The Set Chromatic Number of Circulant Graphs $C_n(a, b)$

Bryan Ceasar L. Felipe, Agnes D. Garciano

Ateneo de Manila University, Philippines

May 21, 2018

Outline

- Coloring of a Graph
- Set Coloring of a Graph
- 3 Circulant Graphs
- 4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_n(a,b)$
- 6 References

Outline

- Coloring of a Graph
- 2 Set Coloring of a Graph
- Circulant Graphs
- 4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_n(a,b)$
- 6 References

G - graph

G - graph

Definition

A **coloring** of G is function $c: V(G) \rightarrow X \neq \emptyset$.

G - graph

Definition

A **coloring** of G is function $c: V(G) \to X \neq \emptyset$.

Typically, $X = \mathbb{N}$.

G - graph

Definition

A **coloring** of G is function $c: V(G) \rightarrow X \neq \emptyset$.

Typically, $X = \mathbb{N}$.

Definition

c is a **proper coloring** if $c(u) \neq c(v)$ for every $uv \in E(G)$.

Non-proper and Proper Colorings

Non-proper and Proper Colorings

Non-proper and Proper Colorings

(a) A non-proper coloring of G

(b) A proper coloring of G

Colorings of a graph G

Chromatic Number

Chromatic Number

Definition

Chromatic Number

Definition

Chromatic Number

Definition

Chromatic Number

Definition

Proper 3-coloring of *G*

Chromatic Number

Definition

Outline

- Coloring of a Graph
- 2 Set Coloring of a Graph
- Circulant Graphs
- 4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_n(a,b)$
- 6 References

Chartrand, Okamoto, Ramussen, Zhang 2009

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The **neighborhood** of $v \in V(G)$ is $N(v) = \{u \in V(G) : uv \in E(G)\}.$

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The **neighborhood** of $v \in V(G)$ is $N(v) = \{u \in V(G) : uv \in E(G)\}.$

c - coloring of G

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The **neighborhood** of $v \in V(G)$ is $N(v) = \{u \in V(G) : uv \in E(G)\}.$

c - coloring of G

Definition

The **neighborhood color set** of $v \in V(G)$ is

$$NC(v) = \{c(x) : x \in N(v)\}.$$

Chartrand, Okamoto, Ramussen, Zhang 2009

G - graph

Definition

The **neighborhood** of $v \in V(G)$ is $N(v) = \{u \in V(G) : uv \in E(G)\}.$

c - coloring of G

Definition

The **neighborhood color set** of $v \in V(G)$ is

$$NC(v) = \{c(x) : x \in N(v)\}.$$

Definition

c is a **set coloring** if $NC(u) \neq NC(v)$ for every $uv \in E(G)$.

A graph G

Non-proper 3-coloring of G

Set 3-coloring of G

Definition

Definition

Definition

Set 3-coloring of G

Definition

Definition

The **set chromatic number** of G, denoted by $\chi_s(G)$, is the minimum number of colors in a set coloring of G.

Assume $\chi_s(G) \leq 2$

Definition

The **set chromatic number** of G, denoted by $\chi_s(G)$, is the minimum number of colors in a set coloring of G.

Assume $\chi_s(G) \leq 2 \Rightarrow \exists$ a set coloring $c: V(G) \rightarrow \{1,2\}$

Definition

$$NC(v) \in \{\{1\}, \{2\}, \{1,2\}\}, v \in V(G)$$

Definition

$$\chi_s(G)=3$$

Definition

$$\chi(G) \geq 4$$

Definition

A proper 4-coloring of G

Definition

$$\chi(G)=4$$

Definition

$$\chi_s(G)=3<\chi(G)=4$$

Results on Set Chromatic Number

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

c - proper coloring of G

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

c - proper coloring of G u and v are adjacent vertices

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

c - proper coloring of G u and v are adjacent vertices

$$\Rightarrow c(u) \in NC(v) \text{ but } c(u) \in NC(u)$$

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

- c proper coloring of G u and v are adjacent vertices
- $\Rightarrow c(u) \in NC(v) \text{ but } c(u) \in NC(u)$
- $\Rightarrow NC(u) \neq NC(v)$

Results on Set Chromatic Number

Observation (Chartrand et. al, [2])

 $\chi_s(G) \leq \chi(G)$ (since any proper coloring is also a set coloring)

Proof:

c - proper coloring of G u and v are adjacent vertices

- $\Rightarrow c(u) \in NC(v)$ but $c(u) \in NC(u)$
- $\Rightarrow NC(u) \neq NC(v)$
- $\Rightarrow c$ set coloring

Results on Set Chromatic Number

Results on Set Chromatic Number

Question

When $\chi_s(G) = \chi(G)$?

