New Results on Permutation Arrays

Ivan Hal Sudborough
University of Texas at Dallas

(joint work with Sergey Bereg, Zachary Hancock, Linda Morales, and Alexander Wong)

Overview

- Definitions
- Affine General Linear Groups: AGL(1,q)
- Partition and Extension Techniques
- Theorems
- Conclusions and Open Questions

Definitions and Examples

- A permutation of $\mathrm{Z}_{\mathrm{n}}=\{0,1, \ldots, \mathrm{n}-1\}$ is an unsorted list of elements in Z_{n}. For example, $\sigma=40231$ is a permutation of Z_{5}.
- Also, a one-to-one function $\sigma: Z_{n} \rightarrow Z_{n}$, where, for example, $\sigma(0)=4, \sigma(1)=0, \sigma(2)=2, \sigma(3)=3$, $\sigma(4)=1$.
- Two permutations σ and τ on Z_{n} have Hamming distance d, if $\sigma(x) \neq \tau(x)$, for exactly d different symbols x in Z_{n}. (This is denoted by $h d(\sigma, \tau)=d$.)

Definitions and Examples

- For example, $\sigma=40231$ and

$$
\tau=02314
$$

have Hamming distance 5. (That is, hd $(\sigma, \tau)=5$.)

- An array (set) of permutations S of Z_{n} has Hamming distance d, if, for every two distinct permutations σ and τ in $S, h d(\sigma, \tau) \geq d$. (Denoted by hd(S) $\geq d$.)
- Let $\mathrm{M}(\mathrm{n}, \mathrm{d})$ denote the largest number of permutations of Z_{n} with Hamming distance d.

Affine General Linear Group: AGL(1,q)

- Let q be a power of a prime.
- $A G L(1, q)$ is the sharply 2-transitive group consisting of all permutations in $\{p(x)=a x+b \mid$ a, b in $G F(q), a \neq 0\}$, where $G F(q)$ denotes the Galois field of order q.

Affine General Linear Group: AGL(1,q)

- $C=\{x+b \mid b$ in $G F(q)\}$. The permutations in C form the addition table of GF(q).
- $C_{2}=\{2 x+b \mid b$ in $G F(q)\}$ and, in algebraic terms, the coset of C obtained by composing the permutation $p(x)=2 x$ with everything in C.
- Both consists of q permutations with Hamming distance q, i.e. no agreements anywhere.

Affine General Linear Group: AGL(1,q)

- Similarly, we have cosets $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \ldots, \mathrm{C}_{\mathrm{q}-1}$, for a $=3,4,5, \ldots, q-1$.
- Altogether, $\operatorname{AGL}(1, \mathrm{q})$ consists of $\mathrm{q}(\mathrm{q}-1)$ permutations and has Hamming distance $q-1$.
- So, whenever q is a power of a prime, $M(q, q-1)$
$=q(q-1)$.

A technique to generate new PA's

- We consider a technique called Partition and Extension (P\&E)
- It enables one often to convert a PA A on n symbols with Hamming distance d to a new PA A^{\prime} on $\mathrm{n}+1$ symbols with Hamming distance $\mathrm{d}+1$.

Partition and Extension (P\&E)

- We illustrate P\&E for the group AGL(1,q)
- We define sets of positions P_{i} and symbols S_{i} for each chosen coset C_{i}. For different cosets, both the position sets and the symbol sets must be disjoint.
- For each chosen coset C_{i}, we put the new symbol in one of the defined positions in P_{i} if symbol in S_{i} occurs there, and we move that symbol in S_{i} to the end of the permutation.

P\&E

- For all i, a permutation π in block B_{i} is covered if a symbol s in the set S_{i} occurs in a position p in the set P_{i}, i.e. $\pi(p)=s$.

P\&E (Example)

Coset 1 for $\operatorname{AGL}(1,9)$, i.e. the addition table for $\operatorname{GF}\left(3^{2}\right)$: Positions $=\{1,2,4\} \quad$ Symbols $=\{0,2,6\}$

012345678
158460327
286157043
341726805
465283710
507631482
630874251
724018536
873502164
we will:
substitute symbol 9 for
each chosen symbol and
then put the chosen symbol
at the end

Hamming distance: cosets 1 and 2

0	1	2	3	4	5	6	7	8
1	5	8	4	6	0	3	2	7
2	8	6	1	5	7	0	4	3
3	4	1	7	2	6	8	0	5
4	6	5	2	8	3	7	1	0
5	0	7	6	3	1	4	8	2
6	3	0	8	7	4	2	5	1
7	2	4	0	1	8	5	3	6
8	7	3	5	0	2	1	6	4
0	2	3	4	5	6	7	8	1
1	8	4	6	0	3	2	7	5
2	6	1	5	7	0	4	3	8
3	1	7	2	6	8	0	5	4
4	5	2	8	3	7	1	0	6
5	7	6	3	1	4	8	2	0
6	0	8	7	4	2	5	1	3
7	4	0	1	8	5	3	6	2
8	3	5	0	2	1	6	4	7

One agreement, namely 0

One agreement, namely 4

One agreement, namely 6

"Freebie"

```
0 4 5 6 7 8 1 2 3 9
1 6 0 3 2 7 5 8 4 9
2 5 7 0 4 3 8 6 1 9
3 2 6 8 0 5 4 1 7 9
4 8 3 7 1 0 6 5 2 9
5 3 1 4 4 8 2 0 7 6 9
6 7 4 2 5 1 3 0 8 9
7 1 8 5 3 6 2 4 0 9
8 0 2 1 6 4 7 3 5 9
```


