The Set Chromatic Number of Circulant Graphs $C_{n}(a, b)$

Bryan Ceasar L. Felipe, Agnes D. Garciano

Ateneo de Manila University, Philippines
May 21, 2018

Outline

(1) Coloring of a Graph
(2) Set Coloring of a Graph
(3) Circulant Graphs
(4) The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
(5) References

Outline

(1) Coloring of a Graph

(2) Set Coloring of a Graph
(3) Circulant Graphs

44 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Coloring of a Graph

Coloring of a Graph

G - graph

Coloring of a Graph

G - graph

Definition

A coloring of G is function $c: V(G) \rightarrow X \neq \emptyset$.

Coloring of a Graph

G - graph
Definition
A coloring of G is function $c: V(G) \rightarrow X \neq \emptyset$.
Typically, $X=\mathbb{N}$.

Coloring of a Graph

G - graph

Definition

A coloring of G is function $c: V(G) \rightarrow X \neq \emptyset$.
Typically, $X=\mathbb{N}$.

Definition

c is a proper coloring if $c(u) \neq c(v)$ for every $u v \in E(G)$.

Coloring of a Graph

Non-proper and Proper Colorings

Coloring of a Graph

Non-proper and Proper Colorings

A graph G

Coloring of a Graph

Non-proper and Proper Colorings

(a) A non-proper coloring of G

(b) A proper coloring of G

Colorings of a graph G

Coloring of a Graph

Chromatic Number

Coloring of a Graph

Chromatic Number

Definition

The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors needed in a proper coloring of G.

Coloring of a Graph

Chromatic Number

Definition

The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors needed in a proper coloring of G.

G

Coloring of a Graph

Chromatic Number

Definition

The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors needed in a proper coloring of G.

$$
\chi(G) \geq 3
$$

Coloring of a Graph

Chromatic Number

Definition

The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors needed in a proper coloring of G.

Proper 3-coloring of G

Coloring of a Graph

Chromatic Number

Definition

The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors needed in a proper coloring of G.

Outline

(1) Coloring of a Graph

(2) Set Coloring of a Graph

(3) Circulant Graphs

(4) The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Set Coloring of a Graph

Chartrand, Okamoto, Ramussen, Zhang 2009

Set Coloring of a Graph

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Set Coloring of a Graph

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The neighborhood of $v \in V(G)$ is $N(v)=\{u \in V(G): u v \in E(G)\}$.

Set Coloring of a Graph

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The neighborhood of $v \in V(G)$ is $N(v)=\{u \in V(G): u v \in E(G)\}$.
c - coloring of G

Set Coloring of a Graph

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The neighborhood of $v \in V(G)$ is $N(v)=\{u \in V(G): u v \in E(G)\}$.
c - coloring of G

Definition

The neighborhood color set of $v \in V(G)$ is

$$
N C(v)=\{c(x): x \in N(v)\} .
$$

Set Coloring of a Graph

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The neighborhood of $v \in V(G)$ is $N(v)=\{u \in V(G): u v \in E(G)\}$.
c - coloring of G

Definition

The neighborhood color set of $v \in V(G)$ is

$$
\mathrm{NC}(v)=\{c(x): x \in \mathrm{~N}(v)\} .
$$

Definition

c is a set coloring if $\mathrm{NC}(u) \neq \mathrm{NC}(v)$ for every $u v \in E(G)$.

Set Coloring of a Graph

Set Coloring of a Graph

A graph G

Set Coloring of a Graph

Non-proper 3-coloring of G

Set Coloring of a Graph

Set 3-coloring of G

Set Coloring of a Graph

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

G

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

Set 3-coloring of G

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

Assume $\chi_{s}(G) \leq 2$

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

Assume $\chi_{s}(G) \leq 2 \Rightarrow \exists$ a set coloring $c: V(G) \rightarrow\{1,2\}$

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

$$
N C(v) \in\{\{1\},\{2\},\{1,2\}\}, v \in V(G)
$$

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

$$
\chi_{s}(G)=3
$$

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

$$
\chi(G) \geq 4
$$

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

A proper 4-coloring of G

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

$$
\chi(G)=4
$$

Set Coloring of a Graph

Definition

The set chromatic number of G, denoted by $\chi_{s}(G)$, is the minimum number of colors in a set coloring of G.

