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Definitions and Examples

• A permutation of Zn={0,1, … ,n-1} is an unsorted 
list of elements in Zn. For example, σ = 4 0 2 3 1 is 
a permutation of Z5. 

• Also, a one-to-one function σ:Zn à Zn, where, 
for example, σ(0)=4, σ(1)=0, σ(2)=2, σ(3)=3,    
σ(4)=1.

• Two permutations σ and τ on Zn have Hamming 
distance d, if σ(x)≠τ(x), for exactly d different 
symbols x in Zn. (This is denoted by hd(σ,τ)=d.) 



Definitions and Examples

• For example, σ = 4 0 2 3 1 and
τ = 0 2 3 1 4

have Hamming distance 5. (That is, hd(σ,τ)=5.)
• An array (set) of permutations S of Zn has 

Hamming distance d, if, for every two distinct 
permutations σ and τ in S, hd(σ,τ) ≥ d. 
(Denoted by hd(S) ≥ d.)

• Let M(n,d) denote the largest number of 
permutations of Zn with Hamming distance d.



Affine General Linear Group: AGL(1,q)

• Let q be a power of a prime.

• AGL(1,q) is the sharply 2-transitive group 
consisting of all permutations in { p(x) = ax+b | 
a,b in GF(q), a≠0 }, where GF(q) denotes the 
Galois field of order q.



Affine General Linear Group: AGL(1,q)

• C = { x+b | b in GF(q) }. The permutations in C form 
the addition table of GF(q).

• C2 = { 2x+b | b in GF(q) } and, in algebraic terms, the 
coset of C obtained by composing the permutation 
p(x)=2x with everything in C. 

• Both consists of q permutations with Hamming 
distance q, i.e. no agreements anywhere.



Affine General Linear Group: AGL(1,q)

• Similarly, we have cosets C3, C4, C5, … , Cq-1, for a 
= 3, 4, 5, … , q-1. 

• Altogether, AGL(1,q) consists of q(q-1) 
permutations and has Hamming distance q-1.

• So, whenever q is a power of a prime, M(q,q-1) 
= q(q-1). 



A technique to generate new PA’s

• We consider a technique called Partition and 
Extension (P&E)

• It enables one often to convert a PA A on n 
symbols with Hamming distance d to a new PA 
A’ on n+1 symbols with Hamming distance 
d+1.



Partition and Extension (P&E)

• We illustrate P&E for the group AGL(1,q)
• We define sets of positions Pi and symbols Si

for each chosen coset Ci. For different cosets, 
both the position sets and the symbol sets 
must be disjoint.

• For each chosen coset Ci, we put the new 
symbol in one of the defined positions in Pi if 
symbol in Si occurs there, and we move that 
symbol in Si to the end of the permutation.



P&E

• For all i, a permutation π in block Bi is covered
if a symbol s in the set Si occurs in a position p 
in the set Pi, i.e. π(p)=s.



P&E (Example)
Coset 1 for AGL(1,9), i.e. the addition table for GF(32):

Positions = {1,2,4} Symbols = {0,2,6}

0 1   2 3   4   5   6   7   8   
1   5   8   4   6 0   3   2   7   
2 8   6 1   5   7   0   4   3   we will:
3   4   1   7   2 6   8   0   5 substitute symbol 9 for
4 6 5   2   8   3   7   1   0 each chosen symbol and
5 0 7   6   3   1   4   8   2 then put the chosen symbol
6   3   0 8   7   4   2   5   1 at the end
7 2 4   0   1   8   5   3   6
8   7   3   5   0 2   1   6   4



Hamming distance: cosets 1 and 2
0 1   2 3   4   5   6   7   8   
1   5   8   4   6 0   3   2   7   
2 8   6 1   5   7   0   4   3   
3   4   1   7   2 6   8   0   5
4 6 5   2   8   3   7   1   0
5 0 7   6   3   1   4   8   2
6   3  0   8   7   4   2   5   1
7 2 4   0   1   8   5   3   6
8   7   3   5   0 2   1   6   4

0   2  3 4   5   6   7   8   1 
1 8   4   6   0  3   2   7   5   
2   6  1 5   7   0   4   3   8
3   1   7   2   6   8 0   5   4                             
4 5   2   8   3   7   1 0   6   
5   7   6   3   1   4   8 2   0  
6   0  8 7   4   2   5   1 3
7   4   0   1   8   5   3 6   2   
8   3   5   0   2   1 6   4   7

