## Constructing new linear codes

 over the field of order fiveYuto Inoue
(Joint work with Tatsuya Maruta)

Department of Mathematical Sciences
Osaka Prefecture University

## Contents

1. Optimal linear codes problem
2. Geometric method
3. Projective dual
4. Geometric puncturing
5. Construction of new codes
6. New result on $n_{5}(5, d)$

## 1. Optimal linear codes problem

$\mathbb{F}_{q}$ : the field of $q$ elements

$$
\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{F}_{q}\right\}
$$

The weight of $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is

$$
w t(\boldsymbol{a})=\left|\left\{i \mid a_{i} \neq 0\right\}\right|
$$

An $[n, k, d]_{q}$ code $\mathcal{C}$ means a $k$-dimensional subspace of $\mathbb{F}_{q}^{n}$ with minimum weight $d$,

$$
d=\min \{w t(a) \mid a \in \mathcal{C}, a \neq 0\}
$$

For an $[n, k, d]_{q}$ code $\mathcal{C}$, a $k \times n$ matrix $G$ whose rows form a basis of $\mathcal{C}$ is a generator matrix of $\mathcal{C}$.

The weight distribution (w.d.) of $\mathcal{C}$ is the list of numbers $A_{i}>0$, where

$$
A_{i}=|\{c \in \mathcal{C} \mid w t(c)=i\}|>0
$$

The weight distribution

$$
\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)
$$

is also expressed as

$$
0^{1} d^{\alpha} \ldots
$$

A good $[n, k, d]_{q}$ code will have small $n$ for fast transmission of messages, large $k$ to enable transmission of a wide variety of messages, and
large $d$ to correct many errors.

The problem to optimize one of the parameters $n, k, d$ for given the other two is called "optimal linear codes problem" (Hill 1992).

## Problem 1. Find $n_{q}(k, d)$, the smallest value

 of $n$ for which an $[n, k, d]_{q}$ code exists.Problem 2. Find $d_{q}(n, k)$, the largest value of $d$ for which an $[n, k, d]_{q}$ code exists.

An $[n, k, d]_{q}$ code is called optimal if

$$
n=n_{q}(k, d) \text { or } d=d_{q}(n, k)
$$

We deal with Problem 1 for $q=5, k=5$.

## The Griesmer bound

$$
n \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ is a smallest integer $\geq x$.

An $[n, k, d]_{q}$ code attaining the Griesmer bound is called a Griesmer code.

Griesmer codes are optimal.

## Known results for $q=5$

The exact values of $n_{5}(k, d)$ are determined for all $d$ for $k \leq 3$. $n_{5}(4, d)$ is not determined yet only for

$$
d=81,161,162
$$

$n_{5}(5, d)$ is not determined yet for many $d$, see Maruta's website:
www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/

## Known results for $q=5, k=5$

It is known that

$$
n_{5}(5, d)=g_{5}(5, d) \text { for } d \geq 1376
$$

For $1 \leq d \leq 1375, n_{5}(5, d)$ is detemined for 655 values of $d$ but not for 725 values of $d$, see
I. Bouyukliev, Y. Kageyama, T. Maruta, On the minimum length of linear codes over $\mathbb{F}_{5}$, Discrete Math. 338, 938-953, 2015.

## 2. The geometric method

$\mathrm{PG}(r, q)$ : projective space of dim. $r$ over $\mathbb{F}_{q}$ $j$-flat: $j$-dim. projective subspace of $\mathrm{PG}(r, q)$

0-flat: point 1-flat: line
2-flat: plane $(r-1)$-flat: hyperplane
$\theta_{j}:=\left(q^{j+1}-1\right) /(q-1)=q^{j}+q^{j-1}+\cdots+q+1$
$\mathcal{C}$ : an $[n, k, d]_{q}$ code generated by $G$.
Assume that $G$ contains no all-zero-column.
The columns of $G$ can be considered as a multiset of $n$ points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted also by $\mathcal{C}$.
$\mathcal{F}_{j}:=$ the set of $j$-flats of $\Sigma$
i-point: a point of $\Sigma$ with multiplicity $i$ in $\mathcal{C}$.
$\gamma_{0}$ : the maximum multiplicity of a point from $\Sigma$ in $\mathcal{C}$
$C_{i}$ : the set of $i$-points in $\Sigma, 0 \leq i \leq \gamma_{0}$.
$\lambda_{i}:=\left|C_{i}\right|, 0 \leq i \leq \gamma_{0}$.

