Disjoint Cycles and Equitable Colorings in Graphs

H. Kierstead A. Kostochka T. Molla M. Santana *E. Yeager

University of British Columbia, Vancouver Canada
Email: elyse@math.ubc.ca

Japanese Conference on Combinatorics and its Applications Sendai, Japan 20 May 2018

Special thanks to the organizing committee.

Coauthors

Hal Kierstead
Arizona State University

Coauthors

Hal Kierstead
Arizona State University

Alexandr Kostochka
University of Illinois at Urbana-Champaign

Coauthors

Hal Kierstead
Arizona State University

Theodore Molla
Southern Florida University

Alexandr Kostochka
University of Illinois at Urbana-Champaign

Coauthors

Hal Kierstead
Arizona State University

Theodore Molla
Southern Florida University

Alexandr Kostochka
University of Illinois at Urbana-Champaign

Michael Santana Grand Valley State University

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963
If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963
If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963
If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$: familiar

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$: familiar
- Sharpness:

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$: familiar
- Sharpness:
k is odd

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$: familiar
- Sharpness:
k is odd

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$: familiar
- Sharpness:
k is odd

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Examples:

- $k=1$: familiar
- Sharpness:
k is odd

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2 k$?

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2 k$?

Observation: $k=1$

If G is a graph where all but one vertex has degree at least 2 , then G contains a cycle.

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2 k$?

Observation: $k=1$

If G is a graph where all but one vertex has degree at least 2 , then G contains a cycle.

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2 k$?

Observation: $k=1$

If G is a graph where all but one vertex has degree at least 2 , then G contains a cycle.

Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2 k$?

Observation: $k=1$

If G is a graph where all but one vertex has degree at least 2 , then G contains a cycle.

Dirac-Erdős, 1963

Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq k^{2}+2 k-4, k \geq 3$, then G contains k disjoint cycles.

Dirac-Erdős, 1963

Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq k^{2}+2 k-4, k \geq 3$, then G contains k disjoint cycles.

Dirac-Erdős, 1963

Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq k^{2}+2 k-4, k \geq 3$, then G contains k disjoint cycles.
"Probably not best possible"

Dirac-Erdős, 1963

Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq k^{2}+2 k-4, k \geq 3$, then G contains k disjoint cycles.
"Probably not best possible"

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

high degree: $3 k$

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

high degree: $3 k \quad$ low degree: k

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Kierstead-Kostochka-McConvey, 2018 (link)
Let $k \geq 2$ be an integer and G be a graph with $|G| \geq 19 k$ and $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$. Then G contains k disjoint cycles.

Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Kierstead-Kostochka-McConvey, 2018 (link)

Let $k \geq 2$ be an integer and G be a graph with $|G| \geq 19 k$ and $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$. Then G contains k disjoint cycles.

Open

Characterize graphs G with $V_{\geq 2 k}-V_{\leq 2 k-2} \geq 2 k$ and no k disjoint cycles.

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

$$
\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}
$$

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

$$
\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}
$$

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.
$\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}$

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.
$\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}$

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
Low degree vertices OK as long as they're in a clique

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles.

$$
\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}
$$

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
Low degree vertices OK as long as they're in a clique With a little work, implies Dirac-Erdős

Enomoto, Wang

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Proof (Enomoto)

Enomoto, Wang

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
- $(k-1)$ disjoint cycles

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
- $(k-1)$ disjoint cycles
- Remaining graph at least 3 vertices

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
- $(k-1)$ disjoint cycles
- Remaining graph at least 3 vertices
- Minimize number of vertices in cycles

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
- $(k-1)$ disjoint cycles
- Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
- Maximize longest path in remainder

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Sharpness:

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Sharpness:

$3 k$ vertices

Enomoto, Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Sharpness:

$3 k$ vertices

$\alpha(G)$ large

Kierstead-Kostochka-Yeager, 2017 (link)

Independence Number:
Observation:
$\alpha(G) \geq n-2 k+1 \Rightarrow$ no k cycles

Kierstead-Kostochka-Yeager, 2017 (link)

Independence Number:
Observation:
$\alpha(G) \geq n-2 k+1 \Rightarrow$ no k cycles
Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Kierstead-Kostochka-Yeager, 2017 (link)

Independence Number:
Observation:
$\alpha(G) \geq n-2 k+1 \Rightarrow$ no k cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

