Adjacency properties of graphs and related results

Shohei Satake Graduate School of System Informatics, Kobe University, Japan

Adjacency properties

(Erdős-Rényi 1963, Blass-Harary 1979)

G satisfies $\mathcal{P}(l, m) \Leftrightarrow \det A, B \subset V(G)$ $(|A| = l, |B| = m, A \cap B = \emptyset),$ $\exists z_{A,B} \notin A \cup B$ satisfying the following property $(*)_{A,B}$:

If G satisfies $\mathcal{P}(l, m)$ for all (l, m) s.t. l + m = n, G is called *n***-e.c.** (*n*-existentially closed).

Adjacency properties of graphs and related results (Shohei Satake, Kobe Univ., Japan)

Main result

• Blass-Exoo-Harary (1981), Bollobás-Thomason (1981) showed that Paley graphs of sufficiently large size are *n*-e.c.

Main result

• Blass-Exoo-Harary (1981), Bollobás-Thomason (1981) showed that Paley graphs of sufficiently large size are *n*-e.c.

Let *e* be odd and $p \equiv 1 \mod 4$.

We define the graph G_{p^e} with vertex set \mathbb{Z}_{p^e} as follows:

 $(x, y) \in E(G_{p^e}) \iff x - y = QR \mod p^e$, (x - y, p) = 1.

Main result

• Blass-Exoo-Harary (1981), Bollobás-Thomason (1981) showed that Paley graphs of sufficiently large size are *n*-e.c.

Let *e* be odd and $p \equiv 1 \mod 4$.

We define the graph G_{p^e} with vertex set \mathbb{Z}_{p^e} as follows:

$$(x, y) \in E(G_{p^e}) \iff x - y = QR \mod p^e$$
, $(x - y, p) = 1$.

Random graphs a.a.s. satisfy *n*-e.c.

Let G(m, p) be Erdős–Rényi random graph with edge probability p (constant).

Then, for each *n*, G(m, p) is asymptotically almost surely (a.a.s.) *n*-e.c., that is, $Prob[G(m, p) \text{ is } n\text{-} e.c.] \rightarrow 1 \quad (m \rightarrow \infty).$

Random graphs a.a.s. satisfy *n*-e.c.

Let G(m, p) be Erdős–Rényi random graph with edge probability p (constant).

Then, for each *n*, G(m, p) is asymptotically almost surely (a.a.s.) *n*-e.c., that is, Prob[G(m, p) is *n*-e.c.] $\rightarrow 1 \ (m \rightarrow \infty)$.

• Let $0 . <math>G_m$ with m vertices is called (p, α) -jumbled if $\forall U \subset V(G), \left| |E(G_m[U])| - p\binom{|U|}{2} \right| \le \alpha |U|$. (Thomason, 1987)

The induced subgraph of G_m induced by U

• Let $0 . <math>G_m$ with m vertices is called (p, α) -jumbled if $\forall U \subset V(G), \left| |E(G_m[U])| - p\binom{|U|}{2} \right| \le \alpha |U|$. (Thomason, 1987)

• Let $0 . <math>G_m$ with m vertices is called (p, α) -jumbled if $\forall U \subset V(G), \left| |E(G_m[U])| - p\binom{|U|}{2} \right| \le \alpha |U|$. (Thomason, 1987)

• Let $0 . <math>G_m$ with m vertices is called (p, α) -jumbled if $\forall U \subset V(G), \left| |E(G_m[U])| - p\binom{|U|}{2} \right| \le \alpha |U|$. (Thomason, 1987)

• (Thomason, 1987) Let G(m, p) be E.R. random graph.

Then, if $mp \to \infty$ and $m(1-p) \to \infty$, G(m, p) is a. a. s. $(p, O(\sqrt{mp}))$ -jumbled.

• Let $0 . <math>G_m$ with m vertices is called (p, α) -jumbled if $\forall U \subset V(G), \left| |E(G_m[U])| - p\binom{|U|}{2} \right| \le \alpha |U|$. (Thomason, 1987)

• (Thomason, 1987) Let G(m, p) be E.R. random graph.

Then, if $mp \to \infty$ and $m(1-p) \to \infty$, G(m, p) is a. a. s. $(p, O(\sqrt{mp}))$ -jumbled.

• G_m is called **pseudo-random** if G_m is $(p, O(\sqrt{mp}))$ -jumbled.