For ${ }^{\forall} S \subset \Sigma$, the multiplicity of $S$ w.r.t. $\mathcal{C}$, denoted by $m_{\mathcal{C}}(S)$, is defined by

$$
m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|
$$

Then we obtain the partition

$$
\begin{aligned}
& \Sigma=C_{0} \cup C_{1} \cup \cdots \cup C_{\gamma_{0}} \text { such that } \\
& n=m_{\mathcal{C}}(\Sigma) \\
& n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}
\end{aligned}
$$

Conversely such a partition of $\Sigma$ as above gives an $[n, k, d]_{q}$ code in the natural manner.
$i$-hyperplane: a hyperplane $\pi$ with $i=m_{\mathcal{C}}(\pi)$.

$$
a_{i}:=\left|\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi)=i\right\}\right|
$$

The list of $a_{i}$ 's is the spectrum of $\mathcal{C}$.

$$
a_{i}=A_{n-i} /(q-1) \text { for } 0 \leq i \leq n-d
$$

## 3. Projective dual

An $[n, k, d]_{q}$ code is $m$-divisible (or $m$-div) if $\exists m>1$ s.t. $\quad A_{i}>0 \Rightarrow m \mid i$.

Ex. 1. There exists a 3-div $[41,4,33]_{9}$ code with w.d. $0^{1} 33^{984} 36^{3608} 39^{1968}$. The spectrum is $\left(a_{2}, a_{5}, a_{8}\right)=$ (246, 451, 123).

Lemma 1. (Projective dual)
$\mathcal{C}$ : $m$-div $[n, k, d]_{q}$ code, $q=p^{h}, p$ prime. $m=p^{r}$ for some $1 \leq r<h(k-2), \lambda_{0}>0$,


H: i-hyperplane, $i<n-d$
$\Rightarrow{ }^{\exists} \mathcal{C}^{*}: t-\operatorname{div}\left[n^{*}, k, d^{*}\right]_{q}$ code with

$$
\begin{aligned}
& t=q^{k-2} / m \\
& n^{*}=n t q-\frac{d}{m} \theta_{k-1} \\
& d^{*}=((n-d) q-n) t .
\end{aligned}
$$

A generator matrix for $\mathcal{C}^{*}$ is given by considering
( $n-d-j m$ )-hyperplanes as $j$-points in the dual space $\Sigma^{*}$ of $\Sigma$ for $0 \leq j \leq w-1$.

Ex. 2.
$\mathcal{C}$ 3-div $[41,4,33]_{9}$
with spec. $\left(a_{2}, a_{5}, a_{8}\right)=(246,451,123)$
$\downarrow$ projetive dual
$\mathcal{C}^{*} \quad 27-\operatorname{div}[943,4,837]_{9} \quad\left(n^{*}=2 a_{2}+a_{5}\right)$
with spec. $\left(a_{79}^{*}, a_{106}^{*}\right)=(41,779)$

## 4. Geometric puncturing

The puncturing from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\Sigma=\mathrm{PG}(k-1, q)$ is geometric puncturing.

Lemma 2. $\mathcal{C}:[n, k, d]_{q}$ code
$\cup_{i=0}^{\gamma_{0}} C_{i}$ : the partition of $\Sigma$ obtained from $\mathcal{C}$. If $\cup_{i \geq 1} C_{i}$ contains a $t$-flat $\Pi$ and if $d>q^{t}$
$\Rightarrow \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code, for $d^{\prime} \geq d-q^{t}$.