$$
\chi_{s}(G)=3<\chi(G)=4
$$

Set Coloring of a Graph

Results on Set Chromatic Number

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:
c - proper coloring of G

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:
c - proper coloring of G
u and v are adjacent vertices

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:
c - proper coloring of G
u and v are adjacent vertices
$\Rightarrow c(u) \in \mathrm{NC}(v)$ but $c(u) \in \mathrm{NC}(u)$

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:
c - proper coloring of G
u and v are adjacent vertices
$\Rightarrow c(u) \in \mathrm{NC}(v)$ but $c(u) \in \mathrm{NC}(u)$
$\Rightarrow \mathrm{NC}(u) \neq \mathrm{NC}(v)$

Set Coloring of a Graph

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])
 $\chi_{s}(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:
c - proper coloring of G
u and v are adjacent vertices
$\Rightarrow c(u) \in \mathrm{NC}(v)$ but $c(u) \in \mathrm{NC}(u)$
$\Rightarrow \mathrm{NC}(u) \neq \mathrm{NC}(v)$
$\Rightarrow c$ - set coloring

Set Coloring of a Graph

Results on Set Chromatic Number

Set Coloring of a Graph

Results on Set Chromatic Number

Question

When $\chi_{s}(G)=\chi(G)$?

Set Coloring of a Graph

Results on Set Chromatic Number

Question
 When $\chi_{s}(G)=\chi(G)$?

Proposition (Chartrand et. al, [2])

Let G be a connected graph of order n. If $\chi(G) \in\{1,2,3, n-1, n\}$, then $\chi_{s}(G)=\chi(G)$.

Set Coloring of a Graph

Results on Set Chromatic Number

Question

$$
\text { When } \chi_{s}(G)=\chi(G) ?
$$

Proposition (Chartrand et. al, [2])

Let G be a connected graph of order n. If $\chi(G) \in\{1,2,3, n-1, n\}$, then $\chi_{s}(G)=\chi(G)$.

Proposition (Chartrand et. al, [2])
$\chi(G) \geq 3 \Rightarrow \chi_{s}(G) \geq 3$

Outline

(1) Coloring of a Graph

(2) Set Coloring of a Graph
(3) Circulant Graphs

4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs

Circulant Graphs

$$
D=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathbb{Z}^{+} \text {where } a_{k} \not \equiv 0(\bmod n), 1 \leq k \leq m .
$$

Circulant Graphs

$D=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathbb{Z}^{+}$where $a_{k} \not \equiv 0(\bmod n), 1 \leq k \leq m$.

Definition

A circulant graph, denoted by $C_{n}(D)$ or $C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, is a graph with vertex set $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and edge set

$$
E=\left\{v_{i} v_{j}: i-j \equiv \pm a_{k}(\bmod n) \text { for some } 1 \leq k \leq m\right\}
$$

Circulant Graphs

$D=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathbb{Z}^{+}$where $a_{k} \not \equiv 0(\bmod n), 1 \leq k \leq m$.

Definition

A circulant graph, denoted by $C_{n}(D)$ or $C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, is a graph with vertex set $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and edge set

$$
E=\left\{v_{i} v_{j}: i-j \equiv \pm a_{k}(\bmod n) \text { for some } 1 \leq k \leq m\right\} .
$$

D - generating set

Circulant Graphs

$D=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathbb{Z}^{+}$where $a_{k} \not \equiv 0(\bmod n), 1 \leq k \leq m$.

Definition

A circulant graph, denoted by $C_{n}(D)$ or $C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$, is a graph with vertex set $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and edge set

$$
E=\left\{v_{i} v_{j}: i-j \equiv \pm a_{k}(\bmod n) \text { for some } 1 \leq k \leq m\right\} .
$$

D - generating set

Definition

A circulant graph $C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is said to be properly given if $a_{i} \not \equiv$ $\pm a_{j}(\bmod n)$ for $i \neq j$.

Circulant Graphs

Circulant Graphs

(a) $C_{10}(2,8)$

(b) $C_{12}(3,5)$

Circulant Graphs

Some important properties:

Circulant Graphs

Circulant Graphs

Some important properties:

Proposition (Boesch and Tindell, [5])

$C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is connected $\Leftrightarrow \operatorname{gcd}\left(n, a_{1}, a_{2}, \ldots, a_{m}\right)=1$

Circulant Graphs

Circulant Graphs

Some important properties:

Proposition (Boesch and Tindell, [5])

$C_{n}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is connected $\Leftrightarrow \operatorname{gcd}\left(n, a_{1}, a_{2}, \ldots, a_{m}\right)=1$

Proposition (Ádám, [6])

If $C_{n}(a, b)$ is a properly given circulant graph and $\operatorname{gcd}(a, n)=1$, then

$$
C_{n}(a, b) \cong C_{n}\left(1, a^{-1} b(\bmod n)\right)
$$

where $a^{-1} \in \mathbb{Z}$ such that $a^{-1} a \equiv 1(\bmod n)$.