Results on Set Chromatic Number

Question

When $\chi_s(G) = \chi(G)$?

Proposition (Chartrand et. al, [2])

Let G be a connected graph of order n. If $\chi(G) \in \{1, 2, 3, n-1, n\}$, then $\chi_s(G) = \chi(G)$.

Results on Set Chromatic Number

Question

When $\chi_s(G) = \chi(G)$?

Proposition (Chartrand et. al, [2])

Let G be a connected graph of order n. If $\chi(G) \in \{1, 2, 3, n-1, n\}$, then $\chi_s(G) = \chi(G)$.

Proposition (Chartrand et. al, [2])

$$\chi(G) \geq 3 \Rightarrow \chi_s(G) \geq 3$$

Outline

- Coloring of a Graph
- 2 Set Coloring of a Graph
- 3 Circulant Graphs
- 4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_n(a,b)$
- 6 References

$$D = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^+ \text{ where } a_k \not\equiv 0 \pmod{n}, 1 \leq k \leq m.$$

$$D = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^+ \text{ where } a_k \not\equiv 0 \pmod{n}, 1 \leq k \leq m.$$

Definition

A **circulant graph**, denoted by $C_n(D)$ or $C_n(a_1, a_2, ..., a_m)$, is a graph with vertex set $V = \{v_0, v_1, v_2, ..., v_{n-1}\}$ and edge set

$$E = \{v_i v_j : i - j \equiv \pm a_k \pmod{n} \text{ for some } 1 \le k \le m\}.$$

$$D = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^+ \text{ where } a_k \not\equiv 0 \pmod{n}, 1 \le k \le m.$$

Definition

A **circulant graph**, denoted by $C_n(D)$ or $C_n(a_1, a_2, ..., a_m)$, is a graph with vertex set $V = \{v_0, v_1, v_2, ..., v_{n-1}\}$ and edge set

$$E = \{v_i v_j : i - j \equiv \pm a_k \pmod{n} \text{ for some } 1 \le k \le m\}.$$

D - generating set

$$D = \{a_1, a_2, \dots, a_m\} \subset \mathbb{Z}^+ \text{ where } a_k \not\equiv 0 \pmod{n}, 1 \le k \le m.$$

Definition

A **circulant graph**, denoted by $C_n(D)$ or $C_n(a_1, a_2, ..., a_m)$, is a graph with vertex set $V = \{v_0, v_1, v_2, ..., v_{n-1}\}$ and edge set

$$E = \{v_i v_j : i - j \equiv \pm a_k \pmod{n} \text{ for some } 1 \le k \le m\}.$$

D - generating set

Definition

A circulant graph $C_n(a_1, a_2, ..., a_m)$ is said to be **properly given** if $a_i \not\equiv \pm a_j \pmod{n}$ for $i \neq j$.

Circulant Graphs

Circulant Graphs

Some important properties:

Circulant Graphs

Some important properties:

Proposition (Boesch and Tindell, [5])

 $C_n(a_1, a_2, \ldots, a_m)$ is connected $\Leftrightarrow \gcd(n, a_1, a_2, \ldots, a_m) = 1$

Circulant Graphs

Some important properties:

Proposition (Boesch and Tindell, [5])

 $C_n(a_1, a_2, \ldots, a_m)$ is connected $\Leftrightarrow \gcd(n, a_1, a_2, \ldots, a_m) = 1$

Proposition (Ádám, [6])

If $C_n(a, b)$ is a properly given circulant graph and gcd(a, n) = 1, then

$$C_n(a,b) \cong C_n(1,a^{-1}b \pmod{n})$$

where $a^{-1} \in \mathbb{Z}$ such that $a^{-1}a \equiv 1 \pmod{n}$.