Partition and Extension for $n=p^{2 k}$ for integer $k \geq 1$ and prime p (even powers of a prime)

Using P\&E on $\operatorname{AGL}\left(1, p^{2 k}\right)$, which has $p^{4 k}-p^{2 k}$ elements: (So, $\mathrm{M}(\mathrm{n}, \mathrm{n}-1) \geq p^{4 k}-p^{2 k}$)

Theorem. $\mathrm{M}(\mathrm{n}+1, \mathrm{n}) \geq p^{3 k}+p^{2 k}$ Proof (sketched):

Proof (sketch)

The elements of $\operatorname{GF}\left(p^{2 k}\right)$ are $2 k$-tuples of elements in Z_{p}, say $\left(a_{1}, a_{2}, \ldots, a_{2 k}\right)$, each of which corresponds to an integer in $Z_{p^{2 k}}$

For P\&E of AGL(1, $\left.p^{2 k}\right)$ we need to:
(1) Define blocks $C_{1}, C_{2}, \ldots, C_{p}$
(2) Define sets of symbols S_{i} for each block (3) Define sets of positions P_{i} for each block

Proof (sketch)

Consider the subgroup C of $\operatorname{AGL}\left(1, p^{2 k}\right)$

The permutations in $\mathrm{C} \subseteq \mathrm{AGL}\left(1, p^{2 k}\right)$ are the rows of the addition table for $\operatorname{GF}\left(p^{2 k}\right)$, which form a subgroup of $p^{2 k}$ permutations.

That is, $\mathrm{C}=\left\{\mathrm{p}(\mathrm{x})=\mathrm{x}+\mathrm{b} \mid \mathrm{b} \in \mathrm{GF}\left(p^{2 k}\right)\right\}$

For $\mathrm{P} \& \mathrm{E}$ the blocks are $\mathrm{C}=\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, C_{p^{k}}$ (cosets of C)

Proof (sketch)

$\mathrm{GF}\left(p^{2 k}\right)$ can be partitioned into sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$, $A_{p^{k}}$ based on the last k coordinates in the 2 k tuple, i.e. $\left(a_{k+1}, a_{k+2}, \ldots, a_{2 k}\right)$. That is, A_{i} consists of all values in $\operatorname{GF}\left(p^{2 k}\right)$, whose last k coordinates (its suffix) is the $i^{\text {th }}$ choice of $\left(a_{k+1}, a_{k+2}, \ldots, a_{2 k}\right)$.

Each A_{i} is called a suffix set.
The set of symbols for C_{i} is A_{i}.

Proof (sketch)

Consider a coset C_{i} of $\mathrm{C}\left(1 \leq \mathrm{i} \leq \mathrm{p}^{\mathrm{k}}\right)$, where $\mathrm{C}_{1}=\mathrm{C}$.

For P\&E, choose a set of positions P_{i} which includes one integer from each suffix set (P_{i} must be disjoint from P_{j}. We compute the actual position sets by max. matching in a bipartite graph)
(Again, we choose the symbol set S_{i} to be all of the suffix set A_{i}.)

Proof (sketch)

It follows, for any permutation $\sigma(x)=m x+b$ in C_{m}, where $\mathrm{b} \in \mathrm{GF}\left(p^{2 k}\right)$, there is a position j such that $\sigma(\mathrm{j})$ is in A_{m}.

That is, C_{m} is a column shifted addition table of $\mathrm{GF}\left(p^{2 k}\right)$, so $\exists j\left[(\mathrm{~b}+\mathrm{j}) \in \mathrm{A}_{\mathrm{m}}\right]$.

Note: The values of j give all possible suffixes, and b is fixed, so the sum $b+j$ gives all possible suffixes.

So, one position must yield a sum in suffix set A_{m}.

Proof (sketch)

For example, $n=9=3^{2}$
The elements of $\mathrm{GF}\left(3^{2}\right)$ are $\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$, where $\mathrm{a}_{\mathrm{i}} \in \mathrm{Z}_{3}$, and the suffix classes are:
A_{1}

$$
\begin{aligned}
& A_{2} \\
& 1=(0,1) \\
& 3=(2,1) \\
& 8=(1,1)
\end{aligned}
$$

$$
\begin{aligned}
& A_{3} \\
& 4=(2,2) \\
& 5=(0,2) \\
& 7=(1,2)
\end{aligned}
$$

Proof (sketch):