Kierstead-Kostochka-Yeager, 2017

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

Kierstead-Kostochka-Yeager, 2017

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

$$
n \geq 3 k+1
$$

Kierstead-Kostochka-Yeager, 2017

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

$$
k=1
$$

Kierstead-Kostochka-Yeager, 2017

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

$$
k=2:
$$

Kierstead-Kostochka-Yeager, 2017

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

$$
k=3:
$$

Kierstead-Kostochka-Yeager, 2017

Kierstead-Kostochka-Yeager, 2017 (link)

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

$$
\sigma_{2}=4 k-4
$$

$2 r-2$

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Extending Enomoto-Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

$$
\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}
$$

Extending Enomoto-Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.

$$
\begin{aligned}
& \sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\} \\
& \sigma_{t}(G)=\min \left\{\sum_{v \in I} d(V) \quad: \quad \mathrm{I} \text { is an independent set of size } t\right\}
\end{aligned}
$$

Extending Enomoto-Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.
$\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}$
$\sigma_{t}(G)=\min \left\{\sum_{v \in I} d(V) \quad: \quad I\right.$ is an independent set of size $\left.t\right\}$
Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

Extending Enomoto-Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.
$\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}$
$\sigma_{t}(G)=\min \left\{\sum_{v \in I} d(V) \quad: \quad I\right.$ is an independent set of size $\left.t\right\}$
Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

$$
\begin{aligned}
& t=1: \text { Corrádi-Hajnal } \\
& t=2: \text { Enomoto-Wang }
\end{aligned}
$$

Extending Enomoto-Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.
$\sigma_{2}(G):=\min \{d(x)+d(y): x y \notin E(G)\}$
$\sigma_{t}(G)=\min \left\{\sum_{v \in I} d(V) \quad: \quad I\right.$ is an independent set of size $\left.t\right\}$
Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.
$t=1$: Corrádi-Hajnal
$t=2$: Enomoto-Wang
$t=3:$ Fujita, Matsumura, Tsugaki, Yamashita 2006 (link)
$t=4$: proved in paper as evidence for conjecture

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Proof

In an edge-maximal counterexample, choose $k-1$ disjoint cycles such that

- number of vertices in cycles is minimal, and
- number of connected components in remaining graph is minimal

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Degree-sum condition is sharp:

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Degree-sum condition is sharp:

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)
Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Degree-sum condition is sharp:

Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Open

What is the best possible bound on $|G|$ in the Ma-Yan Theorem?
Can we characterize graphs G with $\sigma_{t}(G) \geq 2 k t-t+1$ but no k disjoint cycles?

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?

Observation:
G is $(2 k-1)$ connected

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?

Observation:
G is $(2 k-1)$ connected $\Rightarrow \delta(G) \geq 2 k-1$

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?

Observation:
G is $(2 k-1)$ connected $\Rightarrow \delta(G) \geq 2 k-1 \Rightarrow \sigma_{2}(G) \geq 4 k-2$

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?

Observation:
G is $(2 k-1)$ connected $\Rightarrow \delta(G) \geq 2 k-1 \Rightarrow \sigma_{2}(G) \geq 4 k-2$ KKY: Holds for $\sigma_{2}(G) \geq 4 k-3$

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?
Answer to Dirac's Question for Simple Graphs (KKY 2017)
Let $k \geq 2$. Every graph G with $(i)|G| \geq 3 k$ and (ii) $\delta(G) \geq 2 k-1$ contains k disjoint cycles if and only if

- if k is odd and $|G|=3 k$, then $G \neq 2 K_{k} \vee \overline{K_{k}}$, and
- $\alpha(G) \leq|G|-2 k$, and
- if $k=2$ then G is not a wheel.

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected graphs do not have k disjoint cycles?

Answer to Dirac's Question for Simple Graphs (KKY 2017)

Let $k \geq 2$. Every graph G with (i) $|G| \geq 3 k$ and (ii) $\delta(G) \geq 2 k-1$ contains k disjoint cycles if and only if

- if k is odd and $|G|=3 k$, then $G \neq 2 K_{k} \vee \overline{K_{k}}$, and
- $\alpha(G) \leq|G|-2 k$, and
- if $k=2$ then G is not a wheel.