Outline

- Coloring of a Graph
- 2 Set Coloring of a Graph
- Circulant Graphs
- 4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_n(a,b)$
- 6 References

Theorem (Heuberger, [4])

Let $a,b \in \mathbb{Z}^+$ and $a,b \not\equiv 0 \pmod n$. If $C_n(a,b)$ is a properly given connected circulant graph, then

$$\chi(C_n(a,b)) = \begin{cases} 2 & \text{if} \quad a,b \text{ are odd and } n \text{ is even} \\ 4 & \text{if} \quad 3 \nmid n, n \neq 5, \text{ and } (b \equiv \pm 2a \pmod{n}) \text{ or} \\ a \equiv \pm 2b \pmod{n} \end{cases}$$

$$\chi(C_n(a,b)) = \begin{cases} 4 & \text{if} \quad n = 13 \text{ and } (b \equiv \pm 5a \pmod{n}) \text{ or} \\ a \equiv \pm 5b \pmod{n} \end{cases}$$

$$5 & \text{if} \quad n = 5$$

$$3 & \text{if otherwise}$$

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3		
n=4		
n=5		
$n \ge 6$		
<i>n</i> ≥ 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	
n=4		
n=5		
$n \ge 6$		
" <u>~</u> 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
<i>n</i> = 4		
n=5		
$n \ge 6$		
" <u>-</u> 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b) = C_4(1,2) \cong K_4$	
n=5		
$n \ge 6$		
" = "		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
<i>n</i> = 5		
$n \geq 6$		
" = 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
<i>n</i> = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	
$n \geq 6$		
" <u>=</u> 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n=5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
$n \geq 6$		
11 ≥ 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
<i>n</i> = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	
$n \geq 6$		
<i>n</i> ≥ 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
$n \geq 6$		
<i>n</i> ≥ 0		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	
$n \ge 6$		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
<i>n</i> = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$		

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
" = 0	or $a \equiv \pm 2b \pmod{n}$	

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \geq 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
" = 0	or $a \equiv \pm 2b \pmod{n}$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \geq 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
$ I \geq 0$	or $a \equiv \pm 2b \pmod{n}$?
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$	

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
11 2 0	or $a \equiv \pm 2b \pmod{n}$?
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
$ I \leq 0$	or $a \equiv \pm 2b \pmod{n}$?
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant -	
n = 4	$C_n(a,b) = C_4(1,2) \cong K_4$ 4	
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
" = 0	or $a \equiv \pm 2b \pmod{n}$?
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b) = C_4(1,2) \cong K_4$ 4	
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
$ I \geq 0$	or $a \equiv \pm 2b \pmod{n}$?
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

$$\Rightarrow C_n(a,b) = C_n(a,\pm 2a) = C_n(a,2a)$$

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant -	
n = 4	$C_n(a,b) = C_4(1,2) \cong K_4$ 4	
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
$ I \leq 0$	or $a \equiv \pm 2b \pmod{n}$?
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

$$\Rightarrow C_n(a,b) = C_n(a,\pm 2a) = C_n(a,2a) \cong C_n(1,2).$$

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \geq 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
11 2 0	or $a \equiv \pm 2b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_n(1,2)$	
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

$$\Rightarrow C_n(a,b) = C_n(a,\pm 2a) = C_n(a,2a) \cong C_n(1,2).$$

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \geq 6$	$3 \nmid n$ and $(b \equiv \pm 2a \pmod{n})$	
11 2 0	or $a \equiv \pm 2b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_n(1,2)$	
	$\mathit{n} = 13$ and $(\mathit{b} \equiv \pm 5\mathit{a} \pmod{\mathit{n}})$	
	or $a \equiv \pm 5b \pmod{n}$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \geq 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
11 2 0	or $a \equiv \pm 2b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_n(1,2)$	
	$n=13$ and $(b\equiv \pm 5a \pmod n)$	
	or $a \equiv \pm 5b \pmod{n}$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
11 2 0	or $a \equiv \pm 2b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_n(1,2)$	
	$n=13$ and $(b\equiv \pm 5a\ (\mathrm{mod}\ n)$	
	or $a \equiv \pm 5b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_{13}(1,5)$	

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(C_n(a,b))=2$	2
	$\chi(C_n(a,b))=3$	3
$n \geq 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$	
11 2 0	or $a \equiv \pm 2b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_n(1,2)$	
	$n=13$ and $(b\equiv \pm 5a\ (\mathrm{mod}\ n)$	
	or $a \equiv \pm 5b \pmod{n}$?
	$\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_{13}(1,5)$	