Cyclic shift of columns

$$
\begin{aligned}
& \begin{array}{lllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} \\
& \begin{array}{lllllllll}
0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 5 & 8 & 4 & 6 & 0 & 3 & 2 & 7
\end{array} \\
& \begin{array}{lllllllll}
2 & 8 & 6 & 1 & 5 & 7 & 0 & 4 & 3
\end{array} \\
& \begin{array}{lllllllll}
3 & 4 & 1 & 7 & 2 & 6 & 8 & 0 & 5
\end{array} \\
& \begin{array}{lllllllll}
1 & 8 & 4 & 6 & 0 & 3 & 2 & 7 & 5
\end{array} \\
& \begin{array}{lllllllll}
2 & 6 & 1 & 5 & 7 & 0 & 4 & 3 & 8
\end{array} \\
& \begin{array}{lllllllll}
3 & 1 & 7 & 2 & 6 & 8 & 0 & 5 & 4
\end{array} \\
& \mathrm{C}=\begin{array}{lllllllll}
4 & 6 & 5 & 2 & 8 & 3 & 7 & 1 & 0
\end{array} \\
& \begin{array}{lllllllll}
5 & 0 & 7 & 6 & 3 & 1 & 4 & 8 & 2
\end{array} \\
& \begin{array}{lllllllll}
6 & 3 & 0 & 8 & 7 & 4 & 2 & 5 & 1
\end{array} \\
& \begin{array}{lllllllll}
7 & 2 & 4 & 0 & 1 & 8 & 5 & 3 & 6
\end{array} \\
& 873502164 \\
& C_{2}=\begin{array}{lllllllll}
4 & 5 & 2 & 8 & 3 & 7 & 1 & 0 & 6
\end{array} \\
& \begin{array}{lllllllll}
5 & 7 & 6 & 3 & 1 & 4 & 8 & 2 & 0
\end{array} \\
& \begin{array}{lllllllll}
6 & 0 & 8 & 7 & 4 & 2 & 5 & 1 & 3
\end{array} \\
& \begin{array}{lllllllll}
7 & 4 & 0 & 1 & 8 & 5 & 3 & 6 & 2
\end{array} \\
& \begin{array}{lllllllll}
8 & 3 & 5 & 0 & 2 & 1 & 6 & 7
\end{array}
\end{aligned}
$$

$\operatorname{Shift}(0)=0, \operatorname{Shift}(2)=1, \ldots, \operatorname{Shift}(1)=8$

Proof (sketch)

Proof (sketch)

Proof (sketch)

- By Hall's Theorem there is always a perfect matching in such a bipartite graph.
- So, we can always completely cover the cosets $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, C_{p^{k}}$

Proof (sketch)

So, altogether we get full coverage of $p^{k}+1$ cosets, including the "freebie".

As each coset has $p^{2 k}$ permutations, the constructed PA has $p^{3 k}+p^{2 k}$ permutations.

So, $\mathrm{M}\left(p^{2 k}+1, p^{2 k}\right) \geq p^{3 k}+p^{2 k}$, for all primes p and all positive integers k.

Odd powers (> 1) of primes

Similarly, we have theorems for odd powers of a prime.

Conclusions and Open Questions

We have several methods to produce better permutation arrays for Hamming distances and, hence, better lower bounds for $\mathrm{M}(\mathrm{n}, \mathrm{d})$:

- Partition and extension
- Contraction
- Sequential partition and extension
- Searching for coset representatives
- Kronecker product and other product operations
- Using Frobenius maps to extend $\operatorname{AGL}(1, q)$ and $\operatorname{PGL}(2, q)$, and considering the semi-linear groups $\mathrm{A} \Gamma(1, q)$ and $\mathrm{P} \Gamma \mathrm{L}(2, q)$.
- Reed-Solomon codes (restricted to permutations)

What other techniques can be used?

Thank you!

(Spring break on "Starfish Island", Honda Bay, Palawan, the Philippines)

Application to Power-line Communication (PLC)

- Example: Consider code words given by permutations

$$
\begin{aligned}
& 01234 \\
& 12340 \\
& 23401 \\
& 34012 \\
& 40123
\end{aligned}
$$

which is a set of permutations at Hamming distance 5 .

- Let the signal sent be: $f_{1}, f_{2}, f_{3}, f_{4}, f_{0}$, corresponding to the code word 12340 , and suppose there is noise occurring at frequencies f_{1} and f_{4}.

Application to Power-line Communication (PLC)

- If the signal sent is $f_{1}, f_{2}, f_{3}, f_{4}, f_{0}$, the signal received by demodulation, with noise at frequencies f_{1}, f_{4} would be: at time t_{0} : $\left\{\mathrm{f}_{1}, \mathrm{f}_{4}\right\}$ at time $\mathrm{t}_{1}:\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{4}\right\}$ at time $t_{2}:\left\{f_{1}, f_{3}, f_{4}\right\}$ at time $t_{3}:\left\{f_{1}, f_{4}\right\}$ at time $\mathrm{t}_{4}:\left\{\mathrm{f}_{0}, \mathrm{f}_{1}, \mathrm{f}_{4}\right\}$
- There are two code words consistent with the frequencies seen at time t_{0}, namely 12340 and 40123 ,
- There are three code words consistent with frequencies seen at time t_{1}, namely 01234,12340 , and 34012 .
So, in this case, the signal sent corresponds to 12340 .

Creating Permutation Arrays:

Mutually Orthogonal Latin Squares

 (MOLS)- Current lower bound table for $\mathrm{N}(\mathrm{k}), \mathrm{k}<60$:

	0	1	2	3	4	5	6	7	8	9
0			1	2	3	4	1	6	7	8
10	2	10	5	12	4	4	15	16	5	18
20	4	5	3	22	7	24	4	26	5	28
30	4	30	31	5	4	5	8	36	4	5
40	7	40	5	42	5	6	4	46	8	48
50	6	5	5	52	5	6	7	7	5	58

- Example: Since $N(38) \geq 4, M(38,37) \geq 4 \times 38=$ 152.