Outline

(1) Coloring of a Graph

(2) Set Coloring of a Graph
(3) Circulant Graphs
(4) The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
(5) References

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$
Theorem (Heuberger, [4])

Let $a, b \in \mathbb{Z}^{+}$and $a, b \not \equiv 0(\bmod n)$. If $C_{n}(a, b)$ is a properly given connected circulant graph, then

$$
\chi\left(C_{n}(a, b)\right)=\left\{\begin{array}{lll}
2 & \text { if } a, b \text { are odd and } n \text { is even } \\
4 & \text { if } 3 \nmid n, n \neq 5, \text { and }(b \equiv \pm 2 a(\bmod n) \text { or } \\
& \\
4 \equiv \pm 2 b(\bmod n))
\end{array} \quad \begin{array}{ll}
& \text { if } n=13 \text { and }(b \equiv \pm 5 a(\bmod n) \text { or } \\
5 & \text { if } n= \pm 5 b(\bmod n)) \\
3 & \text { if } \text { otherwise }
\end{array}\right.
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :--- | :--- | :--- |
| $n \leq 3$ | | |
| $n=4$ | | |
| $n=5$ | | |
| $n \geq 6$ | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :--- | :---: | :---: |
| $n \leq 3$ | no properly given circulant | |
| $n=4$ | | |
| $n=5$ | | |
| $n \geq 6$ | | |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | | |
| $n=5$ | | |
| $n \geq 6$ | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :--- | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | |
| $n=5$ | | |
| $n \geq 6$ | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | | |
| $n \geq 6$ | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :--- | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | |
| $n \geq 6$ | | |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :--- | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | | |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | |
| | | |
| | | |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :--- | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $\chi\left(C_{n}(a, b)\right)=3$ | |
| | | |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $\chi\left(C_{n}(a, b)\right)=3$ | 3 |
| | | |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | | |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | | $?$ |
| | | |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

Assume, $b \equiv \pm 2 a(\bmod n)$.

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

Assume, $b \equiv \pm 2 a(\bmod n)$.
$\Rightarrow C_{n}(a, b)=C_{n}(a, \pm 2 a)=C_{n}(a, 2 a)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

Assume, $b \equiv \pm 2 a(\bmod n)$.
$\Rightarrow C_{n}(a, b)=C_{n}(a, \pm 2 a)=C_{n}(a, 2 a) \cong C_{n}(1,2)$.

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | 3ł n and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4 \operatorname{and} C_{n}(a, b) \cong C_{n}(1,2)$ | 3 |
| | $n=13$ and $(b \equiv \pm 5 a(\bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

Assume, $b \equiv \pm 2 a(\bmod n)$.
$\Rightarrow C_{n}(a, b)=C_{n}(a, \pm 2 a)=C_{n}(a, 2 a) \cong C_{n}(1,2)$.

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4 \operatorname{and} C_{n}(a, b) \cong C_{n}(1,2)$ | 3 |
| | $n=13 \operatorname{and}(b \equiv \pm 5 a \bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4 \operatorname{and} C_{n}(a, b) \cong C_{n}(1,2)$ | 3 |
| | $n=13 \operatorname{and}(b \equiv \pm 5 a \bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{n}(1,2)$ | 3 |
| | $n=13 \operatorname{and}(b \equiv \pm 5 a \bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{13}(1,5)$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{n}(1,2)$ | 3 |
| | $n=13 \operatorname{and}(b \equiv \pm 5 a \bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{13}(1,5)$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi\left(C_{n}(a, b)\right)=2$ | 2 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{n}(1,2)$ | 3 |
| | $n=13 \operatorname{and}(b \equiv \pm 5 a \bmod n)$
 or $a \equiv \pm 5 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{13}(1,5)$ | 4 if $n=8,11$ |
| | | |

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3-coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$.

