The Sigma Chromatic Number of Corona of Cycles or Paths with Complete Graphs

Agnes D. Garciano¹ Maria Czarina T. Lagura² Reginaldo M. Marcelo¹ Nelson R. Tumala, Jr.³

Ateneo de Manila University¹ University of Santo Tomas - Senior High School² Ozamis City National High School ³

May 21, 2018

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Overview				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Basic Concepts
- Known Results

2 Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$

3 Main Results

Open Problems

5 References

Preliminaries ●000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Basic Co	ncepts			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let G be a simple connected graph.

Definition (Vertex Coloring)

A vertex coloring of G is a mapping $c: V(G) \longrightarrow \mathbb{N}$.

Preliminaries •••••	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Basic Cor	ncepts			

Let G be a simple connected graph.

Definition (Vertex Coloring)

A vertex coloring of G is a mapping $c: V(G) \longrightarrow \mathbb{N}$.

Definition (Color Sum)

 $\forall v \in V(G),$ $\sigma(v) = \sum_{u \in N_G(v)} c(u).$

Preliminaries
000000000000000000000000000000000000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Basic Concepts

Definition (Sigma Coloring)

c is a sigma coloring if $\sigma(u) \neq \sigma(v), \forall uv \in E(G)$.

Preliminaries
000000000

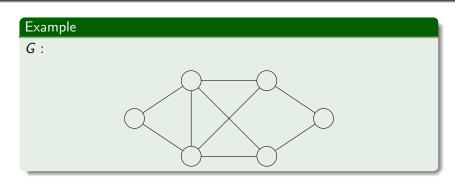
Basic Concepts

Definition (Sigma Coloring)

c is a sigma coloring if $\sigma(u) \neq \sigma(v), \forall uv \in E(G)$.

Definition (Sigma Chromatic Number)

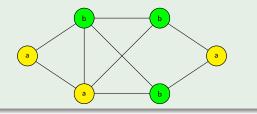
 $\sigma(G)$ is the least number of colors required in a sigma coloring.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example

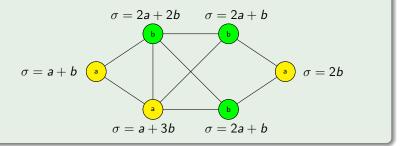
A sigma coloring of $G : (a < b \text{ and } b \neq 2a)$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example

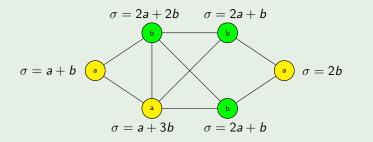
A sigma coloring of $G : (a < b \text{ and } b \neq 2a)$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example

A sigma coloring of $G : (a < b \text{ and } b \neq 2a)$

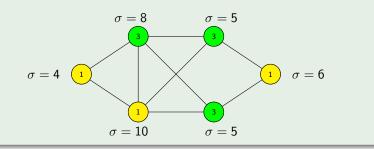


Thus,
$$\sigma(G) = 2$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

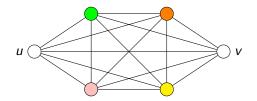
For instance, if a = 1 and b = 3:



Preliminaries	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known R	oculto			

If u and v are adjacent vertices where $N(u) - \{v\} = N(v) - \{u\}$, then

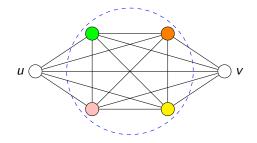
 $\sigma(u) \neq \sigma(v)$ if and only if $c(u) \neq c(v)$.



Preliminaries	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known R	eculte			

If u and v are adjacent vertices where $N(u) - \{v\} = N(v) - \{u\}$, then

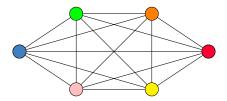
 $\sigma(u) \neq \sigma(v)$ if and only if $c(u) \neq c(v)$.



Preliminaries	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known R	eculte			

If u and v are adjacent vertices where $N(u) - \{v\} = N(v) - \{u\}$, then

 $\sigma(u) \neq \sigma(v)$ if and only if $c(u) \neq c(v)$.



	inaries 0●0000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Kn	own Re	sults			
	Theorem	2 (Chartrand, Okamoto, Z	Zhang [2])		
	For any	graph G,			
		$\sigma(G) \leq \gamma$	$\chi(G).$		

Preliminaries ○○○○○●○○○○	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known F	Results			

Theorem 2 (Chartrand, Okamoto, Zhang [2])

For any graph G,

 $\sigma(G) \leq \chi(G).$

Corollary 3

For the complete graph K_n ,

 $\sigma(K_n)=n.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminaries	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known R	esults			

Corollary 4

If *m* is any positive integer then
$$\sigma(P_m) = \begin{cases} 1, & \text{if } m = 1 \text{ or } m = 3, \\ 2, & \text{if } m \notin \{1,3\}. \end{cases}$$