One agreement, namely 0

One agreement, namely 4

One agreement, namely 6



“Freebie”
0   4   5   6   7   8   1   2   3   9
1 6   0   3   2   7   5   8   4   9
2 5   7   0   4   3   8   6   1   9
3 2   6   8   0   5   4   1   7   9
4   8   3   7   1   0   6   5   2   9
5   3   1   4   8   2   0   7   6   9
6   7   4   2   5   1   3   0   8   9
7 1   8   5   3   6   2   4   0   9
8   0   2   1   6   4   7   3   5   9



Partition and Extension for n=p2k

for integer k≥1 and prime p

(even powers of a prime)

Using P&E on AGL(1, !"#), which has !$# − !"#
elements:  (So, M(n,n-1) ≥ !$# − !"# )

Theorem. M(n+1,n) ≥ !'# + !"#
Proof (sketched): 



Proof (sketch)

The elements of GF(!"#) are 2k-tuples of 
elements in Zp, say (a1, a2, … , a2k), each of which 
corresponds to an integer in $%&'

For P&E of AGL(1, !"#) we need to:
(1) Define blocks C1, C2, … , (%'
(2) Define sets of symbols Si for each block
(3) Define sets of positions Pi for each block



Proof (sketch)

Consider the subgroup C of AGL(1, !"#) 

The permutations in C ⊆ AGL(1, !"#) are the rows of 
the addition table for GF(!"#), which form a 
subgroup of !"# permutations. 

That is, C = { p(x) = x+b | b∈ GF(!"#) }

For P&E the blocks are C=C1, C2, … , &'( (cosets of C)



Proof (sketch)

GF(!"#) can be partitioned into sets A1, A2, … , 
$%& based on the last k coordinates in the 2k-
tuple, i.e. (ak+1, ak+2, … , a2k). That is, Ai consists 
of all values in GF(!"#), whose last k coordinates 
(its suffix) is the ith choice of (ak+1, ak+2, … , a2k). 

Each Ai is called a suffix set. 
The set of symbols for Ci is Ai.



Proof (sketch)
Consider a coset Ci of C (1≤ i ≤pk), where C1=C.

For P&E, choose a set of positions Pi which 
includes one integer from each suffix set 
(Pi must be disjoint from Pj. We compute the 
actual position sets by max. matching in a 
bipartite graph)

(Again, we choose the symbol set Si to be all of 
the suffix set Ai.)



Proof (sketch)
It follows, for any permutation !(x) = mx+b in Cm, 
where b∈ GF(#$%), there is a position j such that 
!(j) is in Am. 

That is, Cm is a column shifted addition table of 
GF(#$%), so ∃'[(b + j)∈Am].

Note: The values of j give all possible suffixes, and b 
is fixed, so the sum b+j gives all possible suffixes.

So, one position must yield a sum in suffix set Am .



Proof (sketch)

For example, n=9 = 32

The elements of GF(32) are (a1, a2), where ai∈Z3,
and the suffix classes are:
A1 A2 A3
0 = (0,0) 1 = (0,1) 4 = (2,2)
2 = (1,0) 3 = (2,1) 5 = (0,2)

6 = (2,0) 8 = (1,1) 7 = (1,2)



Proof (sketch): 
Cyclic shift of columns

0   1   2   3   4   5   6   7   8          0   2   3   4   5   6   7   8   1 
1   5   8   4   6   0   3   2   7          1   8   4   6   0   3   2   7   5 
2   8   6   1   5   7   0   4   3   2   6   1   5   7   0   4   3   8 
3   4   1   7   2   6   8   0   5 3   1   7   2   6   8   0   5   4

C =  4 6    5   2   8   3   7   1   0        C2 = 4   5   2   8   3   7   1   0   6
5 0   7   6   3   1   4   8   2 5   7   6   3   1   4   8   2   0
6   3   0   8   7   4   2   5   1 6   0   8   7   4   2   5   1 3
7 2   4   0   1   8   5   3   6                    7   4   0   1   8   5   3   6   2
8   7   3   5   0   2   1   6   4                    8   3   5   0   2   1   6   4   7

Shift(0) = 0, Shift(2)=1, ... , Shift(1)=8



Proof (sketch)
(0,0) 0
(0,1) 1
(0,2) 2
(1,0) 3
(1,1) 4
(1,2) 5
(2,0) 6
(2,1) 7
(2,2) 8



Proof (sketch)
(0,0) 0
(0,1) 1
(0,2) 2
(1,0) 3
(1,1) 4
(1,2) 5
(2,0) 6
(2,1) 7
(2,2) 8



Proof (sketch)

• By Hall’s Theorem there is always a perfect 
matching in such a bipartite graph.