Converting k MOLS with side n to PA's with kn permutations and Hamming Distance n-1

- A Latin square A can be viewed as a collection of triples in $Z_{n} \times Z_{n} \times Z_{n}$, namely $A=\left\{(i, j, k) \mid A_{i, j}=k\right\}$.
- Define the permutation array $A^{\prime}=S(A)$ on Z_{n} by: $A^{\prime}=\{(k, j, i) \mid(i, j, k)$ is in $A\}$, which means that row k, column j , contains the symbol i (in A^{\prime})
- If $A_{1}, A_{2}, \ldots, A_{k}$ is a set of k MOLS of size n, then the union of $S\left(A_{1}\right), S\left(A_{2}\right), \ldots, S\left(A_{k}\right)$ is a permutation array of $k \times n$ permutations on Z_{n} with Hamming distance $\mathrm{n}-1$.

For P\&E choose a set of positions which includes one integer from each set $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, A_{p^{k}}$,
And choose a set of symbols to be all of the integers in set A_{i}, for some i .
$M(n, n-2)$

	0	1	2	3	4	5	6	7	8	9
0					24	60	120		336	504
10	720		1320		2184			4080	4896	
20	6840				12144		15600		19656	
30	24360	992	29760	32736					50616	
40	1640		68880		79464		2162		103776	
50	$\begin{aligned} & 11760 \\ & 0 \end{aligned}$		2756		148824				3422	

Sequential Partition and Extension

Because the partition and extension operation uses a set Π_{1} of roughly $n^{1 / 2}$ of the $n-1$ cosets of $A G L(1, n)$, we can use the operation again on a set Π_{2} of cosets disjoint from Π_{1}. We can do this several times. For sets of cosets, say extend $\left(\Pi_{1}\right)$, extend $\left(\Pi_{2}\right)$, ... , extend $\left(\Pi_{k}\right)$, we partition and extend again. The result is we get most of the permutations in:

$$
\mathrm{U}_{\mathrm{i} \geq 1} \operatorname{extend}\left(\Pi_{\mathrm{i}}\right)
$$

in a PA for $\mathrm{M}(\mathrm{n}+2, \mathrm{n})$. This is called sequential partition and extension.
$2^{\text {nd }}$ Way to Construct PA's for M(n,n-1): Mutually Orthogonal Latin Squares (MOLS)

- A Latin square of size n is an $n \times n$ table of symbols in Z_{n} with no symbol repeated in any row or column.
- Example: (of size 3)

0	1	2
2	0	1
1	2	0

- Sudoku is an example of completing a special Latin square of size 9

Mutually Orthogonal Latin Squares (MOLS)

- Two Latin squares A and B of size n are orthogonal if $\left\{\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}, \mathrm{b}_{\mathrm{i}, \mathrm{j}}\right) \mid 0 \leq \mathrm{i}, \mathrm{j}<\mathrm{n}\right\}=\mathrm{Z}_{\mathrm{n}} \times \mathrm{Z}_{\mathrm{n}}$.
- Example: $A=$| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 2 | 0 | 1 |
| 1 | 2 | 0 |

$$
B=\begin{array}{l|l|l|}
\hline 2 & 0 & 1 \\
\hline 0 & 1 & 2 \\
\hline 1 & 2 & 0
\end{array}
$$

A and B combined:

$$
\begin{array}{|l|l|l|}
\hline 0,2 & 1,0 & 2,1 \\
\hline 2,0 & 0,1 & 1,2 \\
\hline 1,1 & 2,2 & 0,0 \\
\hline
\end{array}
$$

Mutually Orthogonal Latin Squares (MOLS)

A set of Latin squares is called mutually orthogonal if each Latin square in the set is pairwise orthogonal to all other Latin squares of the set.

Mutually Orthogonal Latin Squares (MOLS)

- Let $N(k)$ denote the largest number of MOLS of size k.
- Computing $N(k)$ is a difficult problem of considerable interest worldwide
- MOLS have applications in experimental design and statistics
- Euler conjectured that there are no MOLS of size k , when $\mathrm{k}=2(\bmod 4)$. (It is true for $\mathrm{k}=2$ and $\mathrm{k}=6$ and false for all $k>6$.)

Creating Permutation Arrays:

Mutually Orthogonal Latin Squares

 (MOLS)- Current lower bound table for $N(k), k<60$:

	0	1	2	3	4	5	6	7	8	9
0			1	2	3	4	1	6	7	8
10	2	10	5	12	4	4	15	16	5	18
20	4	5	3	22	7	24	4	26	5	28
30	4	30	31	5	4	5	8	36	4	5
40	7	40	5	42	5	6	4	46	8	48
50	6	5	5	52	5	6	7	7	5	58

Example of conversion:

$$
\begin{aligned}
& A=\begin{array}{l|l|l|}
\hline 0 & 1 & 2 \\
\hline 2 & 0 & 1 \\
\hline 1 & 2 & 0 \\
\hline
\end{array} \\
& S(A)= \\
& \begin{array}{|l|l|l|}
\hline 0 & 1 & 2 \\
\hline 2 & 0 & 1 \\
\hline 1 & 2 & 0 \\
\hline
\end{array} \\
& S(B)=\quad \begin{array}{l|l|l|}
\hline 1 & 0 & 2 \\
\hline 2 & 1 & 0 \\
\hline 0 & 2 & 1
\end{array}
\end{aligned}
$$

The permutation array with Hamming distance 2:
01 2, 20 1, 120,10 2, 21 0, and 021
$M(n, n-2)$