Preliminaries	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known R	esults			

Corollary 4

If *m* is any positive integer then
$$\sigma(P_m) = \begin{cases} 1, & \text{if } m = 1 \text{ or } m = 3, \\ 2, & \text{if } m \notin \{1,3\}. \end{cases}$$

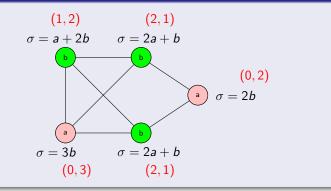
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollary 5

For every integer
$$m \ge 3$$
, $\sigma(C_m) = \begin{cases} 2, & \text{if } m \text{ is even,} \\ 3, & \text{if } m \text{ is odd.} \end{cases}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Another way to represent color sums:



Preliminaries ○○○○○○○●○	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Known R	esults			

Lemma 6

Let $\{(\alpha_1, \beta_1), (\alpha_2, \beta_2), \dots, (\alpha_r, \beta_r)\}$ be a finite set of distinct ordered pairs of nonnegative integers. Then there exist positive integers *a* and *b* where *a* < *b* such that

 $\alpha_i \cdot \mathbf{a} + \beta_i \cdot \mathbf{b} \neq \alpha_j \cdot \mathbf{a} + \beta_j \cdot \mathbf{b},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for $i \neq j$ and $1 \leq i, j \leq r$.

Preliminar	es
0000000	000

Known Results

Lemma 7

Let $\{(\alpha_1, \beta_1, \gamma_1), (\alpha_2, \beta_2, \gamma_2), \dots, (\alpha_r, \beta_r, \gamma_r)\}$ be a finite set of distinct ordered triples of nonnegative integers. Then there exist positive integers a, b and d where a < b < d such that

$$\alpha_i \cdot \mathbf{a} + \beta_i \cdot \mathbf{b} + \gamma_i \cdot \mathbf{d} \neq \alpha_i \cdot \mathbf{a} + \beta_i \cdot \mathbf{b} + \gamma_i \cdot \mathbf{d},$$

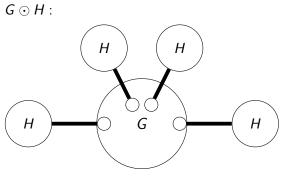
for $i \neq j$ and $1 \leq i, j \leq r$.

Open Problems

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

The corona of two graphs G and H, written as $G \odot H$, is the graph obtained by taking one copy of G and |V(G)| copies of H, where the i^{th} vertex of G is adjacent to every vertex in the i^{th} copy of H.

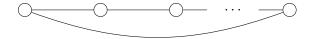


Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Definitior	ו			

Corona Graph $C_m \odot K_n$

The corona graph $C_m \odot K_n$ is the graph obtained by taking one copy of C_m

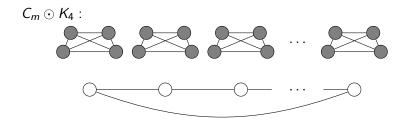
 $C_m \odot K_4$:



Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Definition				

Corona Graph $C_m \odot K_n$

The corona graph $C_m \odot K_n$ is the graph obtained by taking one copy of C_m and m copies of K_n

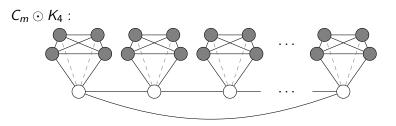


Preliminaries	

Definition

Corona Graph $C_m \odot K_n$

The corona graph $C_m \odot K_n$ is the graph obtained by taking one copy of C_m and m copies of K_n where the i^{th} vertex of C_m is adjacent to every vertex in the i^{th} copy of K_n .



Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$

Main Results

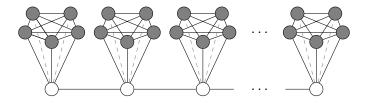
lts Op

ems R

References

Corona Graph $P_m \odot K_n$

 $P_m \odot K_5$:



Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Prelimina	rv			

Let G and H be disjoint graphs with sigma colorings c_1 and c_2 , respectively. Define c as the coloring of $G \odot H$ given by

$$c(v) = \begin{cases} c_1(v), & \text{if } v \in V(G) \\ c_2(v), & \text{if } v \text{ is a vertex in any copy of } H \text{ in } G \odot H. \end{cases}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Prelimina	rv			
Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References

Let G and H be disjoint graphs with sigma colorings c_1 and c_2 , respectively. Define c as the coloring of $G \odot H$ given by

$$c(v) = \begin{cases} c_1(v), & \text{if } v \in V(G) \\ c_2(v), & \text{if } v \text{ is a vertex in any copy of } H \text{ in } G \odot H. \end{cases}$$

If u and v are adjacent vertices that are both in G or both in H, then

 $\sigma_{c}(u) \neq \sigma_{c}(v).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Main Re	sult			

