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A partial Latin rectangle is...

an r × s matrix, [above r = 3 and s = 5]

contains symbols from an n-set, [above n = 4]

Latin-ness: no repeats in each row or column,

partial-ness: we allow empty cells,

with m entries. [above m = 9].

This is a member of PLR(r , s, n;m) = PLR(3, 5, 4; 9).
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Simple question: How many partial Latin rectangles are there?

Not so easy answer (1): Latin squares are not easy to enumerate
=⇒ partial Latin rectangles are not easy to enumerate.

Not so easy answer (2): What does this even mean?

We’ll talk about four different ways of enumerating partial
Latin rectangles.



Simple question: How many partial Latin rectangles are there?

Not so easy answer (1): Latin squares are not easy to enumerate
=⇒ partial Latin rectangles are not easy to enumerate.

Not so easy answer (2): What does this even mean?

We’ll talk about four different ways of enumerating partial
Latin rectangles.



Simple question: How many partial Latin rectangles are there?

Not so easy answer (1): Latin squares are not easy to enumerate
=⇒ partial Latin rectangles are not easy to enumerate.

Not so easy answer (2): What does this even mean?

We’ll talk about four different ways of enumerating partial
Latin rectangles.



Simple question: How many partial Latin rectangles are there?

Not so easy answer (1): Latin squares are not easy to enumerate
=⇒ partial Latin rectangles are not easy to enumerate.

Not so easy answer (2): What does this even mean?

We’ll talk about four different ways of enumerating partial
Latin rectangles.



Method 1 : Inclusion-Exclusion

We order the entries in m-entry partial Latin rectangles.

We thus
enumerate length-m non-clashing sequences of entries... where an entry
(x , y , z) implies we put symbol z in cell (x , y).

The j-th entry clashes with the i-th entry when j > i and:

Blue clashes: they have same column and same symbol.

Red clashes: they have same row and same symbol.

Green clashes: they have same row and same column.

If Cm denotes the set of possible clashes, then Inclusion-Exclusion gives

m!PLR(r , s, n;m) =
∑

V⊆Cm

(−1)|V ||BV |

where BV is the set of length-m sequences of entries with the clashes in
V .
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From the previous slide:

m!PLR(r , s, n;m) =
∑

V⊆Cm

(−1)|V ||BV |.

We convert any set of clashes V to an edge-colored graph:

1 2

3 4

replace parallel edges
with black edges−−−−−−−−−−−−→

1 2

3 4

Here, the 1-st entry has a red clash with the 2-nd entry. And so on.
Then we show

|BV | = r c(delete blue edges)sc(delete red edges)nc(delete green edges).

This shows m!PLR(r , s, n;m) is a 3-variable symmetric polynomial with
integer coefficients of degree 3m, for fixed m (i.e., fixed no. entries).
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We rearrange and simplify to obtain:

Theorem (“what the paper says”): For all r , s, n,m ≥ 1, we have

m!PLR(r , s, n;m)

= (rsn)m +
∑
v≥2

∑
e≥1

(−1)e
(
m

v

)
(rsn)m−v+1

∑
G∈Γe,v

v !

|Aut(G )|P(G )

where Γe,v is the set of unlabeled e-edge v -vertex graphs without isolated
vertices, and

P(G ) =
∑
δ

(−2)#blackr c(��blue)−1sc(��red)−1nc(��green)−1

where the sum is over all red/blue/green/black edge colorings δ of G .

What’s important here:

We compute PLR(r , s, n;m) by computing |Aut(G )| and P(G )
for small graphs. The rest is arithmetic.
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So we do that...

G v e c(G ) |Aut(G )| P(G ) = P(G ; r , s, n)

2 1 1 2 100− 2

3 2 1 2 P( )2

3 3 1 6 200− 2

4 2 2 8 111P( )2

4 3 1 6 P( )3

4 3 1 2 P( )3

4 1 4 2 P( )P( )

4 4 1 8 300 + 6 110− 12 100 + 16

4 5 1 4 300 + 2 110− 4 100 + 4

4 6 1 24 300− 2

5 3 2 4 111P( )3

5 4 2 12 111P( )P( )

6 3 3 48 222P( )3

Etc. Here, we use shorthand 110 = rn + rs + sn.



And by putting those values into the equation, we get...

Theorem (“what the paper says”): Let m be a positive integer. Then,
m!PLR(r , s, n;m) = (rsn)m +

(
m
2

)
(rsn)m−1(2−100) +

(
m
3

)
(rsn)m−2(14−

12 100+6 110+2 200)+
(
m
4

)
(rsn)m−3(198−228 100+198 110−84 111+

72 200−36 210−12 211+6 221−6 300+3 311)+
(
m
5

)
(rsn)m−4(−6360 100+

7440 110−6080 111+2880 200−2520 210+820 211+480 220+360 221−
180 222 − 480 300 + 240 310 + 160 311 − 80 321 + 24 400 − 20 411) +(
m
6

)
(rsn)m−5(−13170 211+17340 221−15990 222+7580 311−7050 321+

3300 322 + 1520 331 + 180 332− 90 333− 1740 411 + 870 421 + 90 422−
45 432 + 130 511 − 15 522) +

(
m
7

)
(rsn)m−6(−10920 322 + 15540 332 −

15120 333 + 7350 422 − 7140 432 + 3570 433 + 1680 442 − 2100 522 +
1050 532 + 210 622) +

(
m
8

)
(rsn)m−7(−3360 433 + 5040 443− 5040 444 +

2520 533−2520 543+1260 544+630 553−840 633+420 643+105 733) +
some polynomial of degree ≤ 3m − 10.

