Great antipodal sets on unitary groups and Hamming graphs

Hirotake Kurihara

National Institute of Technology, Kitakyushu College

The Japanese Conference on Combinatorics and its Applications May 21, 2018

Remark and Notation

Usually, when we study design theory on a certain space M, for a fixed subspace $\mathcal{H} \subset C(M)$, we find suitable subsets $X \subset M$ as \mathcal{H} -design. But, in this talk, for a fixed subset $X \subset M$, we find suitable subspaces $\mathcal{H} \subset C(M)$ such that X is \mathcal{H} -design.

- n: integer with $n \ge 2$
- $[n] := \{1, 2, \dots, n\}$
- $2^{[n]}$: the power set of [n] i.e., $2^{[n]} := \{ \alpha \mid \alpha \subset [n] \}$
- For a set $X, \, {X \choose 2} := \{\{x,y\} \, | \, x,y \in X, \ x \neq y\}$

Hamming cube Q_n and $C(Q_n)$

•
$$X := \{1, -1\}^n$$

• $E := \{\{a, b\} \in {X \choose 2} \mid \#\{i \mid a_i \neq b_i\} = 1\}$, where $a = (a_1, a_2, \dots, a_n)$

- Hamming cube graph $Q_n = (X, E) (= H(n, 2))$
- $C(Q_n)$: the space of \mathbb{C} -valued functions on X

• The inner product
$$(\cdot, \cdot)$$
 on $C(Q_n)$:
 $(f,g) := \frac{1}{2^n} \sum_{\boldsymbol{a} \in X} \overline{f(\boldsymbol{a})} g(\boldsymbol{a})$ for $f,g \in C(Q_n)$

• For $i \in [n]$, define $\varepsilon_i \in C(Q_n)$:

$$\varepsilon_i(\boldsymbol{a}) = \varepsilon_i(a_1, a_2, \dots, a_n) := a_i$$

• For
$$\alpha \in 2^{[n]}$$
, $\varepsilon_{\alpha} := \prod_{i \in \alpha} \varepsilon_i$.

Remark 1

 $\{\varepsilon_{\alpha}\}_{\alpha\in 2^{[n]}}$ is an orthonormal basis of $C(Q_n)$.

イロト イポト イヨト イヨト

Reproducing kernels on $C(Q_n)$ and Krawtchouk poly.

• Let
$$V_j := \operatorname{Span}_{\mathbb{C}} \{ \varepsilon_{\alpha} \mid \# \alpha = j \}$$
. Then $C(Q_n) = \bigoplus_{j=0}^n V_j$.

•
$$K_j : X \times X \to \mathbb{C}$$
: $K_j(\boldsymbol{x}, \boldsymbol{y}) := \sum_{\alpha \in 2^{[n]}, \#\alpha = j} \overline{\varepsilon_\alpha(\boldsymbol{x})} \varepsilon_\alpha(\boldsymbol{y})$

Remark 2

- $\{V_j\}_{j=0}^n$ are the maximal common eigenspaces of the adjacency operators $\{A_i\}_{i=0}^n$, i.e., $\exists P_i(j) \in \mathbb{C}$ s.t. $A_i f = P_i(j) f$ for any $f \in V_j$.
- 2 K_j is the reproducing kernel of V_j , i.e.,

for
$$\boldsymbol{x} \in X$$
, $K_j(\boldsymbol{x}, \cdot) \in V_j$,
for $f \in V_j$, $(K_j(\boldsymbol{x}, \cdot), f) = f(\boldsymbol{x})$.

For any $x, y \in X$ with $\partial(x, y) = u$, the value $K_j(x, y)$ depend only on u:

$$K_j(\boldsymbol{x}, \boldsymbol{y}) = \sum_{k=0}^{\min\{u, j\}} (-1)^k \binom{u}{k} \binom{n-u}{j-k}.$$

 $K_j(u) := \sum_{k=0}^j (-1)^k {u \choose k} {n-u \choose j-k}$ is called the Krawtchouk polynomial.

Symmetric spaces and Antipodal sets

Definition 3

A Riemannian manifold M is called a (Riemanian) symmetric space if $\forall x \in M$, \exists point symmetry $s_x \colon M \to M$, where a point symmetry is an isometry satisfying

- s_x is an involution,
- x is an isolated fixed point of s_x .