Further:

characterization for multigraphs

Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1-vertex cycles

Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1 -vertex cycles

Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1-vertex cycles
- Take as many 2 -vertex cycles as possible (maximum matching)

Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1-vertex cycles
- Take as many 2 -vertex cycles as possible (maximum matching)

Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1-vertex cycles
- Take as many 2 -vertex cycles as possible (maximum matching)
- What's left is a simple graph

$(2 k-1)$-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs: Kierstead-Kostochka-Yeager 2015 (link)
Let $k \geq 2$ and $n \geq k$. Let G be an n-vertex graph with simple degree at least $2 k-1$ and no loops. Let F be the simple graph induced by the strong edgs of $G, \alpha^{\prime}=\alpha^{\prime}(F)$, and $k^{\prime}=k-\alpha^{\prime}$. Then G does not contain k disjoint cycles if and only if one of the following holds:

- $n+\alpha^{\prime}<3 k$;
- $|F|=2 \alpha^{\prime}$ (i.e., F has a perfect matching) and either (i) k^{\prime} is odd and $G-F=Y_{k^{\prime}, k^{\prime}}$, or (ii) $k^{\prime}=2<k$ and $G-F$ is a wheel with 5 spokes;
- G is extremal and either (i) some big set is not incident to any strong edge, or (ii) for some two distinct big sets l_{j} and $I_{j^{\prime}}$, all strong edges intersecting $I_{j} \cup I_{j^{\prime}}$ have a common vertex outside of $I_{j} \cup I_{j^{\prime}}$;
- $n=2 \alpha^{\prime}+3 k^{\prime}, k^{\prime}$ is odd, and F has a superstar $S=\left\{v_{0}, \ldots, v_{s}\right\}$ with center v_{0} such that either (i) $G-\left(F-S+v_{0}\right)=Y_{k^{\prime}+1, k^{\prime}}$, or (ii) $s=2, v_{1} v_{2} \in E(G)$, $G-F=Y_{k^{\prime}-1, k^{\prime}}$ and G has no edges between $\left\{v_{1}, v_{2}\right\}$ and the set X_{0} in $G-F$;
- $k=2$ and G is a wheel, where some spokes could be strong edges;
- $k^{\prime}=2,|F|=2 \alpha^{\prime}+1=n-5$, and $G-F=C_{5}$.
k^{\prime} odd, F has a perfect matching

Example: $k=8, \alpha^{\prime}=3, k^{\prime}=5$.

Big independent set, incident to no multiple edges

Wheel, with possibly some spokes multiple

Example: $k=2$

Dirac: $(2 k-1)$-connected without k disjoint cycles

$$
\begin{aligned}
& \text { Dirac, } 1963 \text { (link) } \\
& \text { What }(2 k-1) \text {-connected multigraphs do not have } k \text { disjoint cycles? }
\end{aligned}
$$

Kierstead-Kostochka-Yeager 2015 (link)

Characterization of multigraphs without k disjoint cycles that have minimum simple degree at least $2 k-1$. That is, the underlying simple graph \underline{G} has $\delta(\underline{G}) \geq 2 k-1$.

Dirac: $(2 k-1)$-connected without k disjoint cycles

$$
\begin{aligned}
& \text { Dirac, } 1963 \text { (link) } \\
& \text { What }(2 k-1) \text {-connected multigraphs do not have } k \text { disjoint cycles? }
\end{aligned}
$$

Kierstead-Kostochka-Yeager 2015 (link)

Characterization of multigraphs without k disjoint cycles that have minimum simple degree at least $2 k-1$. That is, the underlying simple graph \underline{G} has $\delta(\underline{G}) \geq 2 k-1$.

Kierstead-Kostochka-Molla-Yager 2018+ (link)

Characterization of multigraphs without k disjoint cycles that have minimum simple degree sum of nonadjacent vertices at least $4 k-3$. That is, the underlying simple graph \underline{G} has $\sigma_{2}(\underline{G}) \geq 4 k-3$.

Dirac: $(2 k-1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2 k-1)$-connected multigraphs do not have k disjoint cycles?

Kierstead-Kostochka-Yeager 2015 (link)

Characterization of multigraphs without k disjoint cycles that have minimum simple degree at least $2 k-1$. That is, the underlying simple graph \underline{G} has $\delta(\underline{G}) \geq 2 k-1$.

