Idea of Proof

Given a connected d-complete poset P, we can associate the simply-laced Dynkin diagram Γ , the Weyl group W, the fundamental weight λ_P , . . . , and the Kac–Moody partial flag variety \mathcal{X} . By using the equivariant K-theory $K_{\mathcal{T}}(\mathcal{X})$ of \mathcal{X} , we obtain

$$\xi^{v}|_{w} \in \mathbb{Z}[\Lambda] = \bigoplus_{\lambda \in \Lambda} \mathbb{Z}e^{\lambda} \quad (v, w \in W^{\lambda_{P}}),$$

where Λ is the weight lattice. Main Theorem follows from

$$\sum_{\pi \in \mathcal{A}(P \setminus F)} \boldsymbol{z}^{\pi} = \frac{\xi^{w_F}|_{w_P}}{\xi^{w_P}|_{w_P}} = \sum_{D} \frac{\prod_{v \in B(D)} \boldsymbol{z}[H_P(v)]}{\prod_{v \in P \setminus D} (1 - \boldsymbol{z}[H_P(v)])},$$

where $z_i = e^{\alpha_i}$ $(i \in I)$ and w_P (resp. w_F) is the Weyl group element corresponding to P (resp. F).