Some existence of perpendicular multi-arrays

Kazuki Matsubara

Chuo Gakuin University

(joint work with Sanpei Kageyama)

2018.5.20-24 JCCA2018 Sendai International Center

BIB design, Perpemdicular array

• V is a finite set, |V| = v.

•
$$\mathcal{B} = \{B_j \mid 1 \le j \le b\}, B_j = \{v_{jh} \mid 1 \le h \le k\}.$$

Elements of V are called "points" Elements of \mathcal{B} are called "blocks"

Balanced incomplete block design (V, \mathcal{B}) , (v, k, λ) -BIBD

• Every pair of points $x, y \in V$ occurs in exactly λ blocks, i.e., $|\{B_j \mid \{x, y\} \subset B_j\}| = \lambda.$

Perpendicular array $A = (v_{jh})$, $b \times k$ array, $\mathsf{PA}_{\lambda}(k, v)$

- Each row has k distinct points.
- Every set of two columns contains each pair of distinct points $x, y \in V$ as a row precisely λ times, i.e.,

$$\begin{split} |\{j \mid x = v_{jh_1}, y = v_{jh_2} \text{ or } y = v_{jh_1}, x = v_{jh_2}\}| = \lambda, \\ \text{for any } h_1, h_2 \text{ with } 1 \leq h_1 < h_2 \leq k. \end{split}$$

Splitting type of combinatorial structures

• V is a finite set, |V| = v.

•
$$\mathcal{B}^* = \{B_j^* \mid 1 \le j \le b\}, B_j^* = \bigcup_{1 \le h \le k} B_{jh}, |B_{jh}| = c.$$

Elements of V are called "points" Elements of \mathcal{B}^* are called "super-blocks" B_{jh} 's are called "sub-blocks"

Splitting-balanced block design (V, \mathcal{B}^*) , $(v, k \times c, \lambda)$ -SBD

• Every pair of points $x, y \in V$ occurs in exactly λ super-blocks such that x and y are in "different" sub-blocks, i.e., $|\{B_j^* \mid x \in B_{jh_1}, y \in B_{jh_2}, h_1 \neq h_2\}| = \lambda.$

Perpendicular multi-array $A = (B_{jh})$, $\mathsf{PMA}_{\lambda}(k \times c, v)$

• In each row, $B_{jh_1} \cap B_{jh_2} = \phi \ (h_1 \neq h_2).$

• For any
$$h_1, h_2$$
 with $1 \le h_1 < h_2 \le k$ and any $x, y \in V$,
 $|\{j \mid x \in B_{jh_1}, y \in B_{jh_2} \text{ or } y \in B_{jh_1}, x \in B_{jh_2}\}| = \lambda.$

Examples

Lyclic PIVIA $_1(2 \times 2, 9)$	Cyclic PMA ₁ $(3 \times 2, 17)$
	(0,13 3,9 2,12
$(0,1 \mid 2,4)$	$1,14 \mid 4,10 \mid 3,13$
1,2 3,5	$2,15 \mid 5,11 \mid 4,14$
$2,3 \mid 4,6$	
$3,4 \mid 5,7$	
45 68	$16, 12 \mid 2, 8 \mid 1, 11$
-1,0 $0,0$ $5,0$ $5,0$	0,16 $1,11$ $7,13$
5,6 7,0	1.0 2.12 8.14
6,7 8,1	21 + 312 + 0.15
$7,8 \mid 0,2$	
(8,0 1,3)	
	$16,15 \mid 0,10 \mid 6,12$

Red : Base blocks on \mathbb{Z}_v

10

(0, 0)

3

- ∢ ⊢⊒ →

-

- ∢ ∃ ⊳

Difference method

Perpendicular difference multi-array $D = (B_{jh})$, PDMA_{λ} $(k \times c, v)$

• For any h_1, h_2 with $1 \le h_1 < h_2 \le k$,

$$\bigcup_{\substack{d_j \in B_{jh_1}, d'_j \in B_{jh_2}\\ 1 \le j \le \lambda(v-1)/(2c^2)}} \{ \pm (d_j - d'_j) \} = \lambda(\mathbb{Z}_v \setminus \{0\}).$$

• PDMA₁(3 × 2, 17):

$$\begin{pmatrix}
0, 13 & | & 3, 9 & | & 2, 12 \\
0, 16 & | & 1, 11 & | & 7, 13
\end{pmatrix}$$

Lemma 1

The existence of a PDMA_{λ}($k \times c, v$) implies the existence of a cyclic PMA_{λ}($k \times c, v$).