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3-coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$. Define the color cyclic sequence

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right) .
$$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C
For $n \geq 6$, suppose \exists a set 3 -coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$. Define the color cyclic sequence

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right) .
$$

A coloring of $C_{9}(1,2)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$
Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3 -coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$. Define the color cyclic sequence

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right) .
$$

Definition

A block of C is a maximal subsequence of C consisting of terms of the same color. For $j \in \mathbb{Z}_{n}^{*}$, a \boldsymbol{j}-block of C is a block of C of j number of terms.

A coloring of $C_{9}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Cyclic Color Sequence C

Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

Observation

The length of any block of C is at most 5 .

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C

Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

Observation

The length of any block of C is at most 5 .

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C

Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

Observation

The length of any block of C is at most 5 .

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Cyclic Color Sequence C
Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

Observation

Let $x, y \in\{1,2,3\}$ be distinct. The cyclic color sequence C cannot have a subsequence (x, y, x, y).

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C
Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

Observation

Let $x, y \in\{1,2,3\}$ be distinct. The cyclic color sequence C cannot have a subsequence (x, y, x, y).

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$
Cyclic Color Sequence C

Assumptions: c is a set 3 -coloring of $C_{n}(1,2)$

$$
C=\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{0}\right)\right)
$$

Observation

Let $x, y \in\{1,2,3\}$ be distinct. The cyclic color sequence C cannot have a subsequence (x, y, x, y).

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C

For distinct $x, y, z \in\{1,2,3\}$,

Forms of Sequences that Cannot Be Contained in C	Consequence

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C

For distinct $x, y, z \in\{1,2,3\}$,

Forms of Sequences that Cannot Be Contained in C	
(x, x, x, x, x, x)	Consequence
(x, y, x, y)	
(x, y, y, z)	
(x, y, y, y, x)	
(x, y, y, y, y, x)	
(x, y, y, y, y, y, x)	

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C

For distinct $x, y, z \in\{1,2,3\}$,

Forms of Sequences that Cannot Be Contained in C	Consequence
(x, x, x, x, x, x)	For $n \neq 0(\bmod 3)$, C contains a k-block $(2 \leq k \leq 5)$
(x, y, x, y)	2-block $(y, y) \ll(x, y, y, x)$
(x, y, y, z)	3-block $(y, y, y) \ll(x, y, y, y, z)$
(x, y, y, y, x)	4-block $(y, y, y, y) \ll(x, y, y, y, y, z)$
(x, y, y, y, y, x)	5-block $(y, y, y, y, y) \ll(x, y, y, y, y, y, z)$
(x, y, y, y, y, y, x)	

$* \ll-$ must be contained in

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
 Cyclic Color Sequence C

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Cyclic Color Sequence C

For distinct $x, y, z \in\{1,2,3\}$,

Form	Containment Form				
(x, y, y, x)	(y, z, x, y, y, x, y, z) or				
(z, y, x, y, y, x, z, y)		$	$	(z, y, y, y, x)	$(x, y, z, y, y, y, x, y, z)$
:---	:---				
(x, y, y, y, y, z)	$(y, z, x, y, y, y, y, z, x, y)$				
(x, y, y, y, y, y, z)	$(y, z, x, y, y, y, y, y, z, x, y)$				

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

> Proposition
> For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

> Proposition
> For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.

Proof:

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

$$
\begin{aligned}
& \text { Proposition } \\
& \text { For } n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4 \text {. } \\
& \text { Proof: } \\
& \chi\left(C_{n}(1,2)\right)=4
\end{aligned}
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

> Proposition
> For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$
> Proof:
> $\chi\left(C_{n}(1,2)\right)=4$
> $\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)$ is either 3 or 4

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

Proposition
For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.
Proof:
$\chi\left(C_{n}(1,2)\right)=4$
$\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)$ is either 3 or 4
Suppose $\chi_{s}\left(C_{n}(1,2)\right)=3$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Circulant Graphs $C_{n}(1,2)$

Proposition

For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.
Proof:
$\chi\left(C_{n}(1,2)\right)=4$
$\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)$ is either 3 or 4
Suppose $\chi_{s}\left(C_{n}(1,2)\right)=3$
$\Rightarrow \exists$ a set 3-coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Circulant Graphs $C_{n}(1,2)$

Proposition

For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.
Proof:
$\chi\left(C_{n}(1,2)\right)=4$
$\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)$ is either 3 or 4
Suppose $\chi_{s}\left(C_{n}(1,2)\right)=3$
$\Rightarrow \exists$ a set 3-coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$
Consider $C:\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{1}\right)\right)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Circulant Graphs $C_{n}(1,2)$