Example 4

Sphere $S^d := \{x \in \mathbb{R}^{d+1} | ||x|| = 1\}$ is a symmetric space. the point symmetry s_x is defined by $s_x(y) = -y + 2\langle x, y \rangle x$.

- 4 同 6 4 日 6 4 日 6

Antipodal sets

Definition 5

For a symmetric space M with point symmetries s, A subset S of M is called an antipodal set if $s_x(y) = y$ for any $x, y \in S$.

Example 6

 $S=\{x\}$ (single point set) and $S=\{x,-x\}$ (a point and its antipodal point) are antipodal sets on $S^d.$

< 3 > < 3 >

Some results for antipodal sets

Fact 1 (Chen–Nagano, Takeuchi, Sánchez, Tanaka–Tasaki)

For a compact symmetric space M and an antipodal set S,

- #S < ∞ and max{#S | S : antipodal set } < ∞, and this value is called the 2-number #₂M of M.
- If there exist antipodal sets S with #S = #2M. This set S is called a great antipodal set (GAS).
- If M is a symmetric R-space (it is a "good" symmetric space), a great antipodal set of M is unique up to congruences.

A B A A B A

GAS on U(n)

- $U(n) := \{A \in GL_n(\mathbb{C}) \, | \, A^*A = I_n\}$: the unitary group of degree n
- The point symmetry $s_x \colon U(n) \to U(n)$ of $x \in U(n)$ is defined by $s_x(y) = xy^{-1}x$. Then U(n) is a compact symmetric space.

Fact 2 (Chen–Nagano)

- U(n) is a symmetric *R*-space.
- Each great antipodal set on U(n) is congruent to

$$S = \{ \operatorname{diag}(x_1, x_2, \dots, x_n) \in U(n) \, | \, x_1, x_2, \dots, x_n \in \{\pm 1\} \},\$$

where $diag(x_1, x_2, ..., x_n)$ is a diagonal matrix whose diagonal entries are x_i .

•
$$\#S = 2^n$$
.

イロト 不得下 イヨト イヨト

Q_n and GAS

- S: GAS on U(n)
- dist: $U(n) \times U(n) \to \mathbb{R}_{\geq 0}$: the distance function on U(n)
- $\operatorname{dist}_{\min}(S) := \min\{\operatorname{dist}(x, y) \,|\, x, y \in S, \ x \neq y\}$

Theorem 7 (K.-Okuda)

Let $E := \{\{x, y\} \in {S \choose 2} | \operatorname{dist}(x, y) = \operatorname{dist}_{\min}(S)\}$. Then (S, E) is a Hamming cube Q_n .

cf: Other GAS's on symmetric R-spaces carry the structure of some distance-regular graphs

- GAS on $\operatorname{Gr}_k(\mathbb{F}^n)$ ($\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$) \leftrightarrow Johnson graph J(n, k)
- GAS on $SO(2n)/U(n) \leftrightarrow$ Halved Hamming cube $\frac{1}{2}Q_n$

etc. (K.-Okuda)

・ 同 ト ・ ヨ ト ・ ヨ ト

Design theory on U(n)

- $\widehat{U(n)}$: equivalence classes of irr. unitary rep. of U(n) $\cong (\mathbb{Z}^n)_+ := \{\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \mid \lambda_i \in \mathbb{Z}, \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n\}$
- \mathcal{H}_{λ} : subspace of C(U(n)) isomorphic to irr. unitary rep. indexed by λ

•
$$C(U(n)) \supset_{\text{dense}} \bigoplus_{\lambda \in (\mathbb{Z}^n)_+} \mathcal{H}_{\lambda}$$
 (Perter-Weyl's theorem)

Definition 8

Fix $\lambda \in (\mathbb{Z}^n)_+$. Let X be a subset of U(n). X is called a λ -design if

$$\sum_{x,y\in X} K_{\lambda}(x,y) = 0 \quad \text{where } K_{\lambda} \text{ is the reproducing kernel of } \mathcal{H}_{\lambda}.$$

Remark 9

 $K_{\lambda}(x,y) = s_{\lambda}($ eigenvalues of $y^{-1}x)$, where s_{λ} is the Schur polynomial.