	0	1	2	3	4	5	6	7	8	9
0					24	60	120		336	504
10	720		1320		2184			4080	4896	
20	6840	336			12144		15600		19656	
30	24360	992	29760	32736	899				50616	1258
40	1640		68880		79464	1722	2162		103776	
50	$\begin{aligned} & 11760 \\ & 0 \end{aligned}$	2338	2756		148824	2461			3422	

Kronecker Product

Let A and B be blocks in some PA's on $Z n$, such that $h d(A, B)=n-1$ and $h d(A)=h d(B)=n$. Then, $A x A$ and

$B=0 \quad 2 \quad 1$

1	0	2	4	3	5
2	1	0	5	4	3
0	2	1	3	5	4
4	3	5	1	0	2
5	4	3	2	1	0
3	5	4	0	2	1

Kronecker Product

Partition and extension always works on the results of Kronecker product and covers all permutations:

$A \times A=$| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 1 | 5 | 3 | 4 |
| 1 | 2 | 0 | 4 | 5 | 3 |
| 3 | 4 | 5 | 0 | 1 | 2 |
| 5 | 3 | 4 | 2 | 0 | 1 |
| 4 | 5 | 3 | 1 | 2 | 0 |

$B \times B=$| | 1 | 0 | 2 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 5 | | | | |
| 2 | 1 | 0 | 5 | 4 | 3 |
| 0 | 2 | 1 | 3 | 5 | 4 |
| 4 | 3 | 5 | 1 | 0 | 2 |
| 5 | 4 | 3 | 2 | 1 | 0 |
| 3 | 5 | 4 | 0 | 2 | 1 |

Kronecker Product

Example:
(1) $\mathrm{G}_{1}=\mathrm{AGL}(1,7)$ is a group of 42 permutations and consists of 6 cosets $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ each with 7 permutations, where hd $\left(A_{i}\right)=7$, for all i, and $h d\left(G_{1}\right)=6$.
(2) $\mathrm{G}_{2}=\mathrm{AGL}(1,5)$ is a group of 20 permutations and consists of 4 cosets $B_{1}, B_{2}, B_{3}, B_{4}$ each with 5 permutations, where hd $\left(B_{i}\right)=5$, for all i, and $h d\left(G_{2}\right)=4$. (3) The union of $A_{1} \times B_{1}, A_{2} \times B_{2}, A_{3} \times B_{3}, A_{4} \times B_{4}$ is a PA K of 1420 permutations on Z_{35} with hd $(K)=34$

	4	5	6	7	8	9	10	11	12	13	14
	4	4									

Sharply Transitive Groups

- A group consists of a set S together with a binary operation (called multiplication), say \times, such that:
(1) S is closed under x,
(2) x is associative,
(3) there is an identity element, say e, such that, for all s in $S, s \times e=e \times s=s$.
(4) for every s in S, there is an inverse, say
s^{-1}, such that $s \times s^{-1}=s^{-1} \times s=e$.

Sharply Transitive Groups

- The set of all permutations on Z_{n} with the binary operation of composition (of functions) forms a group, called the symmetric group: S_{n}.
- A group G of permutations is sharply k transitive if for any pair of k-tuples of elements in Z_{n}, say $v=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{k-1}\right)$ and $w=\left(b_{0}, b_{1}, b_{2}, \ldots, b_{k-1}\right)$, there is a unique permutation in G that maps v to w.

Sharply Transitive Groups

- Consider the sharply 2-transitive group on Z_{3}, consisting of the following six permutations: $012,120,201,021,210,102$
e.g. if one takes the pairs $(0,1)$ and $(2,1)$, the permutation 210 uniquely maps 0 to 2 and 1 to 1

Sharply Transitive Groups

- If G is a sharply 2-transitive group on Z_{n}, then G is a PA of $n(n-1)$ permutations on Z_{n} with Hamming distance $\mathrm{n}-1$.
- If G is a sharply 3 -transitive group on Z_{n+1}, then G is a PA of $(n+1) n(n-1)$ permutations on Z_{n+1} with Hamming distance $n-1$.
- There are sharply 2-transitive groups on Z_{n} iff n is a power of a prime number.
- There are sharply 3-transitive groups on Z_{n+1} iff n is a power of a prime number.

Sharply Transitive Groups

- The sharply 2-transitive group for $q=p^{k}$ is denoted as $\operatorname{AGL}(1, q)$ and consists of all permutations of the form $p(x)=a x+b$, with $a \neq 0$, where a, b are elements of GF(q),
- The sharply 3-transitive group for $\mathrm{q}+1$, where $\mathrm{q}=$ p^{k}, is denoted as $\operatorname{PGL}(2, q)$ and consists of all permutations of the form $p(x)=(a x+b) /(c x+d)$, where a, b, c, d are elements of $G F(q) U\{\infty\}$, with $\mathrm{ad} \neq \mathrm{bc}$.

Note: $\mathrm{GF}(\mathrm{q})$ is the Galois field on q elements.

Sharply Transitive Groups

- The group $\operatorname{AGL}(1, q)$ consists of a subgroup, namely the cyclic group $\mathrm{C}_{1}=\{\mathrm{x}+\mathrm{b} \mid \mathrm{b}$ in $\mathrm{GF}(\mathrm{q})\}$, and $q-1$ cosets of C_{1}, namely $C_{a}=\{a x+b \mid b$ in $\mathrm{GF}(\mathrm{q})$ \}, for each a in $\mathrm{GF}(\mathrm{q})$. (For ease of notation, we call C_{1} a coset, too.)
- The Hamming distance of each coset is q, but the Hamming distance between each pair of cosets is q-1.

