
Unique realisations of graphs

Katie Clinch

University of Tokyo

Joint work with Bill Jackson (Queen Mary, University of London)
and Peter Keevash (University of Oxford)

May 21, 2018

Katie Clinch (Univ. of Tokyo) Unique realisations of graphs May 21, 2018 1 / 27



Contents

1 Motivation

2 Rigidity theory

3 Global rigidity

4 Angle constraints

Katie Clinch (Univ. of Tokyo) Unique realisations of graphs May 21, 2018 2 / 27



Motivation

Motivating question

When can a physical structure only be built in one way?

This question appears in areas such as:

chemistry (stereoisomers),

civil engineering and mechanical engineering,

computer graphics, and computer-aided design (CAD)

amongst others.
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Model

What properties do such structures have?

Consist of parts of fixed size and/or shape.

Geometric constraints between these parts e.g. fixed distance or angle.

Sometimes these geometric constraints can be stretched or
compressed.

One of the simplest models of such structures are...

Length-frameworks

A length-framework (G , p) consists of a graph G and a map
p : V → Rd .

each vertex represents a part of our framework

an edge represents a fixed distance between the two endvertices

the realisation p assigns a location to each vertex
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Examples of length-frameworks

(a) (G , p) (b) (G , q1). Reflection in AB.

(c) (G , q2). Reflection in x-axis. (d) (G , q3). Rotation by 180◦
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Unique realisations

The length-frameworks (G , p) and (G , q) are equivalent if
(p(u)− p(v))2 = (q(u)− q(v))2 for all uv ∈ E (G ).

(G , p) and (G , q) are congruent if (G , q) can be obtained by
translating, rotating and/or reflecting (G , p).

Definition

A length-framework (G , p) is globally rigid if every framework (G , q)
which is equivalent to (G , p) is also congruent to (G , p).

In other words, p is the unique realisation of G (up to translation, rotation
and reflection) which satisfies this set of edge length constraints.
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K4 − e is not globally rigid

(a) (G , p) (b) Equivalent but not congruent
to (G , p).

(c) Equivalent and congruent (d) Equivalent and congruent

Figure: Realisations of K4 − e in R2.
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Rigidity

Important!

From now on, we only consider frameworks in R2.

Informally...
A length framework is flexible if its vertices can be moved relative to each
other whilst preserving the edge lengths. Otherwise it is rigid.

Examples

(Kn, p) is rigid for all n and all p.

paths on at least 3 vertices are flexible.

cycles on at least 4 vertices are flexible.

Formally...
We need to define what it means to “move” the framework.
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Motions

A motion of a length framework (G , p) is a continuous function pt = P(t)
for 0 ≤ t ≤ 1 where pt : V (G )→ R2 is a realisation of G which satisfies

(M1) p0(v) = p(v) for all v ∈ V (G ); and

(M2) for all uv ∈ E (G ) and t ∈ [0, 1], ‖pt(u)− pt(v)‖ = ‖p(u)− p(v)‖.

A motion is trivial if (M2) holds for all u, v ∈ V (G ). In other words, when
(G , pt) can be obtained from (G , p) by a translation and/or rotation.

Definition

A length framework is rigid if the only continuous motions which preserve
the edge constraints are trivial. A length framework which is not rigid is
said to be flexible.
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Questions in rigidity theory

Is (G , p) rigid?

Is (G , p) globally rigid?

Is rigidity a combinatorial property (determined by G )? Or a
geometric property (determined by p)?

Key question 1

When can we G determine whether (G , p) is rigid (or globally rigid) by
only considering the structure of G?

Key question 2

What structure of G guarantees characterises rigidity (or global rigidity) in
these cases?
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When does the choice of realisation affect rigidity?

(a) A flexible framework (G , p1). (b) A rigid framework (G , p2).

Figure: Non-generic length frameworks.

A realisation p or framework (G , p) is generic if the coordinates in p are
algebraically independent over Q.

For generic length-frameworks, rigidity is a combinatorial property.

i.e. the structure of G determines when (G , p) is rigid.
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Rigidity results

Theorem (Laman, 1970)

Let (G , p) be a generic length framework. Then (G , p) is rigid if and only
if it has a spanning subgraph H which has

|E (H)| = 2|V (H)| − 3, and

|F | ≤ 2|V (F )| − 3 for all ∅ 6= F ⊆ E (H).
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The rigidity matroid

Laman’s result characterises the independent sets of a matroid, R(G ):

Theorem

A set of edges E ′ ⊆ E (G ) is independent in the rigidity matroid R(G ) if
and only if |F | ≤ 2|V (F )| − 3 for all ∅ 6= F ⊆ E ′.

This leads to the alternative statement of Laman’s result in terms of
matroid rank:

Theorem

Let (G , p) be a generic length framework, and let |V (G )| = n. Then
(G , p) is rigid if and only if rank(R(G )) = rank(R(Kn)).
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3-connectivity and global rigidity

Figure: If the underlying graph G of a length framework (G , p) is not
3-connected, then G is not globally rigid.

