Adjacency properties of graphs and related results

Shohei Satake
Graduate School of System Informatics,
Kobe University, Japan

Adjacency properties

(Erdős-Rényi 1963, Blass-Harary 1979)
G satisfies $\mathcal{P}(\boldsymbol{l}, \boldsymbol{m}) \underset{\text { def }}{\leftrightarrow} \forall A, B \subset V(G)(|A|=l,|B|=m, A \cap B=\varnothing)$, def $\exists z_{A, B} \notin A \cup B$ satisfying the following property $(*)_{A, B}$:
$(*)_{A, B}$

If G satisfies $\mathcal{P}(l, m)$ for all (l, m) s.t. $l+m=n, G$ is called \boldsymbol{n}-e.c.
(n-existentially closed).

Adjacency properties

Adjacency properties

Adjacency properties

Adjacency properties

Adjacency properties

$\mathcal{P}(1,1)$ (moreover, 2-e. c.)

Main result

- Blass-Exoo-Harary (1981), Bollobás-Thomason (1981) showed that Paley graphs of sufficiently large size are n-e.c.

Main result

- Blass-Exoo-Harary (1981), Bollobás-Thomason (1981) showed that Paley graphs of sufficiently large size are n-e.c.

Let e be odd and $p \equiv 1 \bmod 4$.
We define the graph $G_{p^{e}}$ with vertex set $\mathbb{Z}_{p^{e}}$ as follows:

$$
(x, y) \in E\left(G_{p^{e}}\right) \Leftrightarrow x-y=Q \operatorname{R~mod} p^{e},(x-y, p)=1
$$

Main result

- Blass-Exoo-Harary (1981), Bollobás-Thomason (1981) showed that Paley graphs of sufficiently large size are n-e.c.

Let e be odd and $p \equiv 1 \bmod 4$.
We define the graph $G_{p^{e}}$ with vertex set $\mathbb{Z}_{p^{e}}$ as follows:

$$
(x, y) \in E\left(G_{p^{e}}\right) \Leftrightarrow x-y=\operatorname{QR} \bmod p^{e},(x-y, p)=1
$$

Theorem (S. 2018)

- For each l, m s.t. $l+m \leq n, G_{p^{e}}$ satisfies $\mathcal{P}(l, m)$ if

$$
p^{e}-\left\{(n-2) 2^{n-1}+1\right\} p^{e-\frac{1}{2}}-\left(n^{2}+n\right) p^{e-1}-\frac{n(n+1)}{2}>0 .
$$

Moreover, $G_{p^{e}}$ is also n-e.c.

Random graphs a.a.s. satisfy n-e.c.

Let $G(m, p)$ be Erdős-Rényi random graph with edge probability p (constant).

Then, for each $n, G(m, p)$ is asymptotically almost surely (a.a.s.) n-e.c., that is,

$$
\operatorname{Prob}[G(m, p) \text { is } n \text { - e.c. }] \rightarrow 1(m \rightarrow \infty) .
$$

Random graphs a.a.s. satisfy n-e.c.

Let $G(m, p)$ be Erdős-Rényi random graph with edge probability p (constant).

Then, for each $n, G(m, p)$ is asymptotically almost surely (a.a.s.) n-e.c., that is,

$$
\operatorname{Prob}[G(m, p) \text { is } n \text { - e.c. }] \rightarrow 1(m \rightarrow \infty) .
$$

Proof

Let $p=\frac{1}{2}$ for simplicity. Then,
as $m \rightarrow \infty$.

$$
\begin{aligned}
& \operatorname{Prob}\left[G\left(m, \frac{1}{2}\right) \text { is not } n \text { - e.c. }\right] \leq \underline{\binom{m}{n} 2^{n}} \underline{\left(1-\left(\frac{1}{2}\right)^{n}\right)^{m-n}} \rightarrow 0 \\
& \quad \# . \\
& \quad\{(A, B)|A \cap B=\emptyset,|A \cup B|=n\}
\end{aligned}
$$

$$
\operatorname{Prob}\left[\forall z \notin A \cup B, z \text { doesn't satisfy }(*)_{A, B}\right]
$$

Pseudo-randomness of random graphs

- Let $0<p=p(m)<1 \leq \alpha . G_{m}$ with m vertices is called $(\boldsymbol{p}, \boldsymbol{\alpha})$-jumbled if $\forall U \subset V(G),\left|E\left(\frac{\left.G_{m}[U]\right)}{\uparrow}\right)-p\binom{|U|}{2}\right| \leq \alpha|U| . \quad$ (Thomason, 1987) The induced subgraph of G_{m} induced by U

