Some existence of perpendicular multi-arrays

Kazuki Matsubara

Chuo Gakuin University

(joint work with Sanpei Kageyama)

$$
\begin{gathered}
\text { 2018.5.20-24 } \\
\text { JCCA2018 }
\end{gathered}
$$

Sendai International Center

BIB design, Perpemdicular array

- V is a finite set, $|V|=v$.
- $\mathcal{B}=\left\{B_{j} \mid 1 \leq j \leq b\right\}, B_{j}=\left\{v_{j h} \mid 1 \leq h \leq k\right\}$.

Elements of V are called "points"
Elements of \mathcal{B} are called "blocks"

Balanced incomplete block design $(V, \mathcal{B}),(v, k, \lambda)$-BIBD

- Every pair of points $x, y \in V$ occurs in exactly λ blocks, i.e.,

$$
\left|\left\{B_{j} \mid\{x, y\} \subset B_{j}\right\}\right|=\lambda
$$

Perpendicular array $A=\left(v_{j h}\right), b \times k$ array, $\mathrm{PA}_{\lambda}(k, v)$

- Each row has k distinct points.
- Every set of two columns contains each pair of distinct points $x, y \in V$ as a row precisely λ times, i.e.,

$$
\mid\left\{j \mid x=v_{j h_{1}}, y=v_{j h_{2}} \text { or } y=v_{j h_{1}}, x=v_{j h_{2}}\right\} \mid=\lambda
$$

for any h_{1}, h_{2} with $1 \leq h_{1}<h_{2} \leq k$.

Splitting type of combinatorial structures

- V is a finite set, $|V|=v$.
- $\mathcal{B}^{*}=\left\{B_{j}^{*} \mid 1 \leq j \leq b\right\}, B_{j}^{*}=\bigcup_{1 \leq h \leq k} B_{j h},\left|B_{j h}\right|=c$.

Elements of V are called "points"
Elements of \mathcal{B}^{*} are called "super-blocks"
$B_{j h}$'s are called "sub-blocks"
Splitting-balanced block design $\left(V, \mathcal{B}^{*}\right),(v, k \times c, \lambda)$-SBD

- Every pair of points $x, y \in V$ occurs in exactly λ super-blocks such that x and y are in "different" sub-blocks, i.e.,

$$
\left|\left\{B_{j}^{*} \mid x \in B_{j h_{1}}, y \in B_{j h_{2}}, h_{1} \neq h_{2}\right\}\right|=\lambda
$$

Perpendicular multi-array $A=\left(B_{j h}\right), \mathrm{PMA}_{\lambda}(k \times c, v)$

- In each row, $B_{j h_{1}} \cap B_{j h_{2}}=\phi\left(h_{1} \neq h_{2}\right)$.
- For any h_{1}, h_{2} with $1 \leq h_{1}<h_{2} \leq k$ and any $x, y \in V$,

$$
\mid\left\{j \mid x \in B_{j h_{1}}, y \in B_{j h_{2}} \text { or } y \in B_{j h_{1}}, x \in B_{j h_{2}}\right\} \mid=\lambda
$$

Examples

Cyclic $\mathrm{PMA}_{1}(2 \times 2,9)$

$$
\left(\begin{array}{c|c}
0,1 & 2,4 \\
1,2 & 3,5 \\
2,3 & 4,6 \\
3,4 & 5,7 \\
4,5 & 6,8 \\
5,6 & 7,0 \\
6,7 & 8,1 \\
7,8 & 0,2 \\
8,0 & 1,3
\end{array}\right)
$$

Cyclic $\mathrm{PMA}_{1}(3 \times 2,17)$
$\left(\begin{array}{c|c|c}0,13 & 3,9 & 2,12 \\ 1,14 & 4,10 & 3,13 \\ 2,15 & 5,11 & 4,14 \\ \vdots & \vdots & \vdots \\ \vdots & \vdots \\ 16,12 & 2,8 & 1,11 \\ 0,16 & 1,11 & 7,13 \\ 1,0 & 2,12 & 8,14 \\ 2,1 & 3,13 & 9,15 \\ \vdots & \vdots & \vdots \\ \vdots & \vdots \\ 16,15 & 0,10 & 6,12\end{array}\right)$

Red: Base blocks on \mathbb{Z}_{v}

Difference method

Perpendicular difference multi-array $D=\left(B_{j h}\right), \operatorname{PDMA}_{\lambda}(k \times c, v)$

- For any h_{1}, h_{2} with $1 \leq h_{1}<h_{2} \leq k$,

$$
\bigcup_{\substack{d_{j} \in B_{j h_{1}}, d_{j}^{\prime} \in B_{j h_{2}} \\ 1 \leq j \leq \lambda(v-1) /\left(2 c^{2}\right)}}\left\{ \pm\left(d_{j}-d_{j}^{\prime}\right)\right\}=\lambda\left(\mathbb{Z}_{v} \backslash\{0\}\right)
$$

- $\mathrm{PDMA}_{1}(3 \times 2,17)$:

$$
\left(\begin{array}{c|c|c}
0,13 & 3,9 & 2,12 \\
0,16 & 1,11 & 7,13
\end{array}\right)
$$

Lemma 1

The existence of a $\mathrm{PDMA}_{\lambda}(k \times c, v)$ implies the existence of a cyclic $\mathrm{PMA}_{\lambda}(k \times c, v)$.