▲ @ ▶ < ∃ ▶</p>

M. Li, M. Liang, B. Du and J. Chen,

A construction for optimal *c*-splitting authentication and secrecy codes, *Des. Codes Cryptogr.*, 2017, published online.

Additional property for the authentication PMA

• For any $x, y \in V$, we have that among all the rows of A which contain x, y in different columns, the x occurs in all columns equally often.

Theorem 2 (Li et al, 2017)

There exists an authentication $PMA_1(3 \times 2, v)$ if and only if $v \equiv 1 \pmod{8}$ with seven possible exceptions $v \in \{9, 17, 41, 65, 113, 161, 185\}$.

Necessary conditions

For the existence of a $(v,k\times c,\lambda)\text{-}\mathsf{SBD}$

 $\bullet~$ If there exists a $(v,k\times c,\lambda)\text{-}\mathsf{SBD},$ then

$$b = \frac{\lambda v(v-1)}{c^2 k(k-1)}, \ r = \frac{\lambda(v-1)}{c(k-1)},$$
(1)
$$b \ge \frac{v-1}{k-1}.$$
(2)

For the existence of a $\mathsf{PMA}_\lambda(k\times c,\lambda)$

• If there exists a $\mathsf{PMA}_{\lambda}(k \times c, v)$, then

$$b = \frac{\lambda v(v-1)}{2c^2}, \ r = \frac{\lambda k(v-1)}{2c}, \tag{3}$$

$$b \ge v - 1. \tag{4}$$

$\mathsf{PMA}_{\lambda}(2 \times c, v)$

$$\mathsf{PMA}_{\lambda}(2 \times c, v)$$
 with $b \ge v - 1$

• $\mathsf{PMA}_{\lambda}(2 \times c, v) \iff (v, 2 \times c, \lambda)\text{-SBD}$

$$\begin{array}{l} \mathsf{PMA}_{\lambda}(2 \times c, v) \text{ with } b = v - 1 \\ \bullet \ \mathsf{PMA}_{\lambda}(2 \times c, v) \iff (2c, 2 \times c, c) \text{-}\mathsf{SBD} \\ \iff \ \mathsf{Hadamard \ matrix \ of \ order \ 2c} \end{array}$$

 $\mathsf{PMA}_{\lambda}(2 \times c, v)$ with b = v

- $\mathsf{PMA}_1(2 \times c, 2c^2 + 1)$ and $\mathsf{PMA}_2(2 \times c, c^2 + 1)$ for any $c \ge 2$
- Near-resolvable (2c+1, c, tc)-BIBD \iff PMA $_{t(c-1)}(2 \times c, 2c+1)$

Theorem 3

• When $c \ge 3$ and $t \ge 1$ are both odd, no $\mathsf{PMA}_{tc}(2 \times c, 2c)$ exists.

• For even c, a $\mathsf{PMA}_c(2 \times c, 2c+1)$ exists only if 2c+1 is the sum of two squares.

$\mathsf{PMA}_{\lambda}(3 \times c, v)$

Necessary condition for the case of $k\geq 3$

$$b = \frac{\lambda v(v-1)}{2c^2}, \ r' = \frac{\lambda(v-1)}{2c},$$

$$b \ge v.$$
(5)
(6)

Question

Are there $\mathsf{PMA}_{\lambda}(k \times c, v)$ with $k \ge 3$ and b = v?

Question

Are the conditions (3) and (4) (or (5) and (6)) sufficient for the existence of a $PMA_{\lambda}(k \times c, v)$ (with $k \ge 3$)?

Lemma 4

There is no $\mathsf{PMA}_1(3 \times 2, 9)$.

$\mathsf{PMA}_{\lambda}(3 \times 2, v)$

•
$$\lambda \equiv 1,3 \pmod{4} \implies v \equiv 1 \pmod{8}$$

•
$$\lambda \equiv 2 \pmod{4} \implies v \equiv 1 \pmod{4}$$

•
$$\lambda \equiv 0 \pmod{4} \implies \text{any } v$$

Lemma 5

There exists a $\mathsf{PMA}_4(3 \times 2, v)$ for any $v \ge 6$.

% The PMA₄ $(3 \times 2, v)$ for any $v \ge 6$ has been obtained as 3-pairwise additive BIB designs in the literature.

Remaining cases

•
$$v = 17, 41, 65, 113, 161, 185$$
 with $\lambda = 1$

•
$$v \equiv 5 \pmod{8}$$
 with $\lambda = 2$

Lemma 6

The existence of a $(v, k \times c, \lambda)$ -SBD and a PA₁(k, k) implies the existence of a PMA_{λ} $(k \times c, v)$.