• So, we can always completely cover the cosets
C1, C2, … , !"#



Proof (sketch)
So, altogether we get full coverage of pk+1 cosets, 
including the “freebie”.

As each coset has p2k permutations, the constructed 
PA has p3k + p2k permutations.

So, M(p2k +1, p2k) ≥ p3k + p2k, for all primes p and all 
positive integers k.



Odd powers (> 1) of primes

Similarly, we have theorems for odd powers of a 
prime.



Conclusions and Open Questions
We have several methods to produce better permutation 
arrays for Hamming distances and, hence, better lower 
bounds for M(n,d):
• Partition and extension
• Contraction
• Sequential partition and extension  
• Searching for coset representatives
• Kronecker product and other product operations
• Using Frobenius maps to extend AGL(1,q) and PGL(2,q), and 

considering the semi-linear groups AΓL(1,q) and PΓL(2,q).
• Reed-Solomon codes (restricted to permutations)

What other techniques can be used?



Thank you!
(Spring break on “Starfish Island”, 

Honda Bay, Palawan, the Philippines)



Application to Power-line 

Communication (PLC) 

• Example:  Consider code words given by permutations    

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

which is a set of permutations at Hamming distance 5.

• Let the signal sent be: f1, f2, f3, f4, f0, corresponding to 

the code word 1 2 3 4 0, and suppose there is noise 

occurring at frequencies f1 and f4.     



Application to Power-line 
Communication (PLC) 

• If the signal sent is f1, f2, f3, f4, f0, the signal received by 
demodulation, with noise at frequencies f1, f4 would be:
at time t0: {f1, f4}
at time t1: {f1, f2, f4}
at time t2: {f1, f3, f4}
at time t3: {f1, f4}
at time t4: {f0, f1, f4}

• There are two code words consistent with the frequencies 
seen at time t0, namely 1 2 3 4 0 and 4 0 1 2 3, 

• There are three code words consistent with frequencies 
seen at time t1, namely 0 1 2 3 4, 1 2 3 4 0, and 3 4 0 1 2. 

So, in this case, the signal sent corresponds to 1 2 3 4 0.



Creating Permutation Arrays:

Mutually Orthogonal Latin Squares 

(MOLS)

• Current lower bound table for N(k), k<60:

• Example: Since N(38) ≥ 4, M(38,37) ≥ 4 × 38 = 
152. 

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 1 6 7 8

10 2 10 5 12 4 4 15 16 5 18

20 4 5 3 22 7 24 4 26 5 28

30 4 30 31 5 4 5 8 36 4 5

40 7 40 5 42 5 6 4 46 8 48

50 6 5 5 52 5 6 7 7 5 58



Converting k MOLS with side n 

to PA’s with kn permutations and 

Hamming Distance n-1

• A Latin square A can be viewed as a collection of 

triples in Z
n
× Z

n
× Z

n
, namely A = { (i,j,k) | A

i,j
= k }.

• Define the permutation array A’ = S(A) on Z
n

by: 

A’ = { (k,j,i) | (i,j,k) is in A}, which means that row k, 

column j, contains the symbol i (in A’)

• If A
1
, A

2
, … , A

k
is a set of k MOLS of size n, then 

the union of S(A
1
), S(A

2
), … , S(A

k
) is a    

permutation array of k×n permutations on Z
n

with Hamming distance n-1.  



For P&E choose a set of positions which includes 
one integer from each set A1, A2, … , !"#,
And choose a set of symbols to be all of the 
integers in set Ai, for some i.



M(n,n-2)
0 1 2 3 4 5 6 7 8 9

0
24 60 120 336 504

10
720 1320 2184 4080 4896

20
6840 12144 15600 19656

30
24360 992 29760 32736 50616

40
1640 68880 79464 2162 103776

50
11760
0

2756 148824 3422



Sequential Partition and Extension
Because the partition and extension operation uses a 
set Π1 of roughly n1/2 of the n-1 cosets of AGL(1,n), we 
can use the operation again on a set Π2 of cosets
disjoint from Π1. We can do this several times. For sets 
of cosets, say extend(Π1), extend(Π2), … , extend(Πk), we 
partition and extend again. The result is we get most of 
the permutations in:

Ui≥1extend(Πi)
in a PA for M(n+2,n). This is called sequential partition   
and extension.