Authentication perpendicular multi-array

M. Li, M. Liang, B. Du and J. Chen,

A construction for optimal c-splitting authentication and secrecy codes, Des. Codes Cryptogr., 2017, published online.

Additional property for the authentication PMA

- For any $x, y \in V$, we have that among all the rows of A which contain x, y in different columns, the x occurs in all columns equally often.

Theorem 2 (Li et al, 2017)

There exists an authentication $\mathrm{PMA}_{1}(3 \times 2, v)$ if and only if $v \equiv 1(\bmod$ 8) with seven possible exceptions $v \in\{9,17,41,65,113,161,185\}$.

Necessary conditions

For the existence of a $(v, k \times c, \lambda)$-SBD

- If there exists a $(v, k \times c, \lambda)$-SBD, then

$$
\begin{gather*}
b=\frac{\lambda v(v-1)}{c^{2} k(k-1)}, r=\frac{\lambda(v-1)}{c(k-1)} \tag{1}\\
b \geq \frac{v-1}{k-1} \tag{2}
\end{gather*}
$$

For the existence of a $\mathrm{PMA}_{\lambda}(k \times c, \lambda)$

- If there exists a $\mathrm{PMA}_{\lambda}(k \times c, v)$, then

$$
\begin{gather*}
b=\frac{\lambda v(v-1)}{2 c^{2}}, r=\frac{\lambda k(v-1)}{2 c} \tag{3}\\
b \geq v-1 \tag{4}
\end{gather*}
$$

$\mathrm{PMA}_{\lambda}(2 \times c, v)$

$\underline{\mathrm{PMA}_{\lambda}(2 \times c, v) \text { with } b \geq v-1}$

- $\mathrm{PMA}_{\lambda}(2 \times c, v) \Longleftrightarrow(v, 2 \times c, \lambda)$-SBD
$\underline{\mathrm{PMA}_{\lambda}(2 \times c, v) \text { with } b=v-1}$
- $\mathrm{PMA}_{\lambda}(2 \times c, v) \Longleftrightarrow(2 c, 2 \times c, c)$-SBD
\Longleftrightarrow Hadamard matrix of order 2c
$\underline{\mathrm{PMA}_{\lambda}(2 \times c, v) \text { with } b=v}$
- $\mathrm{PMA}_{1}\left(2 \times c, 2 c^{2}+1\right)$ and $\mathrm{PMA}_{2}\left(2 \times c, c^{2}+1\right)$ for any $c \geq 2$
- Near-resolvable $(2 c+1, c, t c)$-BIBD $\Longleftrightarrow \mathrm{PMA}_{t(c-1)}(2 \times c, 2 c+1)$

Theorem 3

- When $c \geq 3$ and $t \geq 1$ are both odd, no $\mathrm{PMA}_{t c}(2 \times c, 2 c)$ exists.
- For even c, a $\mathrm{PMA}_{c}(2 \times c, 2 c+1)$ exists only if $2 c+1$ is the sum of two squares.

$\mathrm{PMA}_{\lambda}(3 \times c, v)$

Necessary condition for the case of $k \geq 3$

$$
\begin{gather*}
b=\frac{\lambda v(v-1)}{2 c^{2}}, r^{\prime}=\frac{\lambda(v-1)}{2 c} \tag{5}\\
b \geq v
\end{gather*}
$$

Question

Are there $\mathrm{PMA}_{\lambda}(k \times c, v)$ with $k \geq 3$ and $b=v$?

Question

Are the conditions (3) and (4) (or (5) and (6)) sufficient for the existence of a $\mathrm{PMA}_{\lambda}(k \times c, v)$ (with $k \geq 3$)?

Lemma 4

There is no $\mathrm{PMA}_{1}(3 \times 2,9)$.

$\mathrm{PMA}_{\lambda}(3 \times 2, v)$

- $\lambda \equiv 1,3(\bmod 4) \Longrightarrow v \equiv 1(\bmod 8)$
- $\lambda \equiv 2 \quad(\bmod 4) \Longrightarrow v \equiv 1(\bmod 4)$
- $\lambda \equiv 0 \quad(\bmod 4) \Longrightarrow$ any v

Lemma 5

There exists a $\mathrm{PMA}_{4}(3 \times 2, v)$ for any $v \geq 6$.
※ The $\mathrm{PMA}_{4}(3 \times 2, v)$ for any $v \geq 6$ has been obtained as 3-pairwise additive BIB designs in the literature.

Remaining cases

- $v=17,41,65,113,161,185$ with $\lambda=1$
- $v \equiv 5(\bmod 8)$ with $\lambda=2$

SBD construction

Lemma 6

The existence of a $(v, k \times c, \lambda)$-SBD and a $\mathrm{PA}_{1}(k, k)$ implies the existence of a $\mathrm{PMA}_{\lambda}(k \times c, v)$.