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$	
<i>n</i> ≤ 3	no properly given circulant	-	
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4 4	
n = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5	
	$\chi(C_n(a,b))=2$	2	
	$\chi(C_n(a,b))=3$	3	
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$ or $a \equiv \pm 2b \pmod{n}$ $\Rightarrow \chi(C_n(a,b)) = 4 \text{ and } C_n(a,b) \cong C_n(1,2)$	4 if $n = 8, 11$ 3 otherwise	
	$n = 13$ and $(b \equiv \pm 5a \pmod{n})$ or $a \equiv \pm 5b \pmod{n}$ $\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_{13}(1,5)$?	

Cyclic Color Sequence C

Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$.

Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$. Define the color cyclic sequence

$$C = (c(v_0), c(v_1), \ldots, c(v_{n-1}), c(v_0)).$$

Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$. Define the color cyclic sequence

$$C = (c(v_0), c(v_1), \ldots, c(v_{n-1}), c(v_0)).$$

A coloring of $C_9(1,2)$

Cyclic Color Sequence C

For $n \geq 6$, suppose \exists a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$. Define the color cyclic sequence

$$C = (c(v_0), c(v_1), \ldots, c(v_{n-1}), c(v_0)).$$

A coloring of $C_9(1,2)$

Definition

A **block** of C is a maximal subsequence of C consisting of terms of the same color. For $j \in \mathbb{Z}_n^*$, a **j-block** of C is a block of C of j number of terms.

Cyclic Color Sequence C

Cyclic Color Sequence C

Assumptions: c is a set 3-coloring of $C_n(1,2)$ $C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$

Observation

The length of any block of C is at most 5.

Cyclic Color Sequence C

Assumptions: c is a set 3-coloring of $C_n(1,2)$ $C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$

Observation

The length of any block of C is at most 5.

Cyclic Color Sequence C

Assumptions: c is a set 3-coloring of $C_n(1,2)$ $C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$

Observation

The length of any block of C is at most 5.

Cyclic Color Sequence C

Assumptions:
$$c$$
 is a set 3-coloring of $C_n(1,2)$

$$C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$$

Cyclic Color Sequence C

Assumptions: c is a set 3-coloring of $C_n(1,2)$ $C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$

Observation

Let $x, y \in \{1, 2, 3\}$ be distinct. The cyclic color sequence C cannot have a subsequence (x, y, x, y).

Cyclic Color Sequence C

Assumptions: c is a set 3-coloring of $C_n(1,2)$ $C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$

Observation

Let $x, y \in \{1, 2, 3\}$ be distinct. The cyclic color sequence C cannot have a subsequence (x, y, x, y).

Cyclic Color Sequence C

Assumptions: c is a set 3-coloring of $C_n(1,2)$ $C = (c(v_0), c(v_1), \dots, c(v_{n-1}), c(v_0))$

Observation

Let $x, y \in \{1, 2, 3\}$ be distinct. The cyclic color sequence C cannot have a subsequence (x, y, x, y).

Cyclic Color Sequence C

Cyclic Color Sequence C

For distinct $x, y, z \in \{1, 2, 3\}$,

Forms of Sequences that Cannot Be Contained in C	Consequence

Cyclic Color Sequence C

For distinct $x, y, z \in \{1, 2, 3\}$,

Forms of Sequences that Cannot Be Contained in C	Consequence
(x, x, x, x, x, x)	
(x, y, x, y)	
(x, y, y, z)	
$\frac{(x, y, y, y, x)}{(x, y, y, y, y, x)}$	
(x, y, y, y, y, x)	

Cyclic Color Sequence C

For distinct $x, y, z \in \{1, 2, 3\}$,

Forms of Sequences that Cannot Be Contained in C	Consequence
(x, x, x, x, x, x)	For $n \not\equiv 0 \pmod{3}$,
(x,y,x,y)	C contains a k-block $(2 \le k \le 5)$
(x, y, y, z)	2-block $(y,y) \ll (x,y,y,x)$
(x, y, y, y, x)	3-block $(y, y, y) \ll (x, y, y, y, z)$
(x, y, y, y, y, x)	4-block $(y, y, y, y) \ll (x, y, y, y, y, z)$
(x, y, y, y, y, y, x)	5-block $(y, y, y, y, y) \ll (x, y, y, y, y, y, z)$

