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Remark and Notation

� Usually, when we study design theory on a certain space M , for
a fixed subspace H ⊂ C(M), we find suitable subsets X ⊂ M as
H-design. But, in this talk, for a fixed subset X ⊂ M , we find
suitable subspaces H ⊂ C(M) such that X is H-design.

n: integer with n ≥ 2

[n] := {1, 2, . . . , n}
2[n]: the power set of [n] i.e., 2[n] := {α |α ⊂ [n]}
For a set X,

(
X
2

)
:= {{x, y} |x, y ∈ X, x ̸= y}
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Hamming cube Qn and C(Qn)

X := {1,−1}n

E := {{aaa,bbb} ∈
(
X
2

)
|#{i | ai ̸= bi} = 1}, where aaa = (a1, a2, . . . , an)

Hamming cube graph Qn = (X,E) (= H(n, 2))

C(Qn): the space of C-valued functions on X

The inner product (·, ·) on C(Qn):
(f, g) := 1

2n
∑

aaa∈X f(aaa)g(aaa) for f, g ∈ C(Qn)

For i ∈ [n], define εi ∈ C(Qn):

εi(aaa) = εi(a1, a2, . . . , an) := ai

For α ∈ 2[n], εα :=
∏

i∈α εi.

Remark 1

{εα}α∈2[n] is an orthonormal basis of C(Qn).
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Reproducing kernels on C(Qn) and Krawtchouk poly.

Let Vj := SpanC{εα |#α = j}. Then C(Qn) =
⊕n

j=0 Vj .

Kj : X ×X → C: Kj(xxx,yyy) :=
∑

α∈2[n],#α=j εα(xxx)εα(yyy)

Remark 2
1 {Vj}nj=0 are the maximal common eigenspaces of the adjacency

operators {Ai}ni=0, i.e., ∃Pi(j) ∈ C s.t. Aif = Pi(j)f for any f ∈ Vj .
2 Kj is the reproducing kernel of Vj , i.e.,

▶ for xxx ∈ X, Kj(xxx, ·) ∈ Vj ,
▶ for f ∈ Vj , (Kj(xxx, ·), f) = f(xxx).

For any xxx,yyy ∈ X with ∂(xxx,yyy) = u, the value Kj(xxx,yyy) depend only on u:

Kj(xxx,yyy) =

min{u,j}∑
k=0

(−1)k
(
u

k

)(
n− u

j − k

)
.

Kj(u) :=
∑j

k=0(−1)k
(
u
k

)(
n−u
j−k

)
is called the Krawtchouk polynomial.
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Symmetric spaces and Antipodal sets

Definition 3

A Riemannian manifold M is called a (Riemanian) symmetric space if
∀x ∈ M , ∃point symmetry sx : M → M , where a point symmetry is an
isometry satisfying

sx is an involution,

x is an isolated fixed point of sx.

Example 4

Sphere Sd := {x ∈ Rd+1 | ∥x∥ = 1} is a
symmetric space. the point symmetry sx is
defined by sx(y) = −y + 2⟨x, y⟩x.

sx (180◦ rotation)
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Antipodal sets

Definition 5

For a symmetric space M with point symmetries s, A subset S of M is
called an antipodal set if sx(y) = y for any x, y ∈ S.

Example 6

S = {x} (single point set) and S = {x,−x} (a point and its antipodal
point) are antipodal sets on Sd.

sx (180◦ rotation)
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Some results for antipodal sets

Fact 1 (Chen–Nagano, Takeuchi, Sánchez, Tanaka–Tasaki)

For a compact symmetric space M and an antipodal set S,

1 #S < ∞ and max{#S | S : antipodal set } < ∞, and this value is
called the 2-number #2M of M .

2 there exist antipodal sets S with #S = #2M . This set S is called a
great antipodal set (GAS).

3 If M is a symmetric R-space (it is a “good” symmetric space), a
great antipodal set of M is unique up to congruences.
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GAS on U(n)

U(n) := {A ∈ GLn(C) |A∗A = In}: the unitary group of degree n

The point symmetry sx : U(n) → U(n) of x ∈ U(n) is defined by
sx(y) = xy−1x. Then U(n) is a compact symmetric space.

Fact 2 (Chen–Nagano)

U(n) is a symmetric R-space.

Each great antipodal set on U(n) is congruent to

S = {diag(x1, x2, . . . , xn) ∈ U(n) |x1, x2, . . . , xn ∈ {±1}} ,

where diag(x1, x2, . . . , xn) is a diagonal matrix whose diagonal
entries are xi.