What’s important here:

We computed many leading terms for m!PLR(r , s, n;m) for fixed m.

This is exact for m ≤ 5.
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Method 2 : Chromatic polynomial method
PLR(r , s, n;m)’s are equivalent to proper n-colorings of m-entry induced
subgraphs of Kr�Ks .

· · · 1

· 2 4 ·

2 · · 3

Example: a proper 4-coloring of an induced subgraph K3�K4.

So we get

#PLR(r , s, n;m) =
∑
M

Π(M; n)

where Π is the chromatic polynomial, and the sum is over all induced
subgraphs M.
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We split up the equation for implementation:

we group into
isomorphism classes for each component, etc.

Theorem (“what the paper says”):

#PLR(r , s, n;m)

=
∑
k≥0

∑
K∈Kr,s,m,k

∑
(ti )

k
i=1

good

[r ]erow [s]ecol

∏k
i=1 Π(Ki ; n)(∏k

i=1 |Aut(GKi )|
)(∏`

i=1 ki !
)

where [r ]erow = r !/(r − erow)! and [s]ecol
= s!/(s − ecol)!, (and a bunch of

undefined things).

What’s important here:

We compute #PLR(r , s, n;m) by computing |Aut(G )| and
Π(G ) for small induced subgraphs of Kr�Ks .
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So we do that...

block K induced subgraph |Aut(GK )| Π(K ; n)

1 1 n

1 1 2 n(n − 1)

1 1 1 6 n(n − 1)(n − 2)

1 1
1 0

1 n(n − 1)2

1 1 1 1 24 n(n − 1)(n − 2)(n − 3)

1 1 1
1 0 0

2 n(n − 1)2(n − 2)

1 1 0
1 0 1

2 n(n − 1)3

1 1
1 1

4 n(n − 1)(n2 − 3n + 3)

Etc.



And we get exact formulas for small fixed m:

1!#PLR(r , s, n; 1) = 111.

2!#PLR(r , s, n; 2) = 222− 211 + 2 111.

3!#PLR(r , s, n; 3) =
333− 3 322 + 6 222 + 2 311 + 6 221− 12 211 + 14 111.

4!#PLR(r , s, n; 4) = 444−6 433+12 333+11 422+30 332−60 322−
6 411− 36 321− 28 222 + 72 311 + 198 221− 228 211 + 198 111.

5!#PLR(r , s, n; 5) = 555− 10 544 + 20 444 + 35 533 + 90 443−
180 433− 50 522− 260 432− 460 333 + 520 422 + 1350 332 +
24 511 + 240 421− 320 322 + 480 331− 480 411− 2520 321−
5090 222 + 2880 311 + 7440 221− 6360 211 + 4512 111.

and so on up to 13 entries.



Method 3 : Sade’s Method

Sade’s method is the best for exact enumeration of Latin squares.

We adapt Sade’s method to partial Latin rectangles (if you’re familiar
with Sade’s method, it’s what you expect).

We compute a bunch of numbers, like

PLR(6, 6, 8; 20) = 2921119683107942455372800.

We compute #PLR(r , s, n;m) when r ≤ s ≤ n ≤ 7.

We compute #PLR(r , s, n;m) when r ≤ s ≤ 6 and n = 8.

(Thanks to Zhuanhao Wu for assistance coding.)
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Method 4 : Algebraic geometry

We enumerate equivalence classes: (a) paratopism classes, (b) isotopism
classes, and (c) isomorphism classes.

Burnside’s Lemma =⇒ We need only compute the number of PLRs
which are stabilized by each possible symmetry.

Over the polynomial ring Q[x] = Q[x111, . . . , xrsn], we consider the ideal

Ir ,s,n;m :=〈 x2
ijk − xijk : (i , j , k) ∈ [r ]× [s]× [n] 〉

+ 〈 xijkxi ′jk : (i , j , k) ∈ [r ]× [s]× [n], i ′ ∈ [r ], i < i ′ 〉
+ 〈 xijkxij ′k : (i , j , k) ∈ [r ]× [s]× [n], j ′ ∈ [s], j < j ′ 〉
+ 〈 xijkxijk ′ : (i , j , k) ∈ [r ]× [s]× [n], k ′ ∈ [n], k < k ′ 〉
+ 〈 m −

∑
i∈[r ]

∑
j∈[s]

∑
k∈[n]

xijk 〉.

Zeroes of this ideal correspond to PLR(r , s, n;m).
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We modify the ideal to account for the desired symmetry:

Theorem (“what the paper says”): Let Θ = (δ1, δ2, δ3) ∈ Ir ,s,n and
π ∈ S3. Define

I(Θ,π);m := Ir ,s,n;m + 〈 xi1i2i3 − xδπ(1)(iπ(1))δπ(2)(iπ(2))δπ(3)(iπ(3)) :

i1 ∈ [r ], i2 ∈ [s], i3 ∈ [n] 〉.

Then, the set PLR((Θ, π);m) has a natural bijection with V(I(Θ,π);m) and

#PLR((Θ, π);m) = dimQ(Q[x]/I(Θ,π);m).

(from Seidenberg’s Lemma.)

This is implemented in Singular and Minion (which
implement the appropriate routines).

We compute the size of each equivalence class for r , s, n ≤ 6.
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