Theorem 10

Let *m* and *n* be positive integers with $m \ge 2$ and $n \ge 2$. Then,

 $\sigma(P_m \odot K_n) = n.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Outline of the Proof:				
We want to	show that			
$\sigma(F)$	$P_m \odot K_n) = n.$			

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Outline o	f the Proof:			

Let

 c_1 : a sigma 2-coloring of P_m ,



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main Results

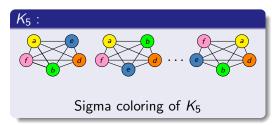
ts Open F

References

Outline of the Proof:

Let

 c_1 : a sigma 2-coloring of P_m , c_2 : a sigma *n*-coloring of K_n with $c_1(V(P_m)) \subseteq c_2(V(K_n))$.



イロト 不得 トイヨト イヨト

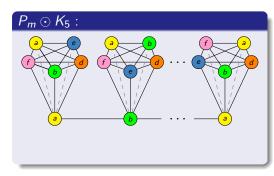
3

Preliminaries 0000000000

Outline of the Proof:

Let

- c_1 : a sigma 2-coloring of P_m , c_2 : a sigma *n*-coloring of K_n with $c_1(V(P_m)) \subseteq c_2(V(K_n))$. Let
- **c** be the coloring of $P_m \odot K_n$ obtained from c_1 and c_2 .

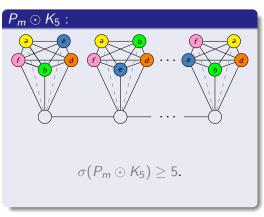


Outline of the Proof:

Note that

 $\sigma(P_m \odot K_n) \ge n$

since the restriction of a sigma coloring to the subgraph K_n must also be a sigma coloring.



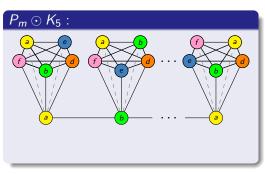
Outline of the Proof:

Note that

 $\sigma(P_m \odot K_n) \ge n$

since the restriction of a sigma coloring to the subgraph K_n must also be a sigma coloring.

We can show that **c** is a sigma *n*-coloring of $P_m \odot K_n$.



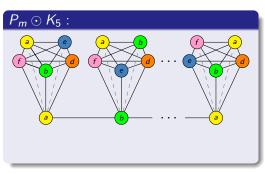
Outline of the Proof:

Note that

 $\sigma(P_m \odot K_n) \ge n$

since the restriction of a sigma coloring to the subgraph K_n must also be a sigma coloring.

We can show that **c** is a sigma *n*-coloring of $P_m \odot K_n$.



Preliminaries 000000000

Results

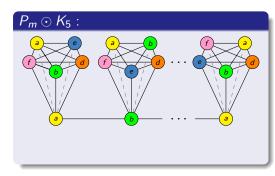
blems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

References

Outline of the Proof:

Let u, v be any two adjacent vertices in $P_m \odot K_n$.



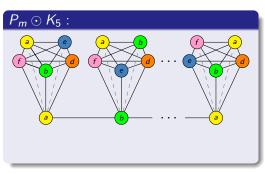
Preliminaries 0000000000

Outline of the Proof:

Let u, v be any two adjacent vertices in $P_m \odot K_n$.

We consider cases. We show that

 $\sigma(u) \neq \sigma(v).$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminaries 0000000000

pen Problems

References

Outline of the Proof:

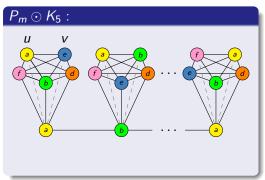
Case 1: If u and v are both in (a copy of) K_n , then

$$\sigma(u) = \sigma_{c_2}(u) + c(x)$$

$$\neq \sigma_{c_2}(v) + c(x)$$

$$= \sigma(v)$$

where $x \in V(P_m) \cap N(u) \cap N(v)$



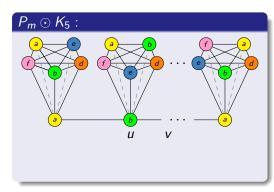
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Preliminaries

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Outline of the Proof:

Case 2: If *u* and *v* are both degree-2 adjacent vertices of P_m then



Preliminaries

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Outline of the Proof:

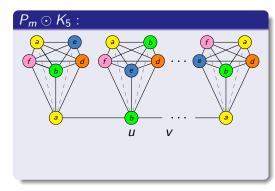
Case 2: If u and v are both degree-2 adjacent vertices of P_m then

$$\sigma(u) = \sigma_{c_1}(u) + \lambda$$

$$\neq \sigma_{c_1}(v) + \lambda$$

$$= \sigma(v)$$

where
$$\lambda = \sum_{x \in V(K_n)} c_2(x)$$
.