Kierstead-Kostochka-Molla-Yager 2018+ (link)

Characterization of multigraphs without k disjoint cycles that have minimum simple degree sum of nonadjacent vertices at least $4 k-3$. That is, the underlying simple graph \underline{G} has $\sigma_{2}(\underline{G}) \geq 4 k-3$.

Open

Do the other results in this talk generalize nicely to multigraphs?

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Neighborhood Union

Faudree-Gould, 2005 (link)
If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Neighborhood Union

Faudree-Gould, 2005 (link)
If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Neighborhood Union

Faudree-Gould, 2005 (link)
If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Neighborhood Union

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Neighborhood Union

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Neither stronger nor weaker than Corrádi-Hajnal.

- If $\delta(G)=2 k$, then $\min _{x y \notin E(G)}\{|N(x) \cup N(y)|\} \geq 2 k$.
- If $|N(x) \cup N(y)| \geq 3 k$, then $\delta(G) \geq 0$.

Neighborhood Union

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Proof

In an edge-maximal counterexample, choose $k-1$ disjoint cycles such that

- number of vertices in cycles is minimal, and
- number of connected components in remaining graph is minimal

Neighborhood Union

Faudree-Gould, 2005 (link)
If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Sharpness:

$K_{3 k-4}$

K_{5}

Gould-Hirohata-Horn, 2013

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)
Let G be a graph on $n>30 k$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 2 k+1$. Then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)
Let G be a graph on $n>30 k$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 2 k+1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \geq 2 k+1$:

$$
k=2
$$

Gould-Hirohata-Horn, 2013

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)
Let G be a graph on $n>30 k$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 2 k+1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \geq 2 k+1$:

$$
\begin{aligned}
& k=2 \\
& |N(x) \cup N(y)| \geq 4=2 k
\end{aligned}
$$

Gould-Hirohata-Horn, 2013

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)
Let G be a graph on $n>30 k$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 2 k+1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \geq 2 k+1$:

$$
\begin{aligned}
& k=2 \\
& |N(x) \cup N(y)| \geq 4=2 k
\end{aligned}
$$

No two disjoint cycles

Gould-Hirohata-Horn, 2013

Faudree-Gould, 2005 (link)

If G has $n \geq 3 k$ vertices and $|N(x) \cup N(y)| \geq 3 k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG'05)
Let G be a graph on $n>30 k$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 2 k+1$. Then G contains k disjoint cycles.

Open:
Perhaps $n>30 k$ is not best possible-can be reduced to $4 k$?

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Finkel, 2008

Posed by Pósa, 1961
Finkel, 2008 (link)
If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.

Finkel, 2008

Posed by Pósa, 1961
Finkel, 2008 (link)
If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.
$k=1$:

Finkel, 2008

Posed by Pósa, 1961
Finkel, 2008 (link)
If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.
$k=1$:

Finkel, 2008

Posed by Pósa, 1961
Finkel, 2008 (link)
If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.
$k=1$:

Finkel, 2008

Posed by Pósa, 1961
Finkel, 2008 (link)
If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.

Sharpness:

$$
n-3 k+1
$$

Finkel, 2008

Posed by Pósa, 1961
Finkel, 2008 (link)
If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.

Sharpness:

Finkel, 2008

Posed by Pósa, 1961

Finkel, 2008 (link)

If G is a graph on $n \geq 4 k$ vertices with $\delta(G) \geq 3 k$, then G contains k disjoint chorded cycles.

Proof (2 pages!)
In an edge-maximal counterexample, choose $k-1$ disjoint cycles such that

- number of vertices in cycles is minimal, and
- longest path in the remaining graph is maximal

Chorded + Unchorded Cycles

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.
$s=0:$ Corrádi-Hajnal
$r=0$: Finkel

Chorded + Unchorded Cycles

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)
If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010 (link)
Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Chorded + Unchorded Cycles

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)
If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010 (link)
Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Sharpness:

Chorded + Unchorded Cycles

Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)
If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010 (link)
Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Sharpness:

Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \geq 4 s$ vertices. If $\sigma_{2}(G) \geq 6 s-1$, then G contains s disjoint chorded cycles.

Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \geq 4 s$ vertices. If $\sigma_{2}(G) \geq 6 s-1$, then G contains s disjoint chorded cycles.