Pseudo-randomness of random graphs

- Let $0<p=p(m)<1 \leq \alpha . G_{m}$ with m vertices is called $(\boldsymbol{p}, \boldsymbol{\alpha})$-jumbled if

$$
\forall U \subset V(G),\left|\left|E\left(G_{m}[U]\right)\right|-p\binom{|U|}{2}\right| \leq \alpha|U| . \quad \text { (Thomason, 1987) }
$$

$\left(\frac{4}{9}, 2\right)$-jumbled

Pseudo-randomness of random graphs

- Let $0<p=p(m)<1 \leq \alpha$. G_{m} with m vertices is called $(\boldsymbol{p}, \boldsymbol{\alpha})$-jumbled if

$$
\forall U \subset V(G),\left|\left|E\left(G_{m}[U]\right)\right|-p\binom{|U|}{2}\right| \leq \alpha|U| . \quad \text { (Thomason, 1987) }
$$

$\left(\frac{4}{9}, 2\right)$-jumbled

$$
\left|4-\frac{4}{9}\binom{4}{2}\right|=1.33 \ldots \leq 8=2 \cdot 4
$$

Pseudo-randomness of random graphs

- Let $0<p=p(m)<1 \leq \alpha . G_{m}$ with m vertices is called $(\boldsymbol{p}, \boldsymbol{\alpha})$-jumbled if

$$
\forall U \subset V(G), \left.\left|E\left(G_{m}[U]\right)\right|-p\binom{|U|}{2}|\leq \alpha| U \right\rvert\, . \quad \text { (Thomason, 1987) }
$$

- (Thomason, 1987) Let $G(m, p)$ be E.R. random graph.

Then, if $m p \rightarrow \infty$ and $m(1-p) \rightarrow \infty, \boldsymbol{G}(\boldsymbol{m}, \boldsymbol{p})$ is a. a. s. $(\boldsymbol{p}, \boldsymbol{O}(\sqrt{\boldsymbol{m} \boldsymbol{p}}))$-jumbled.

Pseudo-randomness of random graphs

- Let $0<p=p(m)<1 \leq \alpha . G_{m}$ with m vertices is called $(\boldsymbol{p}, \boldsymbol{\alpha})$-jumbled if

$$
\forall U \subset V(G), \left.\left|E\left(G_{m}[U]\right)\right|-p\binom{|U|}{2}|\leq \alpha| U \right\rvert\, . \quad \text { (Thomason, 1987) }
$$

- (Thomason, 1987) Let $G(m, p)$ be E.R. random graph.

Then, if $m p \rightarrow \infty$ and $m(1-p) \rightarrow \infty, \boldsymbol{G}(\boldsymbol{m}, \boldsymbol{p})$ is a. a. s. $(\boldsymbol{p}, \boldsymbol{O}(\sqrt{\boldsymbol{m} \boldsymbol{p}}))$-jumbled.

- G_{m} is called pseudo-random if G_{m} is $(p, O(\sqrt{m p}))$-jumbled.

Pseudo-randomness of random graphs

- Let $0<p=p(m)<1 \leq \alpha . G_{m}$ with m vertices is called $(\boldsymbol{p}, \boldsymbol{\alpha})$-jumbled if

$$
\forall U \subset V(G),\left|\left|E\left(G_{m}[U]\right)\right|-p\binom{|U|}{2}\right| \leq \alpha|U| . \quad \text { (Thomason, 1987) }
$$

- (Thomason, 1987) Let $G(m, p)$ be E.R. random graph.

Then, if $m p \rightarrow \infty$ and $m(1-p) \rightarrow \infty, \boldsymbol{G}(\boldsymbol{m}, \boldsymbol{p})$ is a. a. \mathbf{s}. $(\boldsymbol{p}, \boldsymbol{O}(\sqrt{\boldsymbol{m} \boldsymbol{p}}))$-jumbled.

- G_{m} is called pseudo-random if G_{m} is $(p, O(\sqrt{m p}))$-jumbled.
- If G_{m} is non-bipartite and $k(m)$-regular,

$$
\boldsymbol{G}_{\boldsymbol{m}} \text { is pseudo-random } \Leftrightarrow \lambda\left(\boldsymbol{G}_{\boldsymbol{m}}\right)=\boldsymbol{O}(\sqrt{\boldsymbol{k}(\boldsymbol{m})})
$$

where

$$
\lambda\left(G_{m}\right)=\max \left\{|\theta| \mid \theta: \text { eigenvalue of adjacency matrix of } G_{m} \text { s.t. }|\theta| \neq k(m)\right\}
$$

n-e.c. $\not \subset$ pseudo-random

- Cameron-Stark (2002) remarked that pseudo-random $\not \subset n$-e.c. $(\forall n \geq 4)$

n-e.c. $\not \subset$ pseudo-random

- Cameron-Stark (2002) remarked that pseudo-random $\not \subset n$-e.c. $(\forall n \geq 4)$