• Let $0 . <math>G_m$ with m vertices is called (p, α) -jumbled if $\forall U \subset V(G), \left| |E(G_m[U])| - p\binom{|U|}{2} \right| \le \alpha |U|$. (Thomason, 1987)

• (Thomason, 1987) Let G(m, p) be E.R. random graph.

Then, if $mp \to \infty$ and $m(1-p) \to \infty$, G(m, p) is a. a. s. $(p, O(\sqrt{mp}))$ -jumbled.

- G_m is called **pseudo-random** if G_m is $(p, O(\sqrt{mp}))$ -jumbled.
- If G_m is non-bipartite and k(m)-regular,

$$G_m$$
 is pseudo-random $\Leftrightarrow \lambda(G_m) = O(\sqrt{k(m)})$

where

 $\lambda(G_m) = \max\{|\theta| \mid \theta : \text{eigenvalue of adjacency matrix of } G_m \text{ s.t. } |\theta| \neq k(m)\}.$

n-e.c. ⊄ pseudo-random

• Cameron-Stark (2002) remarked that pseudo-random $\not\subset n$ -e.c. ($\forall n \ge 4$)

• Cameron-Stark (2002) remarked that pseudo-random $\not\subset n$ -e.c. ($\forall n \ge 4$)

Recall thet the graph G_{p^e} with vertex set \mathbb{Z}_{p^e} is defined as follows:

 $(x, y) \in E(G_{p^e}) \iff x - y = QR \mod p^e, (x - y, p) = 1.$

• Cameron-Stark (2002) remarked that pseudo-random $\not\subset n$ -e.c. ($\forall n \ge 4$)

Recall thet the graph G_{p^e} with vertex set \mathbb{Z}_{p^e} is defined as follows:

$$(x, y) \in E(G_{p^e}) \iff x - y = QR \mod p^e$$
, $(x - y, p) = 1$.

Theorem (S. 2018, Rewrite)

$$G_{p^e}$$
 is *n*-e.c. if $p^e - \{(n-2)2^{n-1} + 1\}p^{e-\frac{1}{2}} - (n^2 + n)p^{e-1} - \frac{n(n+1)}{2} > 0.$

n-e.c. ⊄ pseudo-random

• Cameron-Stark (2002) remarked that pseudo-random $\not\subset n$ -e.c. ($\forall n \ge 4$)

Recall thet the graph G_{p^e} with vertex set \mathbb{Z}_{p^e} is defined as follows:

$$(x, y) \in E(G_{p^e}) \iff x - y = QR \mod p^e$$
, $(x - y, p) = 1$.

Theorem (S. 2018, Rewrite)

$$G_{p^e}$$
 is *n*-e.c. if $p^e - \{(n-2)2^{n-1} + 1\}p^{e-\frac{1}{2}} - (n^2 + n)p^{e-1} - \frac{n(n+1)}{2} > 0.$
 G_{p^e} is $\frac{p^e - p^{e-1}}{2}$ -regular and $\lambda(G_{p^e}) = \frac{p^{e-1} - p^{\frac{e}{2}}}{2} \gg \sqrt{\frac{p^e - p^{e-1}}{2}}$ (when $e \ge 3$).

• Cameron-Stark (2002) remarked that pseudo-random $\not\subset n$ -e.c. ($\forall n \ge 4$)

Recall thet the graph G_{p^e} with vertex set \mathbb{Z}_{p^e} is defined as follows:

$$(x, y) \in E(G_{p^e}) \iff x - y = QR \mod p^e$$
, $(x - y, p) = 1$.

Theorem (S. 2018, Rewrite)

$$G_{p^{e}}$$
 is *n*-e.c. if $p^{e} - \{(n-2)2^{n-1} + 1\}p^{e-\frac{1}{2}} - (n^{2} + n)p^{e-1} - \frac{n(n+1)}{2} > 0.$
 $G_{p^{e}}$ is $\frac{p^{e}-p^{e-1}}{2}$ -regular and $\lambda(G_{p^{e}}) = \frac{p^{e-1}-p^{\frac{e}{2}}}{2} \gg \sqrt{\frac{p^{e}-p^{e-1}}{2}}$ (when $e \ge 3$).
Corollary (S. 2018)
n-e.c. $\not\subset$ pseudo-random ($\forall n \ge 1$).

Thank you for your attentions!!

Adjacency properties of graphs and related results (Shohei Satake, Kobe Univ., Japan)