Molla-Santana-Yeager, 2017 (link)

For $s \geq 2$, let G be a graph $n \geq 4 s$ vertices. If $\sigma_{2}(G) \geq 6 s-2$, then G does not contain s disjoint chorded cycles if and only if $G \in\left\{K_{3 s-1, n-3 s+1}, K_{3 s-2,3 s-2,1}\right\}$.

Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \geq 4 s$ vertices. If $\sigma_{2}(G) \geq 6 s-1$, then G contains s disjoint chorded cycles.

Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)
Corollary: If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.

Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)

Corollary: If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.

Molla-Santana-Yeager, 2018+

Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\delta(G) \geq 2 r+3 s-1$, then G fails to contain a collection of $r+s$ disjoint cycles, s of them chorded, if and only if G is one of the following:

$$
n-2 r-3 s+1
$$

Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)

Corollary: If G is a graph on $n \geq 3 r+4 s$ vertices with $\delta(G) \geq 2 r+3 s$, then G contains $r+s$ cycles, s of them chorded.

Molla-Santana-Yeager, 2018+

Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\delta(G) \geq 2 r+3 s-1$, then G fails to contain a collection of $r+s$ disjoint cycles, s of them chorded, if and only if G is one of the following:
$s=1$:

Chorded + Unchorded Cycles: Open

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r+s \geq 1$, and let G be a graph on $n \geq 3 r+4 s$ vertices. If $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ disjoint cycles, s of them chorded cycles.

Molla-Santana-Yeager, 2017 (link)

For $s \geq 2$, let G be a graph $n \geq 4 s$ vertices. If $\sigma_{2}(G) \geq 6 s-2$, then G does not contain s disjoint chorded cycles if and only if $G \in\left\{K_{3 k-1, n-3 k+1}, K_{3 k-2,3 k-2,1}\right\}$.

Open

We know what happens if $\sigma_{2}(G) \geq 6 s-2$; what if $\sigma_{2}(G) \geq 6 s-3$?

Degree-sum condition: chorded?

Ma, Yan 2018+ (link)
Let G be a graph with $|G| \geq(2 t+1) k$. If $\sigma_{t}(G) \geq 2 k t-t+1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Open
Is there a chorded-cycles analogue to the Ma-Yan Theorem?

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Neighborhood-Union Conditions

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least $3 r+4 s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 3 r+4 s+1$. Then G contains $r+s$ disjoint cycles, s of them chorded.

Neighborhood-Union Conditions

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least $3 r+4 s$ vertices such that for any nonadjacent $x, y \in V(G)$,
$|N(x) \cup N(y)| \geq 3 r+4 s+1$. Then G contains $r+s$ disjoint cycles, s of them chorded.

Sharpness $(r=0)$:

$K_{2 s+3}$

$K_{2 s-1}$

Neighborhood-Union Conditions

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least $3 r+4 s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 3 r+4 s+1$. Then G contains $r+s$ disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013 (link)

Let G be a graph on at least $4 s$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 4 s+1$. Then G contains s disjoint chorded cycles.

Neighborhood-Union Conditions

Qiao, 2012 (link)

Let r, s be nonnegative integers, and let G be a graph on at least $3 r+4 s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 3 r+4 s+1$. Then G contains $r+s$ disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013 (link)

Let G be a graph on at least $4 s$ vertices such that for any nonadjacent $x, y \in V(G),|N(x) \cup N(y)| \geq 4 s+1$. Then G contains s disjoint chorded cycles.

Open:

Can this be improved for large n, like for (not-necessarily-chorded) cycles?

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Multiply Chorded Cycles

We define $f(c)$ to be the number of chords in K_{c+1}, viewed as a cycle. That is, $f(c)=\frac{(c+1)(c-2)}{2}$.

$f(2)=0$

$f(3)=2$

$f(4)=5$

Multiply Chorded Cycles

We define $f(c)$ to be the number of chords in K_{c+1}, viewed as a cycle. That is, $f(c)=\frac{(c+1)(c-2)}{2}$.

Conjecture: Gould-Horn-Magnant, 2014
If $|G| \geq k(c+1)$ and $\delta(G) \geq c k$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Multiply Chorded Cycles

We define $f(c)$ to be the number of chords in K_{c+1}, viewed as a cycle. That is, $f(c)=\frac{(c+1)(c-2)}{2}$.