Katie Clinch (Univ. of Tokyo) Unique realisations of graphs May 21, 2018 16 / 27



Rigidity and global rigidity

If a framework is flexible, then it cannot be globally rigid.
If a framework is rigid, it may not be globally rigid:

(a) (G , p) (b) (G − e, pt) (c) (G , q)

Figure: If (G − e, p) is not rigid, then we may be able to find an equivalent but
non-congruent realisation (G , q) to (G , p).

We say a framework (G , p) is redundantly rigid if (G − e, p) is rigid for
all e ∈ E (G ).
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Global rigidity results

Theorem (Hendrickson, 1992)

If a generic framework (G , p) is globally rigid in Rd then either G is a
complete graph with at most d + 1 vertices, or the following conditions
hold:

1 G is (d + 1)-connected, and

2 G is redundantly rigid.

Theorem (Jackson and Jordán, 2005)

A generic length framework (G , p) is globally rigid (in R2) if and only if
either G is a complete graph on at most 3 vertices, or G is 3-connected
and redundantly rigid.
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Matroid connectivity

In the rigidity matroid R(G ), an edge set C 6= ∅ is a circuit if and only if

(i) |C | = 2|V (C )| − 2, and

(ii) |F | ≤ 2|V (F )| − 3, for all ∅ 6= F ⊂ C .

The rigidity matroid R(G ) of a graph G is connected if and only if for all
e, f ∈ E (G ) either

e = f , or

there exists a circuit C of M such that e, f ∈ C .

Theorem (Jackson and Jordán, 2005)

A generic length framework (G , p) is globally rigid (in R2) if and only if
either G is a complete graph on at most 3 vertices, or both of the
following hold:

(i) G is 3-connected, and

(ii) R(G ) is connected.
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Other models

Motivating question

Can we extend the results for length-frameworks to models which have
both length and angle constraints?

It is difficult to model angles combinatorially

We can capture some of the behaviour of angle constraints using
simpler models, such as:

I direction-length frameworks (easy to work with, but not very realistic)
I point-line frameworks (more realistic, but much more difficult to work

with)
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Direction-length frameworks

A direction-length graph is a loop-free multi-graph G = (V ;D, L) with
two types of edges:

Length edges uv ∈ L represent distance constraints between their
endvertices

Direction edges uv ∈ D represent slope constraints: u and v must
stay on a line of fixed slope.

Figure: Solid lines depict length edges, and dashed lines depict direction edges.

A direction-length framework is a pair (G , p) where G is a
direction-length graph, and p : V (G )→ R2.
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DL-global rigidity

Given two direction-length frameworks (G , p) and (G , q),

(G , p) and (G , q) are equivalent if
I for all uv ∈ L: (p(u)− p(v))2 = (q(u)− q(v))2

I for each uv ∈ D, there exists some λ ∈ R such that
q(u)− q(v) = λ(p(u)− p(v)).

(G , p) and (G , q) are congruent if (G , q) can be obtained from
(G , p) by translating and/or rotating by 180◦.

Definition

A DL-framework (G , p) is DL-globally rigid if every framework (G , q)
which is equivalent to (G , p) is also congruent to (G , p).

In other words, p is the unique realisation of G (up to translation and
rotation by 180◦) which satisfies this set of edge constraints.
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Example
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Figure: Two equivalent but non-congruent realisations of a direction-length
framework.
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DL-rigidity

Informally...
a direction-length framework is DL-rigid if its only continuous motions are
translations.

Theorem (Servatius and Whiteley, 1999)

A generic DL-framework (G , p) is DL-rigid if and only if it has a spanning
subgraph H which has

|E (H)| = 2|V (H)| − 2,

|F | ≤ 2|V (F )| − 2 for all ∅ 6= F ⊆ E (H), and

|F | ≤ 2|V (F )| − 3 for all ∅ 6= F ⊆ L and all ∅ 6= F ⊆ D.

These last two conditions characterise independence in the DL-rigidity
matroid RDL.
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Vertex connectivity and matroid connectivity

Given a DL-graph G :

An edge set C ⊆ E (G ) is a circuit in the rigidity matroid RDL(G ) if
C is dependent in RDL(G ), but every proper subset of C is
independent in RDL(G ).

The matroid RDL(G ) is connected is for all distinct e, f ∈ E (G )
there exists a circuit C of RDL(G ) such that e, f ∈ C .

G is direction-balanced if whenever G has a 2-vertex-cut, both sides
of the cut contain a direction edge.

Katie Clinch (Univ. of Tokyo) Unique realisations of graphs May 21, 2018 26 / 27



Main result

Theorem (Jackson, Keevash and C., 2018+)

Let G = (V ;D, L) be a direction-length graph. Then (G , p) is DL-globally
rigid for all generic realisations p if and only if

G is DL-rigid, and

either |L| = 1; or G has a subgraph H such that
I L ⊆ E (H),
I D ∩ E (H) 6= ∅,
I H is direction-balanced, and
I RDL(H) is connected.

This statement builds on partial results by Servatius and Whiteley (1999), Jackson and
Jordán (2010), Jackson and Keevash (2011) and C. (2018+).
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