Recall thet the graph $G_{p^{e}}$ with vertex set $\mathbb{Z}_{p^{e}}$ is defined as follows:

$$
(x, y) \in E\left(G_{p^{e}}\right) \Leftrightarrow x-y=\mathrm{QR} \bmod p^{e},(x-y, p)=1
$$

n-e.c. $\not \subset$ pseudo-random

- Cameron-Stark (2002) remarked that pseudo-random $\not \subset n$-e.c. $(\forall n \geq 4)$

Recall thet the graph $G_{p^{e}}$ with vertex set $\mathbb{Z}_{p^{e}}$ is defined as follows:

$$
(x, y) \in E\left(G_{p^{e}}\right) \Leftrightarrow x-y=\mathrm{QR} \bmod p^{e},(x-y, p)=1
$$

Theorem (S. 2018, Rewrite)
 $G_{p^{e}}$ is n-e.c. if $p^{e}-\left\{(n-2) 2^{n-1}+1\right\} p^{e-\frac{1}{2}}-\left(n^{2}+n\right) p^{e-1}-\frac{n(n+1)}{2}>0$.

n-e.c. $\not \subset$ pseudo-random

- Cameron-Stark (2002) remarked that pseudo-random $\not \subset n$-e.c. $(\forall n \geq 4)$

Recall thet the graph $G_{p^{e}}$ with vertex set $\mathbb{Z}_{p^{e}}$ is defined as follows:

$$
(x, y) \in E\left(G_{p^{e}}\right) \Leftrightarrow x-y=\mathrm{QR} \bmod p^{e},(x-y, p)=1
$$

Theorem (S. 2018, Rewrite)

$G_{p^{e}}$ is n-e.c. if $p^{e}-\left\{(n-2) 2^{n-1}+1\right\} p^{e-\frac{1}{2}}-\left(n^{2}+n\right) p^{e-1}-\frac{n(n+1)}{2}>0$.
$G_{p^{e}}$ is $\frac{p^{e}-p^{e-1}}{2}$-regular and $\lambda\left(G_{p^{e}}\right)=\frac{p^{e-1}-p^{\frac{e}{2}}}{2} \gg \sqrt{\frac{p^{e}-p^{e-1}}{2}}($ when $e \geq 3)$.

n-e.c. $\not \subset$ pseudo-random

- Cameron-Stark (2002) remarked that pseudo-random $\not \subset n$-e.c. $(\forall n \geq 4)$

Recall thet the graph $G_{p^{e}}$ with vertex set $\mathbb{Z}_{p^{e}}$ is defined as follows:

$$
(x, y) \in E\left(G_{p^{e}}\right) \Leftrightarrow x-y=Q R \bmod p^{e},(x-y, p)=1
$$

Theorem (S. 2018, Rewrite)

$G_{p^{e}}$ is n-e.c. if $p^{e}-\left\{(n-2) 2^{n-1}+1\right\} p^{e-\frac{1}{2}}-\left(n^{2}+n\right) p^{e-1}-\frac{n(n+1)}{2}>0$.
$G_{p^{e}}$ is $\frac{p^{e}-p^{e-1}}{2}$-regular and $\lambda\left(G_{p^{e}}\right)=\frac{p^{e-1}-p^{\frac{e}{2}}}{2} \gg \sqrt{\frac{p^{e}-p^{e-1}}{2}}($ when $e \geq 3)$.
Corollary (S. 2018)
n-e.c. $\not \subset$ pseudo-random $(\forall n \geq 1)$.

n-e.c. $\not \subset$ pseudo-random

Pseudo-random graphs
n-e.c. graphs ($n \geq 1$)

There are many known pseudo-random graphs which is not n-e.c.

Known
n-е.c.
graphs

n-e.c. $\not \subset$ pseudo-random

Pseudo-random graphs n-e.c. graphs $(n \geq 1)$

There are many known pseudo-random graphs which is not n-e.c.

Known
n-е.c.
Our new n-e.c. graphs
graphs

n-e.c. $\not \subset$ pseudo-random

Pseudo-random graphs
n-e.c. graphs $(n \geq 1)$

There are many known pseudo-random graphs which is not n-e.c.

Known
n-е.с.
Our new n-e.c. graphs

Thank you for your attentions!!

