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1. Optimal linear codes problem

Fq: the field of q elements

Fnq = {(a1, . . . , an) | ai ∈ Fq}
The weight of a = (a1, . . . , an) ∈ Fnq is

wt(a) = |{i | ai ̸= 0}|



An [n, k, d]q code C means a k-dimensional

subspace of Fnq with minimum weight d,

d = min{wt(a) | a ∈ C, a ̸= 0}.

For an [n, k, d]q code C, a k×n matrix G whose

rows form a basis of C is a generator matrix

of C.



The weight distribution (w.d.) of C is the list

of numbers Ai > 0, where

Ai = |{c ∈ C | wt(c) = i}| > 0.

The weight distribution

(A0, Ad, ...) = (1, α, ...)

is also expressed as

01dα · · · .



A good [n, k, d]q code will have

small n for fast transmission of messages,

large k to enable transmission of a wide

variety of messages, and

large d to correct many errors.

The problem to optimize one of the param-

eters n, k, d for given the other two is called

”optimal linear codes problem” (Hill 1992).



Problem 1. Find nq(k, d), the smallest value

of n for which an [n, k, d]q code exists.

Problem 2. Find dq(n, k), the largest value

of d for which an [n, k, d]q code exists.

An [n, k, d]q code is called optimal if

n = nq(k, d) or d = dq(n, k).

We deal with Problem 1 for q = 5, k = 5.



The Griesmer bound

n ≥ gq(k, d) :=
k−1∑
i=0


d

qi



where ⌈x⌉ is a smallest integer ≥ x.

An [n, k, d]q code attaining the Griesmer bound

is called a Griesmer code.

Griesmer codes are optimal.



Known results for q = 5

The exact values of n5(k, d) are determined

for all d for k ≤ 3.

n5(4, d) is not determined yet only for

d = 81,161,162.

n5(5, d) is not determined yet for many d, see

Maruta’s website:

www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/



Known results for q = 5, k = 5

It is known that

n5(5, d) = g5(5, d) for d ≥ 1376.

For 1 ≤ d ≤ 1375, n5(5, d) is detemined for

655 values of d but not for 725 values of d,

see

I. Bouyukliev, Y. Kageyama, T. Maruta, On the minimum length

of linear codes over F5, Discrete Math. 338, 938–953, 2015.



2. The geometric method

PG(r, q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r, q)

0-flat: point 1-flat: line

2-flat: plane (r − 1)-flat: hyperplane

θj := (qj+1 − 1)/(q − 1) = qj + qj−1 + · · ·+ q +1



C : an [n, k, d]q code generated by G.

Assume that G contains no all-zero-column.

The columns of G can be considered as a multiset of

n points in Σ = PG(k − 1, q)

denoted also by C.

Fj := the set of j-flats of Σ



i-point: a point of Σ with multiplicity i in C.

γ0: the maximum multiplicity of a point from Σ in C

Ci: the set of i-points in Σ, 0 ≤ i ≤ γ0.

λi:= |Ci|, 0 ≤ i ≤ γ0.

For ∀S ⊂ Σ, the multiplicity of S w.r.t. C, denoted by

mC(S), is defined by

mC(S) =
γ0∑
i=1

i·|S∩Ci|.



Then we obtain the partition

Σ = C0 ∪ C1 ∪ · · · ∪ Cγ0 such that

n = mC(Σ),

n− d = max{mC(π) | π ∈ Fk−2}.

Conversely such a partition of Σ as above gives an

[n, k, d]q code in the natural manner.



i-hyperplane: a hyperplane π with i = mC(π).

ai := |{π ∈ Fk−2 | mC(π) = i}|.

The list of ai’s is the spectrum of C.

ai = An−i/(q − 1) for 0 ≤ i ≤ n− d.



3. Projective dual

An [n, k, d]q code is m-divisible (or m-div) if ∃m > 1

s.t. Ai > 0 ⇒ m|i.

Ex. 1. There exists a 3-div [41,4,33]9 code with w.d.

0133984363608391968. The spectrum is (a2, a5, a8) =

(246,451,123).