2nd Way to Construct PA’s for M(n,n-1):
Mutually Orthogonal Latin Squares (MOLS)

• A Latin square of size n is an n×n table of 
symbols in Zn with no symbol repeated in any 
row or column.

• Example:  (of size 3)

• Sudoku is an example of completing a special 
Latin square of size 9

0 1 2
2 0 1

1 2 0



Mutually Orthogonal Latin Squares 

(MOLS)

• Two Latin squares A and B of size n are 

orthogonal if { (ai,j,bi,j) | 0 ≤ i,j < n } =  Zn× Zn.

• Example:  A= B=

A and B combined: 

0 1 2
2 0 1

1 2 0

2 0 1
0 1 2

1 2 0

0,2 1,0 2,1
2,0 0,1 1,2

1,1 2,2 0,0



Mutually Orthogonal Latin Squares 
(MOLS)

_____________________________________

A set of Latin squares is called mutually 
orthogonal if each Latin square in the set is 
pairwise orthogonal to all other Latin squares of 
the set.



Mutually Orthogonal Latin Squares 
(MOLS)

• Let N(k) denote the largest number of MOLS of 
size k.

• Computing N(k) is a difficult problem of 
considerable interest worldwide

• MOLS have applications in experimental design 
and statistics

• Euler conjectured that there are no MOLS of size 
k, when k = 2 (mod 4). (It is true for k=2 and k=6 
and false for all k>6.)



Creating Permutation Arrays:
Mutually Orthogonal Latin Squares 

(MOLS)
• Current lower bound table for N(k), k<60:

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 1 6 7 8

10 2 10 5 12 4 4 15 16 5 18

20 4 5 3 22 7 24 4 26 5 28

30 4 30 31 5 4 5 8 36 4 5

40 7 40 5 42 5 6 4 46 8 48

50 6 5 5 52 5 6 7 7 5 58



Example of conversion:

A = B =

S(A) = S(B) =

The permutation array with Hamming distance 2: 
0 1 2, 2 0 1, 1 2 0, 1 0 2, 2 1 0, and 0 2 1 

0 1 2
2 0 1
1 2 0

2 0 1
0 1 2
1 2 0

0 1 2
2 0 1
1 2 0

1 0 2
2 1 0
0 2 1



M(n,n-2)
0 1 2 3 4 5 6 7 8 9

0
24 60 120 336 504

10
720 1320 2184 4080 4896

20
6840 336 12144 15600 19656

30
24360 992 29760 32736 899 50616 1258

40
1640 68880 79464 1722 2162 103776

50
11760
0

2338 2756 148824 2461 3422



Kronecker Product
Let A and B be blocks in some PA’s on Zn, such that 
hd(A,B)=n-1 and hd(A)=hd(B)=n. Then,  AxA and 
BxB are PA’s on Z2n with hd=2n-1,  e.g. A =                  
, 
B =

A × A =                                B x B =

0 1 2
2 0 1

1 2 0

3 4 5
5 3 4

4 5 3

0 1 2
2 0 1

1 2 0
3 4 5
5 3 4

4 5 3

0 1 2
2 0 1

1 2 0

1 0 2
2 1 0

0 2 1

1 0 2
2 1 0

0 2 1
1 0 2
2 1 0

0 2 1

4 3 5
5 4 3

3 5 4

4 3 5
5 4 3

3 5 4



Kronecker Product

Partition and extension always works on the results 
of Kronecker product and covers all permutations:

A × A =                                B x B =

3 4 5
5 3 4
4 5 3

0 1 2
2 0 1
1 2 0
3 4 5
5 3 4
4 5 3

0 1 2
2 0 1
1 2 0

1 0 2
2 1 0
0 2 1

1 0 2
2 1 0
0 2 1

4 3 5
5 4 3
3 5 4

4 3 5
5 4 3
3 5 4



Kronecker Product

Example: 

(1) G1 = AGL(1,7) is a group of 42 permutations and 

consists of 6 cosets A1, A2, A3, A4, A5, A6, each with 7 

permutations, where hd(Ai)=7, for all i, and hd(G1)=6.