Examples of cosets

$$
C_{1}=\begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 \\
\hline 1 & 2 & 3 & 4 & 0 \\
\hline 2 & 3 & 4 & 0 & 1 \\
\hline 3 & 4 & 0 & 1 & 2 \\
\hline 4 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
$$

$C_{2}=$| 0 | 2 | 4 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 1 | 3 | 0 |
| 4 | 1 | 3 | 0 | 2 |
| 1 | 3 | 0 | 2 | 4 |
| 3 | 0 | 2 | 4 | 1 |

$C_{3}=$| 0 | 3 | 1 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 4 | 2 | 0 |
| 1 | 4 | 2 | 0 | 3 |
| 4 | 2 | 0 | 3 | 1 |
| 2 | 0 | 3 | 1 | 4 |

$C_{4}=$| 0 | 4 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 4 | 3 | 2 | 1 | 0 |
| 3 | 2 | 1 | 0 | 4 |
| 2 | 1 | 0 | 4 | 3 |
| 1 | 0 | 4 | 3 | 2 |

$M(n, n-1)$

	0	1	2	3	4	5	6	7	8	9
0			$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\begin{aligned} & 20 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\begin{aligned} & 42 \\ & 6 \end{aligned}$	$\begin{aligned} & 56 \\ & 7 \end{aligned}$	$\begin{aligned} & 72 \\ & 8 \end{aligned}$
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 2 \end{aligned}$	$\begin{aligned} & 110 \\ & 10 \end{aligned}$	$\begin{aligned} & 60 \\ & 5 \end{aligned}$	$\begin{aligned} & 156 \\ & 12 \end{aligned}$	$\begin{aligned} & 56 \\ & 4 \end{aligned}$	$\begin{aligned} & 60 \\ & 4 \end{aligned}$	$\begin{aligned} & 240 \\ & 15 \end{aligned}$	$\begin{aligned} & 272 \\ & 16 \end{aligned}$	$\begin{aligned} & 140 \\ & 5 \end{aligned}$	$\begin{aligned} & 342 \\ & 18 \end{aligned}$
$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 80 \\ & 4 \end{aligned}$	$\begin{aligned} & 105 \\ & 5 \end{aligned}$	$\begin{aligned} & 66 \\ & 3 \end{aligned}$	$\begin{aligned} & 506 \\ & 22 \end{aligned}$	$\begin{aligned} & 168 \\ & 7 \end{aligned}$	$\begin{aligned} & 600 \\ & 24 \end{aligned}$	$\begin{aligned} & 104 \\ & 4 \end{aligned}$	$\begin{aligned} & 702 \\ & 26 \end{aligned}$	$\begin{aligned} & 140 \\ & 5 \end{aligned}$	$\begin{aligned} & 812 \\ & 28 \end{aligned}$
$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 120 \\ & 4 \end{aligned}$	$\begin{aligned} & 930 \\ & 30 \end{aligned}$	$\begin{aligned} & 992 \\ & 31 \end{aligned}$	$\begin{aligned} & 165 \\ & 5 \end{aligned}$	$\begin{aligned} & 136 \\ & 4 \end{aligned}$	$\begin{aligned} & 175 \\ & 5 \end{aligned}$	$\begin{aligned} & 288 \\ & 8 \end{aligned}$	$\begin{aligned} & 1332 \\ & 36 \end{aligned}$	$\begin{aligned} & 152 \\ & 4 \end{aligned}$	$\begin{aligned} & 195 \\ & 5 \end{aligned}$
$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 280 \\ & 7 \end{aligned}$	$\begin{aligned} & 1640 \\ & 40 \end{aligned}$	$\begin{aligned} & 210 \\ & 5 \end{aligned}$	$\begin{aligned} & 1806 \\ & 42 \end{aligned}$	$\begin{aligned} & 220 \\ & 5 \end{aligned}$	$\begin{aligned} & 270 \\ & 6 \end{aligned}$	$\begin{aligned} & 184 \\ & 4 \end{aligned}$	$\begin{aligned} & 2162 \\ & 46 \end{aligned}$	$\begin{aligned} & 384 \\ & 8 \end{aligned}$	$\begin{aligned} & 2352 \\ & 48 \end{aligned}$
$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 300 \\ & 6 \end{aligned}$	$\begin{aligned} & 255 \\ & 5 \end{aligned}$	$\begin{aligned} & 260 \\ & 5 \end{aligned}$	$\begin{aligned} & 2756 \\ & 52 \end{aligned}$	$\begin{aligned} & 270 \\ & 5 \end{aligned}$	$\begin{aligned} & 330 \\ & 6 \end{aligned}$	$\begin{aligned} & 392 \\ & 7 \end{aligned}$	$\begin{aligned} & 399 \\ & 7 \end{aligned}$	$\begin{aligned} & 290 \\ & 5 \end{aligned}$	$\begin{aligned} & 3422 \\ & 58 \end{aligned}$