Known results:

The necessary conditions (1) and (2) are also sufficient for the existence of a $(v, k \times c, \lambda)$-SBD when

- $(k, c)=(2,3)$ with the definite exception of $v=6$ and $\lambda \equiv 3(\bmod 6)$
- $(k, c)=(2,5)$ with the possible exception of $v=76$
- $(k, c)=(3,2)$
- ••

GDD construction

- V is a finite set, $|V|=v$.
- \mathcal{G} is a partition of V into subsets (called groups).
- $\mathcal{B}=\left\{B_{j} \mid 1 \leq j \leq b\right\}, B_{j}=\left\{v_{j h} \mid 1 \leq h \leq k\right\},|\mathcal{B}|=b$.

Group Divisible Design $(V, \mathcal{G}, \mathcal{B}),(v, k, \lambda)$-GDD

- Each block intersects any given group in at most one point.
- Each $x, y \in V$ from distinct groups is contained in exactly λ blocks.

PMA from GDD

$(12 t+8,3,1)-\mathrm{GDD}$ of type $12^{t} 8$

$$
\mathrm{PMA}_{1}(3 \times 2,25) \quad \Longrightarrow \mathrm{PMA}_{1}(3 \times 2,25 t+17)
$$

$$
\mathrm{PMA}_{1}(3 \times 2,17)
$$

Lemma 7

There exists a $\mathrm{PMA}_{1}(3 \times 2,25 t+17)$ for any $t \geq 3$.

Case of $\lambda=1$

Lemma 8

There exists a $\mathrm{PMA}_{1}(3 \times 2, v)$ if and only if $v \equiv 1(\bmod 8)$ with the definite exception of $v=9$.

- For $v \notin\{9,17,41,65,113,161,185\}:$ Theorem 2
- For $v=9$: non-existence by Lemma 4
- For $v=17,41$: individual examples of PDMAs

$$
\left(\begin{array}{c:c:c}
0,24 & 1,15 & 33,36 \\
0,21 & 28,33 & 2,35 \\
0,27 & 3,25 & 17,20 \\
0,1 & 22,37 & 26,28 \\
0,17 & 11,27 & 30,40
\end{array}\right) \bmod 41
$$

- For $v=113,161,185$: Lemma 7
- For $v=65$: from a $(32,3,1)$-GDD of type 8^{4}

Case of $\lambda=2$

Lemma 9

There exists a $\mathrm{PMA}_{2}(3 \times 2, v)$ if and only if $v \equiv 1(\bmod 4)$.

- For $v \equiv 1(\bmod 8):$ copies of the case of $\lambda=1$
- For $v=9, v \equiv 13,21(\bmod 24)$: from a $(v, 3 \times 2,2)$-SBD
- For $v=29$: an individual example of a PDMA

$$
\left(\begin{array}{c:c:c}
0,5 & 1,22 & 10,25 \\
0,23 & 3,6 & 8,26 \\
0,28 & 1,2 & 12,15 \\
0,28 & 18,21 & 10,20 \\
0,13 & 4,24 & 1,11 \\
0,28 & 5,13 & 1,6 \\
0,2 & 15,21 & 7,25
\end{array}\right) \bmod 29
$$

- For $v=24 t+29$ with $t \geq 1$:
from a $(12 t+14,3,1)-G \overline{D D}$ of type $6^{2 t+1} 8$

Main result

Theorem 10

The necessary condition (5) is also sufficient for the existence of a $\mathrm{PMA}_{\lambda}(3 \times 2, v)$ with the definite exception of $(v, \lambda)=(9,1)$.

- Lemmas 5, 8 and 9
- copies of the case of $\lambda=1,2,4$
- a $\mathrm{PMA}_{3}(3 \times 2,9)$

Corollary 11

There exists no authentication $\mathrm{PMA}_{1}(3 \times 2,9)$.

Future works

- Constructions of a $\mathrm{PMA}_{\lambda}(4 \times 2, v)$
- Characterizations of the $\mathrm{PMA}_{\lambda}(k \times c, v)$ with $b=v$
- The existence of a cyclic (or 1-rotational) $\mathrm{PMA}_{\lambda}(k \times c, v)$
- The existence of arrays allowed various sizes of sub-blocks

Example 12

$\mathrm{PMA}_{2}(3 \times 6,37):$
$(0,13,15,17,20,35|3,5,11,19,28,34| 9,14,22,27,32,33) \bmod 37$.

Future works

- Constructions of a $\mathrm{PMA}_{\lambda}(4 \times 2, v)$
- Characterizations of the $\mathrm{PMA}_{\lambda}(k \times c, v)$ with $b=v$
- The existence of a cyclic (or 1-rotational) $\mathrm{PMA}_{\lambda}(k \times c, v)$
- The existence of arrays allowed various sizes of sub-blocks

Example 12

$\mathrm{PMA}_{2}(3 \times 6,37):$
$(0,13,15,17,20,35|3,5,11,19,28,34| 9,14,22,27,32,33) \bmod 37$.

Thank you for your attention