(2) G2 = AGL(1,5) is a group of 20 permutations and 

consists of 4 cosets B1, B2, B3, B4, each with 5 

permutations, where hd(Bi)=5, for all i, and hd(G2)=4.

(3) The union of A1 X B1, A2 X B2, A3 X B3, A4 X B4 is a PA 

Κ of 1420 permutations on Z35 with hd(K)=34



4 5 6 7 8 9 10 11 12 13 14 15

4 4

5 20 5

6 120 18 6

7 349 78 42 7

8 2688 616 336 56 8

9 18576 3024 1512 504 72 9

10 150480 19490 8640 1504 720 49 10

11 1742400 205920 95040 7920 7920 297 110 11 *

12 20908800 2376000 190080 95040 95040 1320 1320 112 12

13 60635520 10454400 1900800 380160 95040 6474 1320 276 156 13

14 550368000 60445440 10834560 1900800 380160 26208 8736 2184 2184 59 14 *

15 7925299200 98313989 58734720 15491520 1900800 181272 32760 7540 2520 315 90 15



Sharply Transitive Groups

• A group consists of a set S together with a 
binary operation (called multiplication), say ×, 
such that: 

(1) S is closed under ×,
(2) x is associative,
(3) there is an identity element, say e, 
such that, for all s in S, s × e = e × s = s. 
(4) for every s in S, there is an inverse, say 
s-1, such that s × s-1 = s-1 × s = e. 



Sharply Transitive Groups

• The set of all permutations on Zn with the 
binary operation of composition (of functions) 
forms a group, called the symmetric group: Sn.

• A group G of permutations is sharply k-
transitive if for any pair of k-tuples of 
elements in Zn, say v=(a0,a1,a2, … ,ak-1) and 
w=(b0,b1,b2, … ,bk-1), there is a unique
permutation in G that maps v to w. 



Sharply Transitive Groups

• Consider the sharply 2-transitive group on Z3, 
consisting of the following six permutations:
0 1 2, 1 2 0, 2 0 1, 0 2 1, 2 1 0, 1 0 2

_______________________________________
e.g. if one takes the pairs (0,1) and (2,1), the 
permutation 2 1 0 uniquely maps 0 to 2 and 1 to 1



Sharply Transitive Groups

• If G is a sharply 2-transitive group on Zn, then G is 
a PA of n(n-1) permutations on Zn with Hamming 
distance n-1.

• If G is a sharply 3-transitive group on Zn+1, then G 
is a PA of (n+1)n(n-1) permutations on Zn+1 with 
Hamming distance n-1.

• There are sharply 2-transitive groups on Zn iff n is 
a power of a prime number.

• There are sharply 3-transitive groups on Zn+1 iff n 
is a power of a prime number.



Sharply Transitive Groups 
• The sharply 2-transitive group for q = pk is 

denoted as AGL(1,q) and consists of all 
permutations of the form p(x) = ax+b, with a≠0, 
where a,b are elements of GF(q), 

• The sharply 3-transitive group for q+1, where q = 
pk, is denoted as PGL(2,q) and consists of all 
permutations of the form p(x) = (ax+b)/(cx+d), 
where a,b,c,d are elements of GF(q) U {∞}, with 
ad≠bc.

Note: GF(q) is the Galois field on q elements.



Sharply Transitive Groups 

• The group AGL(1,q) consists of a subgroup, 

namely the cyclic group C1 ={ x+b | b in GF(q) }, 

and q-1 cosets of C1, namely Ca = { ax+b | b in 

GF(q) }, for each a in GF(q). (For ease of 

notation, we call C1 a coset, too.)

• The Hamming distance of each coset is q, but 

the Hamming distance between each pair of 

cosets is q-1.