$M(n, n-1)$

	0	1	2	3	4	5	6	7	8	9
0				$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\begin{aligned} & 20 \\ & 4 \end{aligned}$		$\begin{aligned} & 42 \\ & 6 \end{aligned}$	$\begin{aligned} & 56 \\ & 7 \end{aligned}$	$\begin{aligned} & 72 \\ & 8 \end{aligned}$
$\begin{aligned} & 1 \\ & 0 \end{aligned}$		$\begin{aligned} & 110 \\ & 10 \end{aligned}$		$\begin{aligned} & 156 \\ & 12 \end{aligned}$			$\begin{aligned} & 240 \\ & 15 \end{aligned}$	$\begin{aligned} & 272 \\ & 16 \end{aligned}$		$\begin{aligned} & 342 \\ & 18 \end{aligned}$
$\begin{aligned} & 2 \\ & 0 \end{aligned}$				$\begin{aligned} & 506 \\ & 22 \end{aligned}$		$\begin{aligned} & 600 \\ & 24 \end{aligned}$		$\begin{aligned} & 702 \\ & 26 \end{aligned}$		$\begin{aligned} & 812 \\ & 28 \end{aligned}$
$\begin{aligned} & 3 \\ & 0 \end{aligned}$		$\begin{aligned} & 930 \\ & 30 \end{aligned}$	$\begin{aligned} & 992 \\ & 31 \end{aligned}$					$\begin{aligned} & 1332 \\ & 36 \end{aligned}$		
$\begin{aligned} & 4 \\ & 0 \end{aligned}$		$\begin{aligned} & 1640 \\ & 40 \end{aligned}$		$\begin{aligned} & 1806 \\ & 42 \end{aligned}$				$\begin{aligned} & 2162 \\ & 46 \end{aligned}$		$\begin{aligned} & 2352 \\ & 48 \end{aligned}$
$\begin{aligned} & 5 \\ & 0 \end{aligned}$				$\begin{aligned} & 2756 \\ & 52 \end{aligned}$						$\begin{aligned} & 3422 \\ & 58 \end{aligned}$

Contraction

- Let $\pi=a_{0} a_{1} a_{2} \ldots a_{n-1}$ be a permutation on Z_{n}, the contraction of π, denoted by $\pi^{C T}$, is defined by:

Note: π^{CT} is a permutation on Z_{n-1}.
Example: $\pi=30412$,

$$
\pi^{C T}=3021
$$

Contraction

- If A is a PA, then $A^{C T}=\left\{\pi^{C T} \mid \pi\right.$ in $\left.A\right\}$.
- $\left|A^{C T}\right|=|A|$
- $h d\left(A^{C T}\right) \geq h d(A)-3$
- Theorem.

Let $G=A G L(1, q)$, where q is a power of a prime.
(We know hd $(\mathrm{G})=\mathrm{q}-1$ and $|\mathrm{G}|=\mathrm{q}(\mathrm{q}-1)$.) If $|\mathrm{G}|$ is not divisible by 3 , then $G^{C T}$ is a PA on Z_{q-1} with Hamming distance $=q-3$.
Example: $\mathrm{M}(41,40) \geq 1640 \rightarrow \mathrm{M}(40,38) \geq 1640$.

Contraction (Proof of Theorem)

- Consider two permutations σ and τ such that $h d(\sigma, \tau)=d$ and $h d\left(\sigma^{C T}, \tau^{\mathrm{CT}}\right)=d-3$, where σ and τ are members of a group G. Since the Hamming distance decreases by 3 , the contraction operation must make two new agreements:

$$
\begin{aligned}
& \text { i } j \quad n \text { (positions) } \\
& \sigma: \text {... n ... b ... a } \\
& \tau: \text {... a ... n ... b }
\end{aligned}
$$

So, the permutation $\sigma^{-1} \tau$ has the 3-cycle (n a b).
This means that the order of the group G is divisible by 3 (by Cauchy's Theorem)

Contraction (cont.)

- Bereg's Theorem. Let $G=A G L(1, q)$, where q is a power of a prime. (We know $h d(G)=q-1$ and $|\mathrm{G}|=\mathrm{q}(\mathrm{q}-1)$.) If $|\mathrm{G}|$ is divisible by 3 , then there is a subset A of $G^{C T}$ with ($q^{2}-1$)/2 permutations and Hamming distance q-3.
- Example: Let $G=A G L(1,79)$, which has $79 \times 78=$ 6162 permutations and Hamming distance 78. Then, there is a subset A of $G^{C T}$ with 3120 permutations with Hamming distance 76, i.e. $\mathrm{M}(79,78) \geq 6162 \rightarrow \mathrm{M}(78,76) \geq 3120$.

Projective General Linear Group:
 $\operatorname{PGL}(2, q)$, where q is a prime power

- $\operatorname{PGL}(2, q)$ is the group consisting of all permutations in:
$\{(a x+b) /(c x+d) \mid a, b, c, d$ in $G F(q)$ such that $\mathrm{ad} \neq \mathrm{bc}$, and x is in $\operatorname{GF}(\mathrm{q}) \cup\{\infty\}$ \}, where $p(x)=(a x+b) /(c x+d)$ is defined by:
If $x \in G F(q)$, then
- If $x \neq-c / d$, then $p(x)=(a x+b) /(c x+d)$
- If $x=-c / d$, then $p(x)=\infty$

If $x=\infty$, then

- If $c=0$, then $p(x)=\infty$
- If $c \neq 0$, then $p(x)=a / c$

Projective General Linear Group: PGL $(2, q)$

- $\operatorname{PGL}(2, q)$ is a group of $(q+1) q(q-1)$ permutations on $\mathrm{Z}_{\mathrm{q}+1}$ with Hamming distance q-1.
- Examples: $\mathrm{M}(10,8) \geq 720$
$M(12,10) \geq 1320$
$M(33,31) \geq 32736$
$M(48,46) \geq 103776$