## 5. Construction of new codes

Lemma 3. There exist $[1126,5,900]_{5},[1120,5,895]_{5}$, $[1114,5,890]_{5},[1108,5,885]_{5},[1102,5,880]_{5}$ codes. Proof.
$\mathcal{C}_{1}$ : the code with generator matrix
$G_{1}=\left[\begin{array}{l}1111000003342334222344243011111 \\ 0000100024033413331433322111111 \\ 0000010022404243443421414411111 \\ 0000001001220122414222332111111 \\ 0000000110111111111111111411111\end{array}\right]$
Then $\mathcal{C}_{1}$ is a 5 -div $[34,5,20]_{5}$ code with spectrum $\left(a_{4}, a_{9}, a_{14}\right)=(410,306,65)$.

As a projective dual, we get a $[1126,5,900]_{5}$ code $\mathcal{C}_{1}^{*}$ with w.d. $0^{1} 900^{3016} 925^{100} 1000^{4} 1025^{4}$.

The multiset for $\mathcal{C}_{1}^{*}$ has four lines

$$
\begin{aligned}
& l_{1}=\langle 10000,00110\rangle, l_{2}=\langle 11000,10110\rangle \\
& l_{3}=\langle 31000,00210\rangle, l_{4}=\langle 41000,10210\rangle
\end{aligned}
$$

Hence, we get
$[1120,5,895]_{5},[1114,5,890]_{5}$,
$[1108,5,885]_{5},[1102,5,880]_{5}$
codes by geometric puncturing.

Lemma 4. There exist $[1626,5,1300]_{5},[1620,5,1295]_{5}$, $[1614,5,1290]_{5},[1608,5,1285]_{5},[1602,5,1280]_{5}$ codes.

## Proof.

$\mathcal{C}_{2}$ : the code with generator matrix
$G_{2}=\left[\begin{array}{l}11110000111311132213331322220000100000 \\ 00001000200320134033102311112222011111 \\ 00000100120012032404310111114444044444 \\ 00000010012011201220132011113333011111 \\ 00000001001101110111011111111111044444\end{array}\right]$

Then $\mathcal{C}_{2}$ is a 5 -div $[38,5,20]_{5}$ code with spectrum $\left(a_{3}, a_{8}, a_{13}, a_{18}\right)=(256,362,134,29)$.

As a projective dual, we get a $[1626,5,1300]_{5}$ code $\mathcal{C}_{2}^{*}$ with w.d. $0^{1} 1300^{3028} 1325^{80} 1400^{8} 1425^{8}$.
The multiset for $\mathcal{C}_{2}^{*}$ has four lines

$$
\begin{aligned}
& l_{1}=\langle 10000,01000\rangle, l_{2}=\langle 00100,00010\rangle \\
& l_{3}=\langle 10100,11010\rangle, l_{4}=\langle 20100,02010\rangle
\end{aligned}
$$

Hence, we get
$[1620,5,1295]_{5},[1614,5,1290]_{5}$,
$[1608,5,1285]_{5},[1602,5,1280]_{5}$
codes by geometric puncturing.

## Remark.

The matrices $G_{1}$ and $G_{2}$ are found as multsets in $P G(4,5)$ by prescribing the group generated by

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

i.e., the multiset consisting of the columns of $G_{i}$ is the union of some orbits of the projectivity $\tau$ on $\operatorname{PG}(4,5)$ with $\tau:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \rightarrow\left(x_{1}, x_{5}, x_{2}, x_{3}, x_{4}\right)$.
6. New results on $n_{5}(5, d)$

We determined $n_{5}(5, d)$ for 50 values of $d$.

Theorem 5. $n_{5}(5, d)=g_{5}(5, d)$
for $876 \leq d \leq 900$ and $1276 \leq d \leq 1300$.

Note.
The problem to determine $n_{5}(5, d)$ for all $d$ is still open for 675 values of $d$, some of which are solved in the next talk by Kuranaka.

## References

I. Bouyukliev, Y. Kageyama, T. Maruta, On the minimum length of linear codes over $\mathbb{F}_{5}$, Discrete Math. 338, 938-953, 2015.
A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11, 261-266, 1997.
R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford Univ. Press, Oxford, 1992, 75-104.
T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing 7, 73-80, 2013.
T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/

## Thank you for your attention!