イロト 不得下 イヨト イヨト 二日

Result 1

•
$$(1^j) := (\underbrace{1, \dots, 1}_{j}, \underbrace{0, \dots, 0}_{n-j}) \in (\mathbb{Z}^n)_+$$

- $K_{(1^j)}$: the reproducing kernel of $\mathcal{H}_{(1^j)}$
- Fact: If $\operatorname{dist}(x_1, y_1) = \operatorname{dist}(x_2, y_2)$, then $K_{(1^j)}(x_1, y_1) = K_{(1^j)}(x_2, y_2)$

Theorem 10 (K.)

$$K_{(1^j)}|_{S \times S} = K_j$$
, i.e., for $x, y \in S$ with $dist(x, y) = n - u$,
 $K_{(1^j)}(x, y) = K_j(x, y) = K_j(u)$ (Krawtchouk poly.)

Corollary 11

Let
$$\mathcal{H}_{(1^j)}|_S := \{f|_S \mid f \in \mathcal{H}_{(1^j)}\}$$
. Then $\mathcal{H}_{(1^j)}|_S = V_j$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Result 2

For $\lambda \in (\mathbb{Z}^n)_+$ and $k \in \mathbb{Z}$, let $\lambda + 2k := (\lambda_1 + 2k, \lambda_2 + 2k, \dots, \lambda_n + 2k) \in (\mathbb{Z}^n)_+$.

Lemma 12 (K.)

If S is a λ -design, then for each $k \in \mathbb{Z}$, S is a $\lambda + 2k$ -design.

We consider the following equivalence relation on $(\mathbb{Z}^n)_+$:

$$\lambda \sim \lambda' \ \Leftrightarrow \ \exists k \in Z \text{ s.t. } \lambda' = \lambda + 2k$$

Let $[\lambda]$ be the equivalence class with λ . By Lemma 12, we can define a $[\lambda]$ -design for S. On the other hand, the parity of $[(\lambda_1, \lambda_2, \ldots, \lambda_n)]$ is defined by the parity of $\sum_i \lambda_i$. It is well-defined.

・ 同 ト ・ ヨ ト ・ ヨ ト

Result 3

Theorem 13 (K.)

For a GAS S on U(n),

- If $[\lambda]$ is odd, then S is a $[\lambda]$ -design.
- **2** There are only finitely many even $[\lambda]$ such that S is a $[\lambda]$ -design.

Example 14

For small n, we get the condition that $[\lambda]$ carries that S is a $[\lambda]$ -design.

- GAS S on U(2) is a $[\lambda]$ -design $\Leftrightarrow [\lambda]$ is odd or $[\lambda] = [(1,1)]$.
- **Q** GAS S on U(3) is a $[\lambda]$ -design $\Leftrightarrow [\lambda]$ is odd or $[\lambda] = [(1,1,0)], [(2,1,1)].$

A B M A B M

Example 14 (continued)

- S on U(2) is an even $[\lambda]$ -design $\Leftrightarrow [\lambda] = [(1,1)]$. (1 class)
- S on U(3) is an even $[\lambda]\text{-design} \Leftrightarrow [\lambda] = [(1,1,0)], [(2,1,1)].$ (2 classes)
- S on U(4) is an even $[\lambda]$ -design $\Leftrightarrow [\lambda] = [(1,1,0,0)], [(2,1,1,0)], [(1,1,1,1)], [(3,1,1,1)], [(2,2,1,1)], [(3,3,3,1)]$ (6 classes)
- S on U(5) is an even $[\lambda]$ -design \Leftrightarrow 12 classes $[\lambda]$
- S on U(6) is an even $[\lambda]\text{-design} \Leftrightarrow \mathbf{26} \text{ classes } [\lambda]$
- S on U(7) is an even $[\lambda]$ -design \Leftrightarrow 48 classes $[\lambda]$
- S on U(8) is an even $[\lambda]$ -design \Leftrightarrow 91 classes $[\lambda]$
- S on U(9) is an even $[\lambda]$ -design \Leftrightarrow 158 classes $[\lambda]$

Question 15

What is the sequence 1, 2, 6, 12, 26, 48, 91, 158, ...?(cf. OEIS A246584, number of overcubic partitions of n; 1, 2, 6, 12, 26, 48, 92, 160, ...)