Examples of cosets
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

C1=

0 2 4 1 3
2 4 1 3 0
4 1 3 0 2
1 3 0 2 4
3 0 2 4 1

C2 =

0 3 1 4 2
3 1 4 2 0
1 4 2 0 3
4 2 0 3 1
2 0 3 1 4

C3 =

0 4 3 2 1
4 3 2 1 0
3 2 1 0 4
2 1 0 4 3
1 0 4 3 2

C4 =



M(n,n-1)
0 1 2 3 4 5 6 7 8 9

0
2
1

6
2

12
3

20
4

6
1

42
6

56
7

72
8

1
0 20

2
110
10

60
5

156
12

56
4

60
4

240
15

272
16

140
5

342
18

2
0 80

4
105
5

66
3

506
22

168
7

600
24

104
4

702
26

140
5

812
28

3
0 120

4
930
30

992
31

165
5

136
4

175
5

288
8

1332
36

152
4

195
5

4
0 280

7
1640
40

210
5

1806
42

220
5

270
6

184
4

2162
46

384
8

2352
48

5
0 300

6
255
5

260
5

2756
52

270
5

330
6

392
7

399
7

290
5

3422
58



M(n,n-1)
0 1 2 3 4 5 6 7 8 9

0
6
2

12
3

20
4

42
6

56
7

72
8

1
0 110

10
156
12

240
15

272
16

342
18

2
0 506

22
600
24

702
26

812
28

3
0 930

30
992
31

1332
36

4
0 1640

40
1806
42

2162
46

2352
48

5
0 2756

52
3422
58



Contraction
• Let π = a0 a1 a2 … an-1 be a permutation on Zn, the 
contraction of π, denoted by πCT, is defined by:

π(j),        if j≠n and π(j)≠n, and
πCT(j) =        π(n),  if π(j)=n.                                

Note: πCT is a permutation on Zn-1.
Example:   π = 3 0 4 1 2, 

πCT = 3 0 2 1 



Contraction

• If A is a PA, then ACT = { πCT | π in A }.
• |ACT| = |A|
• hd(ACT) ≥ hd(A)-3
• Theorem.

Let G = AGL(1,q), where q is a power of a prime. 
(We know hd(G)=q-1 and |G|=q(q-1).) If |G|is not 
divisible by 3, then GCT is a PA on Zq-1 with 
Hamming distance = q-3.

Example: M(41,40) ≥ 1640  à M(40,38) ≥ 1640.



Contraction (Proof of Theorem)
• Consider two permutations σ and τ such that 

hd(σ,τ)=d and hd(σCT,τCT)=d-3, where σ and τ are 
members of a group G. Since the Hamming 
distance decreases by 3, the contraction 
operation must make two new agreements:

i j       n    (positions)
σ:  … n … b … a   
τ:  …  a … n … b

So, the permutation σ-1τ has the 3-cycle (n  a  b).
This means that the order of the group G is divisible 
by 3 (by Cauchy’s Theorem)



Contraction (cont.)

• Bereg’s Theorem. Let G = AGL(1,q), where q is a 
power of a prime. (We know hd(G)=q-1 and 
|G|=q(q-1).) If |G| is divisible by 3, then there is 
a subset A of GCT with (q2-1)/2 permutations and 
Hamming distance q-3.

• Example: Let G = AGL(1,79), which has 79×78 = 
6162 permutations and Hamming distance 78. 
Then, there is a subset A of GCT with 3120 
permutations with Hamming distance 76, i.e.
M(79,78) ≥ 6162 à M(78,76) ≥ 3120.



Projective General Linear Group: 
PGL(2,q), where q is a prime power

• PGL(2,q) is the group consisting of all 
permutations in:

{ (ax+b)/(cx+d) | a,b,c,d in GF(q) such 
that ad ≠ bc, and x is in GF(q) U { ∞ }  },
where p(x) = (ax+b)/(cx+d) is defined by:

• If x ε GF(q), then
• If x ≠ -c/d, then p(x) = (ax+b)/(cx+d) 
• If x = -c/d, then p(x) = ∞
If x = ∞, then
• If c=0, then p(x) = ∞
• If c≠0, then p(x) = a/c



Projective General Linear Group: 
PGL(2,q)

• PGL(2,q) is a group of (q+1)q(q-1) 
permutations on Zq+1 with Hamming distance 
q-1.

• Examples: M(10,8) ≥ 720
M(12,10) ≥ 1320
M(33,31) ≥ 32736
M(48,46) ≥ 103776



Contraction on PGL(2,q)

• Theorem. If 3 is not a divisor of q(q-1), and 
G=PGL(2,q), then GCT is a PA on Zq with 
(q+1)q(q-1) permutations and Hamming 
distance q-3.