Lemma 1. (Projective dual)

C: m-div [n, k, d]q code, q = ph, p prime.

m = pr for some 1 ≤ r < h(k − 2), λ0 > 0,

∩
H: i-hyperplane, i<n−d

H = ∅

⇒ ∃C∗: t-div [n∗, k, d∗]q code with

t = qk−2/m,

n∗ = ntq − d
mθk−1,

d∗ = ((n− d)q − n)t.



A generator matrix for C∗ is given by considering

(n− d− jm)-hyperplanes as j-points in the dual space

Σ∗ of Σ for 0 ≤ j ≤ w − 1.

Ex. 2.

C 3-div [41,4,33]9

with spec. (a2, a5, a8) = (246,451,123)

↓ projetive dual

C∗ 27-div [943,4,837]9 (n∗ = 2a2 + a5)

with spec. (a∗79, a
∗
106) = (41,779)



4. Geometric puncturing

The puncturing from a given [n, k, d]q code by delet-

ing the coordinates corresponding to some geometric

object in Σ = PG(k − 1, q) is geometric puncturing.

Lemma 2. C: [n, k, d]q code

∪γ0
i=0Ci: the partition of Σ obtained from C. If ∪i≥1Ci

contains a t-flat Π and if d > qt

⇒ ∃C′: [n− θt, k, d
′]q code, for d′ ≥ d− qt.



5. Construction of new codes

Lemma 3. There exist [1126,5,900]5, [1120,5,895]5,

[1114,5,890]5, [1108,5,885]5, [1102,5,880]5 codes.

Proof.

C1: the code with generator matrix

G1=



1111000003342334222344243011111
0000100024033413331433322111111
0000010022404243443421414411111
0000001001220122414222332111111
0000000110111111111111111411111


Then C1 is a 5-div [34,5,20]5 code with spectrum

(a4, a9, a14) = (410,306,65).



As a projective dual, we get a [1126,5,900]5 code C∗1
with w.d. 0190030169251001000410254.

The multiset for C∗1 has four lines

l1 = ⟨10000,00110⟩, l2 = ⟨11000,10110⟩,

l3 = ⟨31000,00210⟩, l4 = ⟨41000,10210⟩.

Hence, we get

[1120,5,895]5, [1114,5,890]5,

[1108,5,885]5, [1102,5,880]5

codes by geometric puncturing. □



Lemma 4. There exist [1626,5,1300]5, [1620,5,1295]5,

[1614,5,1290]5, [1608,5,1285]5, [1602,5,1280]5 codes.

Proof.

C2: the code with generator matrix

G2=



11110000111311132213331322220000100000
00001000200320134033102311112222011111
00000100120012032404310111114444044444
00000010012011201220132011113333011111
00000001001101110111011111111111044444


Then C2 is a 5-div [38,5,20]5 code with spectrum

(a3, a8, a13, a18) = (256,362,134,29).



As a projective dual, we get a [1626,5,1300]5 code

C∗2 with w.d. 01130030281325801400814258.

The multiset for C∗2 has four lines

l1 = ⟨10000,01000⟩, l2 = ⟨00100,00010⟩,

l3 = ⟨10100,11010⟩, l4 = ⟨20100,02010⟩.

Hence, we get

[1620,5,1295]5, [1614,5,1290]5,

[1608,5,1285]5, [1602,5,1280]5

codes by geometric puncturing. □



Remark.

The matrices G1 and G2 are found as multsets in

PG(4,5) by prescribing the group generated by



1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


i.e., the multiset consisting of the columns of Gi is the

union of some orbits of the projectivity τ on PG(4,5)

with τ : (x1, x2, x3, x4, x5) → (x1, x5, x2, x3, x4).



6. New results on n5(5, d)

We determined n5(5, d) for 50 values of d.

Theorem 5. n5(5, d) = g5(5, d)

for 876 ≤ d ≤ 900 and 1276 ≤ d ≤ 1300.

Note.

The problem to determine n5(5, d) for all d is still open

for 675 values of d, some of which are solved in the

next talk by Kuranaka.
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Thank you for your attention!


