
Workshop in 
Mathematical 
Programming

Model building in Mathematical Programming 
Oct. 10 – Nov. 14, 2006 Akiko Yoshise

Materials are available at
http://infoshako.sk.tsukuba.ac.jp/~yoshise/Course/MC/

http://infoshako.sk.tsukuba.ac.jp/~yoshise/Course/MC/


Schedule：

I. Oct. 10
What is Mathematical 
Programming
How to get XPRESS-
MP
Case study I

II. Oct. 17
Some Special Types 
of Mathematical 
Programming
Case study I I
Assignment #1

Due date  Oct. 30



Schedule：
III. Oct. 24:

Building Integer 
Programming Model
Case study III

Assignment #2
Due date  Nov. 20

IV. Nov. 1: 
Solving Linear 
Programming Model
Solving Integer 
Programming Model

V. Nov. 8:
Discussions

VI. Nov. 15:
Presentation of 
Assignment#2



Model 1: 
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New representation (variable):
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Constraints for the new variables
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Generalization: 
Logical Condition and 0-1 Variables 
H. Paul Williams, Model Building in Mathematical Programming

0-1 variables are often introduced into an LP (or 
sometimes an IP) model as decision variables or 
indicator variables.
Having introduced such variables it is then 
possible to represent logical connections between 
different decisions or states by linear constraints 
involving 0-1 variables.
It is at first slight rather surprising that so many 
different types of logical condition can be imposed 
in this way.



Propositional Logic

   implies   :
  , t toequivallen is   :

not:    and,:     or, :
false:    true,:

npropositio :,,

qpqp
qpqp

ft
rqp

→
≡

¬∧∨



Basic Properties:
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Propositions and Indicator Variables
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Indicator Variables and Real Variables
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Exercise:
Represent the following constraint as 
inequalities using indicator variables

If Product A or Product B is produced then 
at least one of three products, Product C, 
Product D or Product E should be 
produced.
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Linearization of Quadratic (Bilinear) Form I
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Linearization of Quadratic (Bilinear) Form I
[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

( ) ( )
( ) ( ) )01  ,01  (since     

111
                

 11 11
                

 0 0
                

 11 11
                

11 and 1

21

21

21

21

21

21

≥+−≥+−
≥+−++−

≥+−∨≥+−

≥−∨≥−

=→=∨=→=

=→==

δδδδ
δδδδ

δδδδ

δδδδ

δδδδ

δδδ

c

c

c

c



Linearization of Quadratic (Bilinear) Form I
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Linearization of Quadratic (Bilinear) Form I
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Linearization of Quadratic (Bilinear) Form II
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