Known results:

The necessary conditions (1) and (2) are also sufficient for the existence of a $(v,k\times c,\lambda)\text{-SBD}$ when

- (k,c)=(2,3) with the definite exception of v=6 and $\lambda\equiv 3 \mbox{ (mod }6)$
- (k,c) = (2,5) with the possible exception of v = 76
- (k,c) = (3,2)
- • •

GDD construction

- V is a finite set, |V| = v.
- \mathcal{G} is a partition of V into subsets (called groups).

•
$$\mathcal{B} = \{B_j \mid 1 \le j \le b\}, B_j = \{v_{jh} \mid 1 \le h \le k\}, |\mathcal{B}| = b.$$

Group Divisible Design $(V, \mathcal{G}, \mathcal{B})$, (v, k, λ) -GDD

- Each block intersects any given group in at most one point.
- Each $x, y \in V$ from distinct groups is contained in exactly λ blocks.

PMA from GDD

$$\begin{array}{rcl} (12t+8,3,1)\text{-}\mathsf{GDD} \text{ of type } 12^t8 \\ \mathsf{PMA}_1(3\times2,25) & \Longrightarrow & \mathsf{PMA}_1(3\times2,25t+17) \\ \mathsf{PMA}_1(3\times2,17) & \end{array}$$

Lemma 7

There exists a $\mathsf{PMA}_1(3 \times 2, 25t + 17)$ for any $t \ge 3$.

Lemma 8

There exists a $PMA_1(3 \times 2, v)$ if and only if $v \equiv 1 \pmod{8}$ with the definite exception of v = 9.

- For $v \notin \{9, 17, 41, 65, 113, 161, 185\}$: Theorem 2
- For v = 9 : non-existence by Lemma 4
- For v = 17, 41: individual examples of PDMAs

(0, 24)	1, 15	33, 36	/		
0, 21	28, 33	2,35			
0,27	3,25	17, 20		mod	41
0,1	22, 37	26, 28			
(0, 17)	11, 27	30, 40	Ϊ		

• For v = 113, 161, 185 : Lemma 7

• For v = 65 : from a (32, 3, 1)-GDD of type 8^4

Lemma 9

There exists a $PMA_2(3 \times 2, v)$ if and only if $v \equiv 1 \pmod{4}$.

- For $v \equiv 1 \pmod{8}$: copies of the case of $\lambda = 1$
- For $v = 9, v \equiv 13, 21 \pmod{24}$: from a $(v, 3 \times 2, 2)$ -SBD
- For v = 29 : an individual example of a PDMA

(0, 5	1,22	10, 25		
	0, 23	3, 6	8,26		
	0, 28	1,2	12, 15		
	0, 28	18, 21	10, 20		mod 29
	0, 13	4,24	1, 11		- -
	0, 28	5, 13	1, 6		
ĺ	0,2	15, 21	7, 25)	

• For v = 24t + 29 with $t \ge 1$: from a (12t + 14, 3, 1)-GDD of type $6^{2t+1}8$

Theorem 10

The necessary condition (5) is also sufficient for the existence of a $PMA_{\lambda}(3 \times 2, v)$ with the definite exception of $(v, \lambda) = (9, 1)$.

- Lemmas 5, 8 and 9
- copies of the case of $\lambda=1,2,4$
- a $\mathsf{PMA}_3(3 \times 2, 9)$

Corollary 11

There exists no authentication $\mathsf{PMA}_1(3 \times 2, 9)$.

Future works

- Constructions of a $\mathsf{PMA}_{\lambda}(4 \times 2, v)$
- Characterizations of the $\mathsf{PMA}_{\lambda}(k \times c, v)$ with b = v
- The existence of a cyclic (or 1-rotational) $\mathsf{PMA}_\lambda(k imes c, v)$
- The existence of arrays allowed various sizes of sub-blocks

Example 12

 $\begin{array}{l} \mathsf{PMA}_2(3\times 6,37) \text{:} \\ (0,13,15,17,20,35 \mid 3,5,11,19,28,34 \mid 9,14,22,27,32,33) \mod 37. \end{array}$

- Constructions of a $\mathsf{PMA}_{\lambda}(4 \times 2, v)$
- Characterizations of the $\mathsf{PMA}_{\lambda}(k \times c, v)$ with b = v
- The existence of a cyclic (or 1-rotational) $\mathsf{PMA}_\lambda(k imes c, v)$
- The existence of arrays allowed various sizes of sub-blocks

Example 12

 $\begin{array}{l} \mathsf{PMA}_2(3\times 6,37) \text{:} \\ (0,13,15,17,20,35 \mid 3,5,11,19,28,34 \mid 9,14,22,27,32,33) \mod 37. \end{array}$

Thank you for your attention