#S = 2n.
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Qn and GAS

S: GAS on U(n)

dist : U(n)× U(n) → R≥0: the distance function on U(n)

distmin(S) := min{dist(x, y) |x, y ∈ S, x ̸= y}

Theorem 7 (K.-Okuda)

Let E := {{x, y} ∈
(
S
2

)
| dist(x, y) = distmin(S)}. Then (S,E) is a

Hamming cube Qn.

cf: Other GAS’s on symmetric R-spaces carry the structure of some
distance-regular graphs

GAS on Grk(Fn) (F = R,C,H) ↔ Johnson graph J(n, k)

GAS on SO(2n)/U(n) ↔ Halved Hamming cube 1
2Qn

etc. (K.-Okuda)
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Design theory on U(n)

Û(n): equivalence classes of irr. unitary rep. of U(n)
∼= (Zn)+ := {λ = (λ1, λ2, . . . , λn) |λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥ λn}
Hλ: subspace of C(U(n)) isomorphic to irr. unitary rep. indexed by λ

C(U(n)) ⊃
dense

⊕
λ∈(Zn)+

Hλ (Perter-Weyl’s theorem)

Definition 8

Fix λ ∈ (Zn)+. Let X be a subset of U(n). X is called a λ-design if∑
x,y∈X

Kλ(x, y) = 0 where Kλ is the reproducing kernel of Hλ.

Remark 9

Kλ(x, y) = sλ( eigenvalues of y
−1x), where sλ is the Schur polynomial.
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Result 1

(1j) := (1, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0︸ ︷︷ ︸
n−j

) ∈ (Zn)+

K(1j): the reproducing kernel of H(1j)

Fact: If dist(x1, y1) = dist(x2, y2), then K(1j)(x1, y1) = K(1j)(x2, y2)

Theorem 10 (K.)

K(1j)|S×S = Kj , i.e., for x, y ∈ S with dist(x, y) = n− u,
K(1j)(x, y) = Kj(x, y) = Kj(u) (Krawtchouk poly.)

Corollary 11

Let H(1j)|S := {f |S | f ∈ H(1j)}. Then H(1j)|S = Vj .
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Result 2

For λ ∈ (Zn)+ and k ∈ Z,
let λ+ 2k := (λ1 + 2k, λ2 + 2k, . . . , λn + 2k) ∈ (Zn)+.

Lemma 12 (K.)

If S is a λ-design, then for each k ∈ Z, S is a λ+ 2k-design.

We consider the following equivalence relation on (Zn)+:

λ ∼ λ′ ⇔ ∃k ∈ Z s.t. λ′ = λ+ 2k

Let [λ] be the equivalence class with λ. By Lemma 12, we can define a
[λ]-design for S. On the other hand, the parity of [(λ1, λ2, . . . , λn)] is
defined by the parity of

∑
i λi. It is well-defined.
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Result 3

Theorem 13 (K.)

For a GAS S on U(n),

1 If [λ] is odd, then S is a [λ]-design.

2 There are only finitely many even [λ] such that S is a [λ]-design.

Example 14

For small n, we get the condition that [λ] carries that S is a [λ]-design.

1 GAS S on U(2) is a [λ]-design ⇔ [λ] is odd or [λ] = [(1, 1)].

2 GAS S on U(3) is a [λ]-design ⇔ [λ] is odd or
[λ] = [(1, 1, 0)], [(2, 1, 1)].
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Example 14 (continued)

S on U(2) is an even [λ]-design ⇔ [λ] = [(1, 1)]. (1 class)

S on U(3) is an even [λ]-design ⇔ [λ] = [(1, 1, 0)], [(2, 1, 1)]. (2
classes)

S on U(4) is an even [λ]-design ⇔ [λ] =
[(1, 1, 0, 0)], [(2, 1, 1, 0)], [(1, 1, 1, 1)], [(3, 1, 1, 1)], [(2, 2, 1, 1)], [(3, 3, 3, 1)].
(6 classes)

S on U(5) is an even [λ]-design ⇔ 12 classes [λ]

S on U(6) is an even [λ]-design ⇔ 26 classes [λ]

S on U(7) is an even [λ]-design ⇔ 48 classes [λ]

S on U(8) is an even [λ]-design ⇔ 91 classes [λ]

S on U(9) is an even [λ]-design ⇔ 158 classes [λ]

Question 15

What is the sequence 1, 2, 6, 12, 26, 48, 91, 158, . . .?
(cf. OEIS A246584, number of overcubic partitions of n;
1, 2, 6, 12, 26, 48, 92, 160, . . .)
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