Proposition

For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.
Proof:
$\chi\left(C_{n}(1,2)\right)=4$
$\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)$ is either 3 or 4
Suppose $\chi_{s}\left(C_{n}(1,2)\right)=3$
$\Rightarrow \exists$ a set 3-coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$
Consider C: $\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{1}\right)\right)$
$\Rightarrow C$ contains a k-block where $2 \leq k \leq 5$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$Circulant Graphs $C_{n}(1,2)$

Proposition

For $n=8,11, \chi_{s}\left(C_{n}(1,2)\right)=4$.
Proof:
$\chi\left(C_{n}(1,2)\right)=4$
$\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)$ is either 3 or 4
Suppose $\chi_{s}\left(C_{n}(1,2)\right)=3$
$\Rightarrow \exists$ a set 3-coloring $c: V\left(C_{n}(1,2)\right) \rightarrow\{1,2,3\}$ of $C_{n}(1,2)$
Consider C: $\left(c\left(v_{0}\right), c\left(v_{1}\right), \ldots, c\left(v_{n-1}\right), c\left(v_{1}\right)\right)$
$\Rightarrow C$ contains a k-block where $2 \leq k \leq 5$
Let $x, y, z \in\{1,2,3\}$ be distinct.

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
2-block $(y, y) \ll(x, y, y, x)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
2-block $(y, y) \ll(x, y, y, x)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
2-block $(y, y) \ll(x, y, y, x)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
2-block $(y, y) \ll(x, y, y, x)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
2-block $(y, y) \ll(x, y, y, x)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
3-block $(y, y, y) \ll(z, y, y, y, x)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
4-block $(y, y, y, y) \ll(x, y, y, y, y, z)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
5-block $(y, y, y, y, y) \ll(x, y, y, y, y, y, z)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
C has no k-block $(2 \leq k \leq 5)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
C has no k-block $(2 \leq k \leq 5)$
Case 2: $n=11$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
C has no k-block $(2 \leq k \leq 5)$
Case 2: $n=11$
C has no k-block, $(2 \leq k \leq 5)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
C has no k-block $(2 \leq k \leq 5)$
Case 2: $n=11$
C has no k-block, $(2 \leq k \leq 5)$
$\Rightarrow C_{n}(1,2)$ cannot have a set 3-coloring

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

Case 1: $n=8$
C has no k-block $(2 \leq k \leq 5)$
Case 2: $n=11$
C has no k-block, $(2 \leq k \leq 5)$
$\Rightarrow C_{n}(1,2)$ cannot have a set 3-coloring
$\Rightarrow \chi_{s}\left(C_{n}(1,2)\right)=4$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

Proposition

For $n \geq 6, \chi_{s}\left(C_{n}(1,2)\right)=3$ if $n \neq 8,11$.

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

Proposition

For $n \geq 6, \chi_{s}\left(C_{n}(1,2)\right)=3$ if $n \neq 8,11$.

Case 1: $n \equiv 0(\bmod 3)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

Proposition

For $n \geq 6, \chi_{s}\left(C_{n}(1,2)\right)=3$ if $n \neq 8,11$.
Case 1: $n \equiv 0(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=3
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
Circulant Graphs $C_{n}(1,2)$

Proposition

For $n \geq 6, \chi_{s}\left(C_{n}(1,2)\right)=3$ if $n \neq 8,11$.

Case 1: $n \equiv 0(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=3 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right)=3
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 2: $n \equiv 1(\bmod 3)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

$$
\text { Case 2: } \begin{aligned}
& n \equiv 1(\bmod 3) \\
& \chi\left(C_{n}(1,2)\right)=4
\end{aligned}
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

$$
\begin{aligned}
\text { Case 2: } & n \equiv 1(\bmod 3) \\
& \chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
\end{aligned}
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 2: $n \equiv 1(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

A set 3-coloring of $C_{7}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 2: $n \equiv 1(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

A set 3-coloring of $C_{10}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 2: $n \equiv 1(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

A set 3-coloring of $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 2: $n \equiv 1(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

$$
\chi_{s}\left(C_{n}(1,2)\right)=3
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 3: $n \equiv 2(\bmod 3)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$

$$
\text { Case 3: } \begin{aligned}
& n \equiv 2(\bmod 3) \\
& \chi\left(C_{n}(1,2)\right)=4
\end{aligned}
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 3: $n \equiv 2(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 3: $n \equiv 2(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