 $^{* \}ll$ - must be contained in

Cyclic Color Sequence C

Cyclic Color Sequence C

For distinct $x, y, z \in \{1, 2, 3\}$,

Form	Containment Form
(x, y, y, x)	(y, z, x, y, y, x, y, z) or
	(z, y, x, y, y, x, z, y)
(z,y,y,y,x)	(x, y, z, y, y, y, x, y, z)
(x, y, y, y, y, z)	(y, z, x, y, y, y, y, z, x, y)
(x, y, y, y, y, y, z)	(y, z, x, y, y, y, y, y, z, x, y)

Circulant Graphs $C_n(1,2)$

Proposition

For n = 8, 11, $\chi_s(C_n(1, 2)) = 4$.

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

$$\chi(C_n(1,2)) = 4$$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

$$\chi(C_n(1,2)) = 4$$

 $\Rightarrow \chi_s(C_n(1,2))$ is either 3 or 4

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

$$\chi(C_n(1,2)) = 4$$

 $\Rightarrow \chi_s(C_n(1,2))$ is either 3 or 4

Suppose
$$\chi_s(C_n(1,2)) = 3$$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

$$\chi(C_n(1,2)) = 4$$

 $\Rightarrow \chi_s(C_n(1,2))$ is either 3 or 4

Suppose
$$\chi_s(C_n(1,2)) = 3$$

 $\Rightarrow \exists \text{ a set 3-coloring } c : V(C_n(1,2)) = 3$

$$\Rightarrow \exists$$
 a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

$$\chi(C_n(1,2)) = 4$$

 $\Rightarrow \chi_s(C_n(1,2))$ is either 3 or 4

Suppose
$$\chi_s(C_n(1,2)) = 3$$

$$\Rightarrow \exists$$
 a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$

Consider
$$C: (c(v_0), c(v_1), \ldots, c(v_{n-1}), c(v_1))$$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

$$\chi(C_n(1,2)) = 4$$

 $\Rightarrow \chi_s(C_n(1,2))$ is either 3 or 4

Suppose
$$\chi_s(C_n(1,2)) = 3$$

$$\Rightarrow \exists$$
 a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$

Consider
$$C: (c(v_0), c(v_1), \ldots, c(v_{n-1}), c(v_1))$$

$$\Rightarrow$$
 C contains a k-block where $2 \le k \le 5$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n = 8, 11$$
, $\chi_s(C_n(1, 2)) = 4$.

Proof:

$$\chi(C_n(1,2)) = 4$$

 $\Rightarrow \chi_s(C_n(1,2))$ is either 3 or 4

Suppose
$$\chi_s(C_n(1,2)) = 3$$

$$\Rightarrow \exists$$
 a set 3-coloring $c: V(C_n(1,2)) \rightarrow \{1,2,3\}$ of $C_n(1,2)$

Consider
$$C: (c(v_0), c(v_1), \ldots, c(v_{n-1}), c(v_1))$$

$$\Rightarrow$$
 C contains a k-block where $2 \le k \le 5$

Let $x, y, z \in \{1, 2, 3\}$ be distinct.

Circulant Graphs $C_n(1,2)$

Case 1: n = 8

Case 1:
$$n = 8$$

2-block
$$(y, y) \ll (x, y, y, x)$$

Circulant Graphs $C_n(1,2)$

Case 1:
$$n = 8$$

2-block $(y, y) \ll (x, y, y, x)$

Circulant Graphs $C_n(1,2)$

Case 1:
$$n = 8$$

2-block $(y, y) \ll (x, y, y, x)$

Case 1:
$$n = 8$$

2-block
$$(y, y) \ll (x, y, y, x)$$

Case 1:
$$n = 8$$

2-block
$$(y, y) \ll (x, y, y, x)$$

Circulant Graphs $C_n(1,2)$

Case 1:
$$n = 8$$

3-block $(y, y, y) \ll (z, y, y, y, x)$

Circulant Graphs $C_n(1,2)$

Case 1:
$$n = 8$$

4-block $(y, y, y, y) \ll (x, y, y, y, y, z)$

Circulant Graphs $C_n(1,2)$

Case 1:
$$n = 8$$

5-block $(y, y, y, y, y) \ll (x, y, y, y, y, y, z)$

Case 1:
$$n = 8$$

C has no k-block $(2 \le k \le 5)$

Circulant Graphs $C_n(1,2)$

Case 1: n = 8C has no k-block $(2 \le k \le 5)$ Case 2: n = 11

```
Case 1: n = 8
C has no k-block (2 \le k \le 5)
```