Contraction on PGL(2,q)

- Theorem. If 3 is not a divisor of $q(q-1)$, and $\mathrm{G}=\mathrm{PGL}(2, q)$, then $\mathrm{G}^{C T}$ is a PA on Z_{q} with $(q+1) q(q-1)$ permutations and Hamming distance q-3.
- Proof. If σ and τ are in G and $h d(\sigma, \tau)<q+1$, then, for some i and $a, \sigma(i)=\tau(i)=a$. It follows that $\sigma^{-1} \tau(a)=a$. That is, $\sigma^{-1} \tau$ is in the subgroup called the STABILIZER(a). It is known that the $\operatorname{STABILIZER}(a)$ is isomorphic to $\operatorname{AGL}(1, q)$.
- We have seen that, if 3 does not divide the order of $\operatorname{AGL}(1, q)$, then there are no 3 -cycles and, hence, no pair of permutations σ and τ such that contraction reduces the Hamming distance by 3.
- So, if σ and τ are such that contraction reduces their Hamming distance by 3, they must have no agreements. That is, hd $(\sigma, \tau)=q+1$.
- This means, after contraction, their Hamming distance is at least q-2.
- Other pairs of permutations, whose Hamming distance is $q-1$, are such that contraction reduces their Hamming distance by at most 2 , hence their contractions have Hamming distance $\geq \mathrm{q}-3$.

P\&E

- Example: The group AGL(1,37) consists of 36 cosets of the cyclic group C_{1}. Each coset has Hamming distance 37, and the Hamming distance between cosets is 36 .
- We use cosets $\mathrm{C}_{1}, \mathrm{C}_{36}, \mathrm{C}_{2}, \mathrm{C}_{35}, \mathrm{C}_{4}, \mathrm{C}_{33}$, and C_{3}, and cover a total of 255 permutations. Thus, we get $M(38,37) \geq 255$.
- We use 7 of the 36 cosets.

Partition \& Extension, for $\mathrm{n}=37$

- Coset Set of Positions

Set of Symbols

1	$0,6,12,18,24,30$	$0,1,2,3,4,5$
36	$1,7,13,19,25,31$	$6,7,8,9,10,11,36$
2	$2,9,14,21,26,33$	$12,16,20,24,28,32$
35	$3,8,15,20,27,32$	$13,17,21,25,29,33$
4	$4,10,16,22,28,34$	$14,18,22,26,30,34$
33	$5,11,17,23,29,36$	$15,19,23,27,31,35$
5	37	37

Asymptotic Lower Bounds

- Theorem. For every prime p,

$$
M(p+1, p) \geq 1 / 2 p^{3 / 2}-O(p)
$$

- It is known that $N(n) \geq n^{1 / 14.8}$ for sufficiently large n. So, by MOLS, $M(n, n-1) \geq n^{1.06}$.

$$
\left.\ldots p_{1, q-1}(x)=q-101234 \ldots q-2\right\}
$$

This forms a cyclic subgroup of $\operatorname{AGL}(1, q)$,
 Hamming distance q, i.e. no agreements anywhere.

Extension

- Let A be permutation array on Z_{n} with Hamming distance d. A trivial extension yields a permutation array A^{\prime} on Z_{n+1} which has Hamming distance d.

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

\rightarrow

0	1	2	3	4

- We want to extend to a PA A', with Hamming distance $\mathrm{d}+1$.

Illustration of P\&E

Position Sets: $\{\{0,2\},\{1,3,4\}\} /$ Symbol Sets: $\{\{0,1,, 2\},\{3,4\}\}$

$\mathrm{C}_{1}=$| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 0 | |
| 2 | 3 | 4 | 0 | 1 | 5 |
| 3 | 4 | 0 | 1 | 2 | 5 |
| 4 | 0 | 1 | 2 | 3 | 5 |\quad| 0 | 2 | 4 | 1 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 1 | 3 | 0 | 5 |
| 4 | 1 | 3 | 0 | 2 | 5 |
| 1 | 3 | 0 | 2 | 4 | 5 |
| 3 | 0 | 2 | 4 | 1 | 5 |

$C_{3}{ }^{\prime}=$

$\mathrm{C}_{1}^{\prime}=$	5	1	2	3	4	0	$\mathrm{C}_{2}^{\prime}=$					3
								0	2	4	1	
	5	2	3	4	0	1		2	5	1	3	4
	5	3	4	0	1	2		1	5	0	2	3
	3	4	5	1	2	0		3	0	2		4
	4	0	5	2	3	1						

0	3	1	4	2	5
3	1	4	2	0	5
1	4	2	0	3	5
4	2	0	3	1	5
2	0	3	1	4	5

The \longleftarrow indicated permutation in C_{2} is not covered.

P\&E (Example)

- Consider $\operatorname{AGL}(1,9)$, where $\mathrm{GF}\left(3^{2}\right)$ is given by:
(Using the Primitive Polynomial: $x^{2}+x+2$)
[0] $0=0$
[1] $x^{0}=1$
[2] $x^{1}=x$
[3] $x^{2}=2 x+1$
[4] $x^{3}=2 x+2$
5] $x^{4}=2$
[6] $x^{5}=2 x$
[7] $x^{6}=x+2$
[8] $x^{7}=x+1$