Conjecture: Gould-Horn-Magnant, 2014

If $|G| \geq k(c+1)$ and $\delta(G) \geq c k$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

If $c=2$, then $f(c)=0$, so the conjecture states:
If $|G| \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles

Multiply Chorded Cycles

We define $f(c)$ to be the number of chords in K_{c+1}, viewed as a cycle. That is, $f(c)=\frac{(c+1)(c-2)}{2}$.

Conjecture: Gould-Horn-Magnant, 2014

If $|G| \geq k(c+1)$ and $\delta(G) \geq c k$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

If $c=2$, then $f(c)=0$, so the conjecture states:
If $|G| \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles
Corrádi-Hajnal

Multiply Chorded Cycles

Conjecture: (GHM 2014)
If $|G| \geq k(c+1)$ and $\delta(G) \geq c k$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Multiply Chorded Cycles

Conjecture: (GHM 2014)

If $|G| \geq k(c+1)$ and $\delta(G) \geq c k$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

If $c=3$, then $f(c)=2$, so the conjecture states:
If $|G| \geq 4 k$ and $\delta(G) \geq 3 k$, then G contains k disjoint cycles, each with at least 2 chords.

Multiply Chorded Cycles

Conjecture: (GHM 2014)
If $|G| \geq k(c+1)$ and $\delta(G) \geq c k$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

If $c=3$, then $f(c)=2$, so the conjecture states:
If $|G| \geq 4 k$ and $\delta(G) \geq 3 k$, then G contains k disjoint cycles, each with at least 2 chords.

Qiao-Zhang, 2010 (link)

Let G be a graph on $n \geq 4 k$ vertices with $\delta(G) \geq\lfloor 7 k / 2\rfloor$. Then G contains k disjoint, doubly chorded cycles.

Gould-Hirohata-Horn, 2015 (link)

If G is a graph on $n \geq 6 k$ vertices with $\delta(G) \geq 3 k$, then G contains k vertex-disjoint doubly chorded cycles.

Multiply Chorded Cycles

Conjecture: (GHM 2014)

If $|G| \geq k(c+1)$ and $\delta(G) \geq k c$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Chiba-Lichiardopol, 2017 (link)

Let k and c be integers, $c \geq 2, k \geq 1$.
If G is a graph with $\delta(G) \geq k(c+1)-1$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Multiply Chorded Cycles

Conjecture: (GHM 2014)

If $|G| \geq k(c+1)$ and $\delta(G) \geq k c$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Chiba-Lichiardopol, 2017 (link)

Let k and c be integers, $c \geq 2, k \geq 1$.
If G is a graph with $\delta(G) \geq k(c+1)-1$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Open

Is $\delta(G) \geq k(c+1)-1$ the most fitting bound?

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.

Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.

Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.

Equitable Coloring

Definition

An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.

Outline

(1) Disjoint Cycles

- Corrádi-Hajnal
- Tolerance for some low-degree vertices
- Ore condition (minimum degree-sum of nonadjacent vertices)
- Generalized Degree-Sum Conditions
- Connectivity
- Neighborhood Union
(2) Chorded Cycles
- Degree conditions
- Neighborhood Union
- Multiply Chorded Cycles
(3) Equitable Coloring
- Definition
- Connection to Cycles

Equitable Coloring and Cycles

$$
n=3 k
$$

If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

Equitable Coloring and Cycles

$n=3 k$
If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

Equitable Coloring and Cycles

$n=3 k$
If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

Equitable Coloring and Cycles

$$
n=3 k
$$

If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

$$
n=4 k
$$

If G has $n=4 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint, doubly chorded cycles (each with four vertices).

Equitable Coloring and Cycles

$$
n=3 k
$$

If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

$$
n=4 k
$$

If G has $n=4 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint, doubly chorded cycles (each with four vertices).

Equitable Coloring and Cycles

$$
n=3 k
$$

If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

$$
n=4 k
$$

If G has $n=4 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint, doubly chorded cycles (each with four vertices).

Equitable Coloring and Cycles

$$
n=3 k
$$

If G has $n=3 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

$$
n=4 k
$$

If G has $n=4 k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint, doubly chorded cycles (each with four vertices).