Case 2:
$$n = 11$$

C has no k-block, $(2 \le k \le 5)$

Circulant Graphs $C_n(1,2)$

Case 1:
$$n = 8$$

C has no k-block $(2 \le k \le 5)$

Case 2:
$$n = 11$$

C has no k-block, $(2 \le k \le 5)$

 \Rightarrow $C_n(1,2)$ cannot have a set 3-coloring

Case 1:
$$n = 8$$

C has no k-block $(2 \le k \le 5)$

Case 2:
$$n = 11$$

C has no k-block, $(2 \le k \le 5)$

$$\Rightarrow C_n(1,2)$$
 cannot have a set 3-coloring

$$\Rightarrow \chi_s(C_n(1,2)) = 4$$

Circulant Graphs $C_n(1,2)$

Proposition

For $n \ge 6$, $\chi_s(C_n(1,2)) = 3$ if $n \ne 8, 11$.

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n \ge 6$$
, $\chi_s(C_n(1,2)) = 3$ if $n \ne 8, 11$.

Case 1:
$$n \equiv 0 \pmod{3}$$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n \ge 6$$
, $\chi_s(C_n(1,2)) = 3$ if $n \ne 8, 11$.

Case 1:
$$n \equiv 0 \pmod{3}$$

 $\chi(C_n(1,2)) = 3$

Circulant Graphs $C_n(1,2)$

Proposition

For
$$n \ge 6$$
, $\chi_s(C_n(1,2)) = 3$ if $n \ne 8, 11$.

Case 1:
$$n \equiv 0 \pmod{3}$$

 $\chi(C_n(1,2)) = 3 \Rightarrow \chi_s(C_n(1,2)) = 3$

Circulant Graphs $C_n(1,2)$

Case 2: $n \equiv 1 \pmod{3}$

Case 2:
$$n \equiv 1 \pmod{3}$$

 $\chi(C_n(1,2)) = 4$

Case 2:
$$n \equiv 1 \pmod{3}$$

 $\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$

Circulant Graphs $C_n(1,2)$

Case 2:
$$n \equiv 1 \pmod{3}$$

$$\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$$

$$\{1,2\}_3$$

$$\{1,3\}^2$$

$$\{1,3\}^2$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

$$\{1,2,3\}$$

A set 3-coloring of $C_7(1,2)$

Circulant Graphs $C_n(1,2)$

Case 2:
$$n \equiv 1 \pmod{3}$$

$$\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$$

$$\{1,2\}_3$$

$$\{1,3\}_2$$

$$\{2,3\}_1$$

$$\{2,3\}_1$$

$$\{1,2\}_3$$

$$\{1,2\}_3$$

$$\{1,2\}_3$$

$$\{1,2\}_3$$

$$\{1,2\}_3$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

$$\{1,3\}_4$$

A set 3-coloring of $C_{10}(1,2)$

Circulant Graphs $C_n(1,2)$

Case 2:
$$n \equiv 1 \pmod{3}$$

 $\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$

$$\{1,2\}_3$$

$$\{1,3\}_2$$

$$\{1,3\}_2$$

A set 3-coloring of $C_n(1,2)$

Case 2:
$$n \equiv 1 \pmod{3}$$

 $\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$
 $\{1,2\}_{0}$

$$\chi_s(C_n(1,2))=3$$

Circulant Graphs $C_n(1,2)$

Case 3: $n \equiv 2 \pmod{3}$

Case 3:
$$n \equiv 2 \pmod{3}$$

 $\chi(C_n(1,2)) = 4$

Case 3:
$$n \equiv 2 \pmod{3}$$

 $\chi(C_n(1,2)) = 4 \implies \chi_s(C_n(1,2)) \ge 3$

Case 3:
$$n \equiv 2 \pmod{3}$$

$$\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$$

$$\{1,2\}_3, \{1,2\}_3, \{1,2\}_4, \{1,2\}_1, \{1,2\}$$

A set 3-coloring of $C_{14}(1,2)$

Case 3:
$$n \equiv 2 \pmod{3}$$

$$\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$$

$$\{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_3, \{1,2\}_4, \{1,2\}_3, \{1,2\}_4, \{1,2\}$$

