Degree conditions for partitioning graphs into chorded cycles

Shuya Chiba (Kumamoto University, Japan)

joint work with Shoichi Kamada (Kumamoto University, Japan)

JCCA 2018 Sendai International Center 21 May, 2018

Purpose of this study

We give sharp degree sum conditions for partitioning graphs into a prescribed number of "chorded cycles", and we show the difference between cycles and chorded cycles in terms of sharp degree conditions.

JCCA2018 Sendai 21 May 2018

- G : graph of order n —
- * **Hamilton cycle** of G $\stackrel{\text{def.}}{\iff}$ cycle of G containing all vertices

Major study :

- 1. "better" sufficient conditions
- 2. "relaxed" structures

JCCA2018 Sendai 21 May 2018

-G: graph of order n -

* **Hamilton cycle** of G $\stackrel{\text{def.}}{\iff}$ cycle of G containing all vertices

Major study :

- 1. "better" degree conditions
- 2. "relaxed" structures

Hamilton cycle

(Dirac 1952) $n \ge 3, \ \delta(G) \ge n/2 \implies \exists \text{Hamilton cycle}$

(Ore 1960)

 $n \geq 3, \ \sigma_2(G) \geq n \qquad \Rightarrow \qquad \exists \text{Hamilton cycle}$

 $* \ \delta(G) = \min \left\{ d_G(x) : x \in V(G) \right\}$ $* \ \sigma_2(G) = \min \left\{ \underbrace{d_G(x)}_{\checkmark} + d_G(y) : x, y \in V(G), xy \notin E(G) \right\}$ $\underset{(\neq)}{\overset{(\neq)}{\checkmark}}$ degree of x $(\sigma_2(G) = +\infty \text{ if } G : \text{ complete})$

JCCA2018 Sendai 21 May 2018

-G: graph of order n -

* **Hamilton cycle** of G $\stackrel{\text{def.}}{\iff}$ cycle of G containing all vertices

Major study :

- 1. "better" degree conditions
- 2. partition into cycles

(Dirac 1952) $n \ge 3, \ \delta(G) \ge n/2 \implies \exists \text{Hamilton cycle}$

(Ore 1960)

 $n \geq 3$, $\sigma_2(G) \geq n \quad \Rightarrow \quad \exists \text{Hamilton cycle}$

JCCA2018 Sendai 21 May 2018

- -G: graph of order $n, k \ge 1$: int. —
- * **Hamilton cycle** of G $\stackrel{\text{def.}}{\iff}$ cycle of G containing all vertices
- * Partition of G into (k) cycles
 - $\stackrel{\text{def.}}{\longleftrightarrow}(k)$ disjoint cycles in G containing all vertices

- -G: graph of order $n, k \ge 1$: int. —
- * **Hamilton cycle** of G $\stackrel{\text{def.}}{\iff}$ partition into **1 cycle**
- * Partition of G into (k) cycles
 - $\stackrel{\text{def.}}{\iff}(k)$ disjoint cycles in G containing all vertices

- -G: graph of order $n, k \ge 1$: int. —
- * Hamilton cycle of G $\stackrel{\text{def.}}{\iff}$ partition into 1 cycle
- * Partition of G into k cycles
 - $\stackrel{\text{def.}}{\iff} k$ disjoint cycles of G containing all vertices

- -G: graph of order $n, k \ge 1$: int. —
- * **Hamilton cycle** of G $\stackrel{\text{def.}}{\iff}$ partition into **1 cycle**
- * **Partition** of *G* **into** *k* **cycles** $\stackrel{\text{def.}}{\iff} k$ disjoint cycles of *G* containing all vertices

(Brandt et al. 1997)

 $n \ge 4k-1, \ \sigma_2(G) \ge n \quad \Rightarrow \quad \exists \text{partition into } k \text{ cycles}$

JCCA2018 Sendai 21 May 2018

- * Hamilton cycle of G $\stackrel{\text{def.}}{\iff}$ partition into 1 cycle
- * **Partition** of *G* into *k* cycles $\stackrel{\text{def.}}{\iff} k$ disjoint cycles of *G* containing all vertices

(Brandt et al. 1997) $n \ge 4k - 1, \ \sigma_2(G) \ge n \implies \exists \text{partition into } k \text{ cycles}$

```
Direction of study :
```

partitions into k cycles with "additional conditions"

* containing **pre-specified edges**

- * containing **pre-specified vertices**
- * length constraints etc.