A set 3-coloring of $C_{14}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 3: $n \equiv 2(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

A set 3-coloring of $C_{17}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 3: $n \equiv 2(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

A set 3-coloring of $C_{n}(1,2)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graphs $C_{n}(1,2)$
Case 3: $n \equiv 2(\bmod 3)$

$$
\chi\left(C_{n}(1,2)\right)=4 \Rightarrow \chi_{s}\left(C_{n}(1,2)\right) \geq 3
$$

$$
\chi_{s}\left(C_{n}(1,2)\right)=3
$$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi(G)=2$ | 2 |
| | $3 \nmid n)=3$
 or $a \equiv \pm 2 b(\bmod n))$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{n}(1,2)$ | 4
 3 |
| | $n=13$ if $n=8,11$
 or $a \equiv \pm 5 b(b \equiv \pm 5 a \bmod (\bmod n)$
 $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{13}(1,5)$ | $?$ |

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$| | Characteristics of $C_{n}(a, b)$ | $\chi_{s}\left(C_{n}(a, b)\right)$ |
| :---: | :---: | :---: |
| $n \leq 3$ | no properly given circulant | - |
| $n=4$ | $C_{n}(a, b)=C_{4}(1,2) \cong K_{4}$ | 4 |
| $n=5$ | $C_{n}(a, b)=C_{5}(1,2) \cong K_{5}$ | 5 |
| $n \geq 6$ | $\chi(G)=2$ | 2 |
| | $\chi(G)=3$ | 3 |
| | $3 \nmid n$ and $(b \equiv \pm 2 a(\bmod n)$ or $a \equiv \pm 2 b(\bmod n))$ $\Rightarrow \chi\left(C_{n}(a, b)\right)=4$ and $C_{n}(a, b) \cong C_{n}(1,2)$ | 4 if $n=8,11$
 3 otherwise |
| | $\begin{aligned} & n=13 \text { and }(b \equiv \pm 5 a(\bmod n) \\ & \text { or } a \equiv \pm 5 b(\bmod n)) \\ & \Rightarrow \chi\left(C_{n}(a, b)\right)=4 \text { and } C_{n}(a, b) \cong C_{13}(1,5) \end{aligned}$ | 3 |

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graph $C_{13}(1,5)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

Circulant Graph $C_{13}(1,5)$

A set 3-coloring of $C_{13}(1,5)$

The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$

The Set Chromatic Numbers of Properly Given Connected

 Circulant Graphs $C_{n}(a, b)$
Theorem

Let $a, b \in \mathbb{Z}^{+}$and $a, b \not \equiv 0(\bmod n)$. If $C_{n}(a, b)$ is a properly given connected circulant graph. Then

$$
\chi_{s}\left(C_{n}(a, b)\right)= \begin{cases}2 & \text { if } a, b \text { are odd and } n \text { is even } \\ 4 & \text { if } n \in\{4,8,11\} \text { and }(b \equiv \pm 2 a(\bmod n) \text { or } \\ 5 & \text { if } n= \pm 2 b(\bmod n)) \\ 3 & \text { otherwise }\end{cases}
$$

Outline

(1) Coloring of a Graph

(2) Set Coloring of a Graph
(3) Circulant Graphs
(4) The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_{n}(a, b)$
(5) References

References

[1] Zhang, Ping. A Kaleidoscopic View of Graph Colorings. Springer International Publishing, 2016.
[2] Chartrand, Gary, Futaba Okamoto, Craig W. Rasmussen, and Ping Zhang. "The Set Chromatic Number of a Graph". Discussiones Mathematicae Graph Theory 29, no. 3 (2009): 545-562.
[3] Okamoto, Futaba, Craig W. Rasmussen, and Ping Zhang. "Set Vertex Colorings and Joins of Graphs". Czechoslovak Mathematical Journal 59, no. 4 (2009): 929-941.
[4] Heuberger, Clemens. "On Planarity and Colorability of Circulant Graphs". Discrete Mathematics 268, no. 1-3 (2003): 153-169.
[5] Boesch, F., and R. Tindell. "Circulants and Their Connectivities". Journal of Graph Theory 8, no. 4 (1984): 487-499.

References

[6] Ádám, A. "Research Problems". Journal of Combinatorial Theory 2, no. 3 (1967): 393.

Thank you for listening!