A set 3-coloring of $C_{17}(1,2)$

Circulant Graphs $C_n(1,2)$

Case 3:
$$n \equiv 2 \pmod{3}$$

 $\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$

A set 3-coloring of $C_n(1,2)$

Case 3:
$$n \equiv 2 \pmod{3}$$

 $\chi(C_n(1,2)) = 4 \Rightarrow \chi_s(C_n(1,2)) \ge 3$

$$\chi_s(C_n(1,2))=3$$

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n = 4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
<i>n</i> = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(G)=2$	2
	$\chi(G)=3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$ or $a \equiv \pm 2b \pmod{n}$ $\Rightarrow \chi(C_n(a,b)) = 4 \text{ and } C_n(a,b) \cong C_n(1,2)$	4 if $n = 8, 11$ 3 otherwise
	$n = 13$ and $(b \equiv \pm 5a \pmod{n})$ or $a \equiv \pm 5b \pmod{n}$ $\Rightarrow \chi(C_n(a, b)) = 4$ and $C_n(a, b) \cong C_{13}(1, 5)$?

	Characteristics of $C_n(a, b)$	$\chi_s(C_n(a,b))$
<i>n</i> ≤ 3	no properly given circulant	-
n=4	$C_n(a,b)=C_4(1,2)\cong K_4$	4
<i>n</i> = 5	$C_n(a,b)=C_5(1,2)\cong K_5$	5
	$\chi(G)=2$	2
	$\chi(G) = 3$	3
$n \ge 6$	$3 \nmid n \text{ and } (b \equiv \pm 2a \pmod{n})$ or $a \equiv \pm 2b \pmod{n}$ $\Rightarrow \chi(C_n(a,b)) = 4 \text{ and } C_n(a,b) \cong C_n(1,2)$	4 if $n = 8, 11$ 3 otherwise
	$n = 13$ and $(b \equiv \pm 5a \pmod{n})$ or $a \equiv \pm 5b \pmod{n}$ $\Rightarrow \chi(C_n(a,b)) = 4$ and $C_n(a,b) \cong C_{13}(1,5)$	3

Circulant Graph $C_{13}(1,5)$

Circulant Graph $C_{13}(1,5)$

A set 3-coloring of $C_{13}(1,5)$

Theorem

Let $a,b\in\mathbb{Z}^+$ and $a,b\not\equiv 0\pmod n$. If $C_n(a,b)$ is a properly given connected circulant graph. Then

$$\chi_s(C_n(a,b)) = \begin{cases} 2 & \text{if} \quad a,b \text{ are odd and } n \text{ is even} \\ 4 & \text{if} \quad n \in \{4,8,11\} \text{ and } (b \equiv \pm 2a \pmod n) \text{ or} \\ & a \equiv \pm 2b \pmod n) \\ 5 & \text{if} \quad n = 5 \\ 3 & \text{otherwise} \end{cases}$$

Outline

- Coloring of a Graph
- 2 Set Coloring of a Graph
- Circulant Graphs
- 4 The Set Chromatic Numbers of Properly Given Connected Circulant Graphs $C_n(a,b)$
- 6 References

References

- [1] Zhang, Ping. A Kaleidoscopic View of Graph Colorings. Springer International Publishing, 2016.
- [2] Chartrand, Gary, Futaba Okamoto, Craig W. Rasmussen, and Ping Zhang. "The Set Chromatic Number of a Graph". *Discussiones Mathematicae Graph Theory* 29, no. 3 (2009): 545-562.
- [3] Okamoto, Futaba, Craig W. Rasmussen, and Ping Zhang. "Set Vertex Colorings and Joins of Graphs". *Czechoslovak Mathematical Journal* 59, no. 4 (2009): 929-941.
- [4] Heuberger, Clemens. "On Planarity and Colorability of Circulant Graphs". *Discrete Mathematics* 268, no. 1-3 (2003): 153-169.
- [5] Boesch, F., and R. Tindell. "Circulants and Their Connectivities". *Journal of Graph Theory* 8, no. 4 (1984): 487-499.

References

[6] Ádám, A. "Research Problems". Journal of Combinatorial Theory 2, no. 3 (1967): 393.

Thank you for listening!