• Proof. If σ and τ are in G and hd(σ,τ) < q+1, 
then, for some i and a, σ(i) = τ(i) = a. It follows 
that σ-1τ(a) = a. That is, σ-1τ is in the subgroup 
called the STABILIZER(a). It is known that the 
STABILIZER(a) is isomorphic to AGL(1,q). 



• We  have seen that, if 3 does not divide the order 
of AGL(1,q), then there are no 3-cycles and, 
hence, no pair of permutations σ and τ such that 
contraction reduces the Hamming distance by 3. 

• So, if σ and τ are such that contraction reduces 
their Hamming distance by 3, they must have no 
agreements. That is, hd(σ,τ)=q+1. 

• This means, after contraction, their Hamming 
distance is at least q-2. 

• Other pairs of permutations, whose Hamming 
distance is q-1, are such that contraction reduces 
their Hamming distance by at most 2, hence their 
contractions have Hamming distance ≥ q-3.



P&E

• Example: The group AGL(1,37) consists of 36 
cosets of the cyclic group C1. Each coset has 
Hamming distance 37, and the Hamming 
distance between cosets is 36.

• We use cosets C1, C36, C2, C35, C4, C33, and C3, 
and cover a total of 255 permutations. Thus, 
we get M(38,37) ≥ 255.

• We use 7 of the 36 cosets.



Partition & Extension, for n=37
• Coset Set of Positions Set of Symbols

1 0,6,12,18,24,30 0,1,2,3,4,5
36 1,7,13,19,25,31 6,7,8,9,10,11,36
2 2,9,14,21,26,33 12,16,20,24,28,32
35 3,8,15,20,27,32 13,17,21,25,29,33
4 4,10,16,22,28,34 14,18,22,26,30,34
33 5,11,17,23,29,36 15,19,23,27,31,35
5 37 37



Asymptotic Lower Bounds

• Theorem.  For every prime p, 
M(p+1,p) ≥ ½p3/2 – O(p).

• It is known that N(n) ≥ n1/14.8 for sufficiently 
large n. So, by MOLS, M(n,n-1) ≥ n1.06.



For a=2, {p
2,0

(x) =0 2 4 6 … q-1 1 3 … q-2, 

p
2,2

(x) =2 4 6 … q-1 1 3 … q-2 0, 

p
2,4

(x) =4 6 … q-1 1 3 … q-2 0 2,   

…

p
2,q-2

(x) =q-2 0 2 4 6 … q-1 1 3 … },

For example, when q is a prime and a=1, we 

have:

{ p
1,0

(x)= 0 1 2 3 4 … q-2 q-1, 

p
1,1

(x)= 1 2 3 4 … q-2 q-1 0,

p
1,2

(x)= 2 3 4 … q-2 q-1 0 1, 

… , 

p
1,q-1

(x)=q-1 0 1 2 3 4 …q-2 },

This forms a cyclic subgroup of AGL(1,q), 

denoted by C, with q permutations and with 

Hamming distance q, i.e. no agreements 

anywhere.



Extension
• Let A be permutation array on Zn with Hamming 

distance d. A trivial extension yields a permutation 
array A’ on Zn+1 which has Hamming distance d. 

è

• We want to extend to a PA A’, with Hamming distance 
d+1.

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

5
5
5
5
5

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3



Illustration of P&E
Position Sets: {{0,2},{1,3,4}} / Symbol Sets:{{0,1,,2},{3,4}}

The           indicated permutation in C2 is not covered.

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

C1=
0 2 4 1 3

2 4 1 3 0

4 1 3 0 2

1 3 0 2 4

3 0 2 4 1

C2 = 

5 1 2 3 4

5 2 3 4 0

5 3 4 0 1

3 4 5 1 2

4 0 5 2 3

C1’ =
0 2 4 1 5

2 5 1 3 0

1 5 0 2 4

3 0 2 5 1

C2’=

5

5

5

5

5

5

5

5

5

5

0

1

2

0

1

3

4

3

4

0 3 1 4 2

3 1 4 2 0

1 4 2 0 3

4 2 0 3 1

2 0 3 1 4

C3’ =
5

5

5

5

5



P&E (Example)

• Consider AGL(1,9), where GF(32) is given by:

(Using the Primitive Polynomial: x2 + x + 2)

[0] 0 = 0 [1] x0 = 1 [2] x1 = x

[3] x2=2x+1 [4] x3 = 2x+2 5] x4 = 2

[6] x5 = 2x [7] x6 = x+2 [8] x7 = x+1