JCCA2018 Sendai 21 May 2018

03/10

[CY] S. Chiba, T. Yamashita, *Degree conditions for the existence of vertex-disjoint cycles and paths: a survey*, Graphs Combin. **34** (2018) 1–83.

- -G: graph of order $n, k \ge 1$: int. —
- * Chorded cycle of G $\stackrel{\text{def.}}{\iff}$ subgraph of G consisting of a cycle and edges joining two vertices of the cycle $\stackrel{\checkmark}{}$ not cycle edges

We first consider the following simple problem

Prob. Determine sharp degree conditions

JCCA2018

21 May 2018

04/10

Sendai

for partitioning graphs into k chorded cycles

JCCA2018 Sendai 21 May 2018

(Brandt et al. 1997) $n \ge 4k-1, \ \sigma_2(G) \ge n \implies \exists \text{partition into } k \text{ cycles}$

(Qiao, Zhang 2012)

Suppose $\exists s$ chorded cycles and (k - s) cycles, all disjoint, in G $\delta(G) \ge n/2 \implies \exists \text{partition into } \underline{s \text{ chorded cycles and } (k - s) \text{ cycles}}{k \text{ cycles}}$

JCCA2018 Sendai 21 May 2018

(Brandt et al. 1997) $n \ge 4k-1, \ \sigma_2(G) \ge n \implies \exists \text{partition into } k \text{ cycles}$

(Qiao, Zhang 2012)

Suppose $\exists s$ chorded cycles and (k - s) cycles, all disjoint, in G

 $\delta(G) \ge n/2 \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

k cycles

Which is better?

conclusion	deg. condition	the rest
Qiao, Zhang	Brandt et al.	incomparable

JCCA2018 Sendai 21 May 2018

(Brandt et al. 1997) $n \ge 4k - 1, \ \sigma_2(G) \ge n \implies \exists \text{partition into } k \text{ cycles}$

(Qiao, Zhang 2012)

Suppose $\exists s$ chorded cycles and (k - s) cycles, all disjoint, in G

 $\delta(G) \ge n/2 \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

k cycles

Which is better?

$\operatorname{conclusion}$	deg. condition	the rest
Qiao, Zhang	Brandt et al.	incomparable

JCCA2018 Sendai 21 May 2018

- **Q1.** Can we improve the degree condition in Qiao-Zhang?
- **Q2.** Can we improve the conclusion in Brandt et al?

Q1. Can we improve the degree condition in Qiao-Zhang? Main Theorem 1

Suppose $\exists s$ chorded cycles and (k - s) cycles, all disjoint, in G

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

(Qiao, Zhang 2012)

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G$ $\delta(G) \geq n/2 \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang? Main Theorem 1

Suppose $\exists s$ chorded cycles and (k - s) cycles, all disjoint, in G

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

Q2. Can we improve the conclusion in Brandt et al?

Main Theorem 2

$$n \geq 4k + 2s - 1, \ \sigma_2(G) \geq n$$

 \Rightarrow \exists partition into *s* chorded cycles and (k - s) cycles

(Brandt et al. 1997) $n \ge 4k-1, \ \sigma_2(G) \ge n \implies \exists \text{partition into } k \text{ cycles}$

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang? Main Theorem 1

Suppose $\exists s$ chorded cycles and (k - s) cycles, all disjoint, in G

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

Q2. Can we improve the conclusion in Brandt et al?

Main Theorem 2

$$n \geq 4k + 2s - 1, \ \sigma_2(G) \geq n$$

 \Rightarrow \exists partition into *s* chorded cycles and (k - s) cycles

Q1. Can we improve the degree condition in Qiao-Zhang? Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G$

 $\sigma_2(G) \geq n \Rightarrow \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

Q2. Can we improve the conclusion in Brandt et al?

Main Theorem 2

$$n \geq 4k + 2s - 1, \ \sigma_2(G) \geq n$$

 \Rightarrow \exists partition into s chorded cycles and (k - s) cycles

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

Q2. Can we improve the conclusion in Brandt et al?