What's Really Going On

- If G has $3 k$ vertices and k cycles, those cycles are cliques
- If G has $4 k$ vertices and k doubly chorded cycles, those cycles are cliques
- The complement of a clique is an independent set (color class)

Equitable Coloring and Cycles

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.
(minimum degree sum of nonadjacent vertices)

Equitable Coloring and Cycles

Enomoto 1998, Wang 1999
If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.
(minimum degree sum of nonadjacent vertices)

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x)+d(y) \leq 2 k-1$ for every edge $x y$, then G has an equitable k-coloring.
(maximum degree sum of adjacent vertices)

Equitable Coloring and Cycles

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k disjoint cycles.
(minimum degree sum of nonadjacent vertices)

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x)+d(y) \leq 2 k-1$ for every edge $x y$, then G has an equitable k-coloring.
(maximum degree sum of adjacent vertices)

$$
n=3 k
$$

Equivalent when $n=3 k$: $2(3 k-1)-(2 k-1)=4 k-1$

Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

$$
\Delta(G)=3
$$

Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

$$
\Delta(G)=3
$$

Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

$$
\Delta(G)=3
$$

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

$$
\Delta(G)=3
$$

Chen-Lih-Wu Conjecture, 1994 (link)

A connected graph G is equitably $\Delta(G)$ colorable if G is different from $K_{m}, C_{2 m+1}$ and $K_{2 m+1,2 m+1}$ for every $m \geq 1$.

Chen-Lih-Wu

Hajnal-Szemerédi, 1970

If $k \geq \Delta(G)+1$, then G is equitably k-colorable.

$$
\Delta(G)=3
$$

Chen-Lih-Wu Conjecture, 1994 (link)

A connected graph G is equitably $\Delta(G)$ colorable if G is different from $K_{m}, C_{2 m+1}$ and $K_{2 m+1,2 m+1}$ for every $m \geq 1$.

Many special cases proved; still open in general

Ore Conditions

Chen-Lih-Wu Conjecture Re-stated
If $\chi(G), \Delta(G) \leq k$ and $K_{k, k} \nsubseteq G$, then G is equitably k-colorable.

Ore Conditions

```
Chen-Lih-Wu Conjecture Re-stated
If \chi(G),\Delta(G)\leqk and }\mp@subsup{K}{k,k}{}\not\subseteqG\mathrm{ , then }G\mathrm{ is equitably }k\mathrm{ -colorable.
```

Kierstead-Kostochka-Molla-Yeager, 2016 (link)
If G is a $3 k$-vertex graph such that for each edge $x y$,
$d(x)+d(y) \leq 2 k+1$, then G is equitably k-colorable, or is one of several exceptions.

Ore Conditions

Chen-Lih-Wu Conjecture Re-stated

If $\chi(G), \Delta(G) \leq k$ and $K_{k, k} \nsubseteq G$, then G is equitably k-colorable.
Kierstead-Kostochka-Molla-Yeager, 2016 (link)
If G is a $3 k$-vertex graph such that for each edge $x y$,
$d(x)+d(y) \leq 2 k+1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent-consider the complement of G If G is a graph on $3 k$ vertices with $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles, or is one of several exceptions.

Ore Conditions

Kierstead-Kostochka-Molla-Yeager, 2016 (link)

If G is a $3 k$-vertex graph such that for each edge $x y$,
$d(x)+d(y) \leq 2 k+1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent-consider the complement of G
If G is a graph on $3 k$ vertices with $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles, or is one of several exceptions.

KKY, 2017

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3 k+1$ and $\sigma_{2}(G) \geq 4 k-3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n-2 k$.

Exceptions

$|G|=3 k, \chi(\bar{G}) \leq k, \sigma_{2}(G) \geq 4 k-3$, no k disjoint cycles.

- $k=3$

Equitable coloring:

Cycles:

Exceptions

$|G|=3 k, \chi(\bar{G}) \leq k, \sigma_{2}(G) \geq 4 k-3$, no k disjoint cycles.

- Equitable coloring:

Cycles:

Exceptions

$|G|=3 k, \chi(\bar{G}) \leq k, \sigma_{2}(G) \geq 4 k-3$, no k disjoint cycles.

- Equitable coloring:

Cycles:

$K_{2 k}$
$k-1$

Proof of KKMY 2016

Slides available at:
http://www.math.ubc.ca/~elyse/Talk_Sendai18.pdf

Thanks!