Preliminaries 0000000000

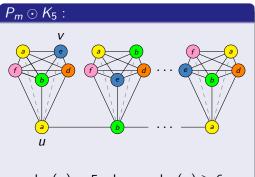
Outline of the Proof:

Case 3: If $u \in V(P_m)$ and $v \in V(K_n)$ are adjacent, then

 $\deg(v) = n$

whereas

 $\deg(u) \ge n+1.$



 $deg(v) = 5 \text{ whereas } deg(u) \ge 6$ Recall Lemma 6: $\sigma(u) \neq \sigma(v) \Leftrightarrow (\alpha_u, \beta_u) \neq (\alpha_v, \beta_v)$

・ロット 4回ット 4回ット 4回ット 4回ット

Preliminaries

Open Problems

References

Outline of the Proof:

Case 4: If a degree -1 vertex u of P_m and degree-2 vertex v of P_m are adjacent then

$$\deg(u)=n+1$$

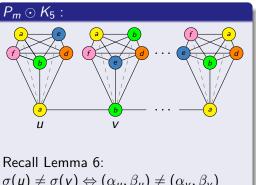
whereas

 $\deg(v) = n + 2.$

Recall Lemma 6: $\sigma(\mathbf{u}) \neq \sigma(\mathbf{v}) \Leftrightarrow (\alpha_{\mathbf{u}}, \beta_{\mathbf{u}}) \neq (\alpha_{\mathbf{v}}, \beta_{\mathbf{v}})$

Hence, **c** is a sigma coloring of the corona graph. Thus

 $\sigma(P_m \odot K_n) < n.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Other Main Results			
Preliminaries Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References

Let *m* be a positive integer with $m \ge 3$. Then,

 $\sigma(C_m \odot K_2) = \sigma(C_m).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open
_			

Other Main Results

Theorem 11

Let *m* be a positive integer with $m \ge 3$. Then,

$$\sigma(C_m \odot K_2) = \sigma(C_m).$$

References

Theorem 12

Let *m* and *n* be a positive integer with $m, n \ge 3$. Then,

 $\sigma(C_m \odot K_n) = n.$

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Other Ma	in Results			

Let G be a simple connected graph with $|G| \ge 2$. Then,

 $\sigma(G \odot K_n) \leq \max{\{\sigma(G), n\}},$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where $n \ge 3$.

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
ldea of th	e Proof:			

Let $m = \sigma(G)$. **Case 1**: $m \ge n$. Let c_1 be a sigma *m*-coloring of *G*.

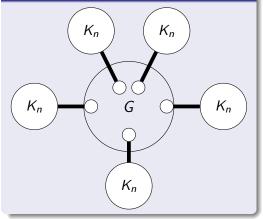
Let c_2 be a sigma *n*-coloring of each K_n using any *n* of the *m* colors.

Enough to compare adjacent vertices with $\deg(u) = \deg(v)$.

It can be easily shown that $\sigma(u) \neq \sigma(v)$.

Case 2: m < n. The proof is similar to case 1.

$G \odot K_n$:



Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Generaliz	ation:			

Let G and H be simple connected graphs with $\sigma(G) = m, \sigma(H) = n$ and $m, n \ge 3$. Then,

 $\sigma(G \odot H) \leq \max\{m, n\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Generaliza	ation:			

Let G and H be simple connected graphs with $\sigma(G) = m, \sigma(H) = n$ and $m, n \ge 3$. Then,

 $\sigma(G \odot H) \leq \max\{m, n\}.$

If $n \ge m$,

 $\sigma(G \odot H) = \max{\{m, n\}},$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Open Pro	blems			

- Describe sigma colorings of corona graphs.
- Oetermine the sigma chromatic number of corona of 3 graphs and describe their sigma colorings.

Find the sigma chromatic number of corona of a finite number of graphs.

Preliminaries 0000000000	Corona Graphs $C_m \odot K_n$ and $P_m \odot K_n$	Main Results	Open Problems	References
Reference				

- G. Chartrand, and P. Zhang, *Chromatic Graph Theory.* Boca Raton, FL: Chapman & Hall/CRC Press, 2009.
- G. Chartrand, F. Okamoto and P. Zhang. "The Sigma Chromatic Number of a Graph." *Graph and Combinatorics* (2010) 26:755-773.
- N. Tumala. *The Sigma Chromatic Number of the Corona of Cycles and Complete Graphs.* Thesis. Mathematics Teachers Association of the Philippines. 2017.
 - P. Zhang, A Kaleidoscopic View of Graph Colorings. http://www.springer.com/series/10030, 2016.
- F. Okamoto, E. Salehi and P. Zhang, "On Multiset Colorings of Graphs". *Discussiones Mathematicae Graph Theory* (2010) 30:137153.

Arigatou Gozaimasu! (Maraming Salamat!)