Main Theorem 2

$$n \geq 4k + 2s - 1, \ \sigma_2(G) \geq n$$

 \Rightarrow \exists partition into *s* chorded cycles and (k - s) cycles

(Remark)

Thm. 2 is obtained from Thm. 1 and the following theorem

JCCA2018 Sendai 21 May 2018

07/10

(Chiba, Fujita, Gao, Li 2010)

 $n \ge 3k + s, \ \sigma_2(G) \ge 4k + 2s - 1 \qquad \Rightarrow \qquad (*)$

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

 We can use "crossing arguments" in hamiltonian problems to the case of chorded cycles (even the case of chorded cycles with *c* chords)

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

1. We can use "crossing arguments" in hamiltonian problems to the case of chorded cycles (even the case of chorded cycles with *c* chords) $C_1, \ldots, C_k : \max k$ disjoint chorded cycles, $H : \text{comp. of } G - \bigcup C_i$

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

1. We can use "crossing arguments" in hamiltonian problems to the case of chorded cycles (even the case of chorded cycles with *c* chords) $C_1, \ldots, C_k :$ max. *k* disjoint chorded cycles, H :comp. of $G - \bigcup C_i$

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

We can use "insertion arguments" in k cycles partition problems
to the case of chorded cycles (if ∃"good interval")

 C_1, \ldots, C_k : max. k disjoint chorded cycles, H: comp. of $G - \bigcup C_i$

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

We can use "insertion arguments" in k cycles partition problems
to the case of chorded cycles (if ∃"good interval")

 $C_1, \ldots, C_k :$ max. k disjoint chorded cycles, H :comp. of $G - \bigcup C_i$

JCCA2018 Sendai 21 May 2018

Q1. Can we improve the degree condition in Qiao-Zhang?

Main Theorem 1

Suppose $\exists s \text{ chorded cycles and } (k-s) \text{ cycles, all disjoint, in } G \cdots (*)$

 $\sigma_2(G) \ge n \implies \exists \text{partition into } s \text{ chorded cycles and } (k-s) \text{ cycles}$

We can use "insertion arguments" in k cycles partition problems
to the case of chorded cycles (if ∃"good interval")

 $C_1, \ldots, C_k :$ max. k disjoint chorded cycles, H :comp. of $G - \bigcup C_i$

JCCA2018 Sendai 21 May 2018

Prob.

Determine sharp deg conditions for partitioning graphs into k chorded cycles with c chords

JCCA2018 Sendai 21 May 2018

Prob.

Determine sharp deg conditions for partitioning graphs into k chorded cycles with c chords

 $\langle \mathrm{Known} \rangle \text{ degree conditions for } \exists k \text{ disjoint chorded cycles with } c \text{ chords} \\ (\text{it may not be a partition})$

(Chen et al. 2015) (*) $n \gg k, c, \ \delta(G) \ge \lceil \sqrt{c+1} + 1 \rceil k + 12 \cdot (9/2)^c \Rightarrow \exists k \text{ disjoint chorded cycles with } c \text{ chords}$

> $(\sigma_2 \text{ condition depending on only } k, c \text{ also implies (*)})$ (Chiba, Lichiardopol 2018)

JCCA2018 Sendai 21 May 2018

Prob.

JCCA2018 Sendai

21 May 2018

10/10

Determine sharp deg conditions for partitioning graphs into k chorded cycles with c chords

 $\langle \mathrm{Known} \rangle \text{ degree conditions for } \exists k \text{ disjoint chorded cycles with } c \text{ chords} \\ (\text{it may not be a partition})$

(Chen et al. 2015) (*) $n \gg k, c, \ \delta(G) \ge \lceil \sqrt{c+1} + 1 \rceil k + 12 \cdot (9/2)^c \Rightarrow \exists k \text{ disjoint chorded cycles with } c \text{ chords}$ $(\sigma_2 \text{ condition depending on only } k, c \text{ also implies (*) })$ (Chiba, Lichiardopol 2018) $n \gg k, c, \ \delta(G) \ge n/2 \quad (\text{or } \sigma_2(G) \ge n) \Rightarrow (*)$ Q. This also implies the following?

The k disjoint chorded cycles can be transformed a partition of G

Thank you for your attention!