Workshop in Mathematical Programming

Model building in Mathematical Programming Oct. 10 – Nov. 14, 2006 Akiko Yoshise Materials are available at <u>http://infoshako.sk.tsukuba.ac.jp/~yoshise/Course/MC/</u>

Schedule:

I. Oct. 10

- What is Mathematical Programming
- How to get XPRESS-MP

Case study I

II. Oct. 17

- Some Special Types of Mathematical Programming
- Case study I I
- Assignment #1
 - Due date Oct. 30

Schedule:

III. Oct. 24:

- Building Integer
 Programming Model
- □ Case study III
- Assignment #2
 - Due date Nov. 20

- IV. Nov. 1:
 - Solving Linear
 Programming Model
 - Solving Integer
 Programming Model
- V. Nov. 8:
 - Discussions

VI. Nov. 15: Presentation of Assignment#2

Model 1:

Maximize
$$\sum_{i=1}^{3} \sum_{j=1}^{5} b_{ij} x_{ij} - \sum_{l=1}^{3} \sum_{k>i} \sum_{j=1}^{3} \sum_{i=1}^{5} c_{jl} q_{ik} x_{ij} x_{kl}$$

subject to $\sum_{j=1}^{3} x_{ij} = 1$ (*i* = 1,2,3,4,5)
 $x_{ij} \in \{0,1\}$ (*i* = 1,2,3,4,5, *j* = 1,2,3)

Model 1:
Maximize
$$\sum_{i=1}^{3} \sum_{j=1}^{5} b_{ij} x_{ij} - \sum_{l=1}^{3} \sum_{k>i} \sum_{j=1}^{3} \sum_{i=1}^{5} c_{jl} q_{ik} x_{ij} x_{kl}$$

subject to $\sum_{j=1}^{3} x_{ij} = 1$ $(i = 1, 2, 3, 4, 5)$
 $x_{ij} \in \{0,1\}$ $(i = 1, 2, 3, 4, 5, j = 1, 2, 3)$

New representation (variable): $y_{ijkl} = \begin{cases} 1 & \text{if } x_{ij} = 1 \text{ and } x_{kl} = 1 \\ 0 & \text{otherwize} \end{cases}$

Note: y_{ijkl} is only defined for i < k and $q_{ik} \neq 0$

Constraints for the new variables $y_{ijkl} = \begin{cases} 1 & \text{if } x_{ij} = 1 \text{ and } x_{kl} = 1 \\ 0 & \text{otherwize} \end{cases}$ $\begin{array}{c} \updownarrow\\ y_{ijkl} \in \{0,1\} \end{array}$ $y_{iikl} = 1 \rightarrow x_{ii} = 1$ and $x_{kl} = 1$ $x_{ii} = 1$ and $x_{kl} = 1 \rightarrow y_{iikl} = 1$

Constraints for the new variables

For
$$y_{ijkl} \in \{0,1\}$$
 and $x_{ij} \in \{0,1\}$ $(i < k)$

Constraints for the new variables

For
$$y_{ijkl} \in \{0,1\}$$
 and $x_{ij} \in \{0,1\}$ $(i < k)$

Generalization: Logical Condition and 0-1 Variables

- H. Paul Williams, Model Building in Mathematical Programming
- 0-1 variables are often introduced into an LP (or sometimes an IP) model as decision variables or indicator variables.
- Having introduced such variables it is then possible to represent logical connections between different decisions or states by linear constraints involving 0-1 variables.
- It is at first slight rather surprising that so many different types of logical condition can be imposed in this way.

Propositional Logic

p,q,r: proposition t: true, f: false \vee : or, \wedge : and, \neg : not $p \equiv q$: p is equivallent to q, $p \rightarrow q$: p implies q

Basic Properties:

1.
$$p \lor p \equiv p$$
, $p \land p \equiv p$
2. $(p \lor q) \lor r \equiv p \lor (q \lor r)$, $(p \land q) \land r \equiv p \land (q \land r)$
3. $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$
4. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$,
 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
5. $p \lor t \equiv t$, $p \land t \equiv p$, $p \lor f \equiv p$, $p \land f \equiv f$
6. $p \lor \neg p \equiv t$, $p \land \neg p \equiv f$, $\neg t \equiv f$, $\neg f \equiv t$
7. $\neg \neg p \equiv p$

Basic Properties:

8.
$$\neg (p \lor q) \equiv \neg p \land \neg q, \quad \neg (p \land q) \equiv \neg p \lor \neg q$$

9. $p \rightarrow q \equiv \neg p \lor q$
(hence $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$)
10. $p \rightarrow (q \land r) \equiv (p \rightarrow q) \land (p \rightarrow r)$
 $p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r)$
 $(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q \rightarrow r)$
 $(p \lor q) \rightarrow r \equiv (p \rightarrow r) \land (q \rightarrow r)$
11. $\neg (p \lor q) \equiv \neg p \land \neg q, \quad \neg (p \land q) \equiv \neg p \lor \neg q$

Propositions and Indicator Variables

- P_i : proposition
- δ_i : indicator variable, $\delta_i \in \{0,1\}$ $P_i \equiv [\delta_i = 1]$

1.
$$P_1 \lor P_2 \equiv [\delta_1 + \delta_2 \ge 1]$$

2. $P_1 \land P_2 \equiv [\delta_1 = 1, \delta_2 = 1]$
3. $\neg P_1 \equiv [\delta_1 = 0] \equiv [1 - \delta_1 = 1]$
4. $P_1 \rightarrow P_2 \equiv \neg P_1 \lor P_2 \equiv [(1 - \delta_1) + \delta_2 \ge 1] \equiv [\delta_2 - \delta_1 \ge 0]$
 $P_1 \leftrightarrow P_2 \equiv [\delta_2 - \delta_1 = 0]$

Indicator Variables and Real Variables

 $x \ge 0$: real variable M > 0: (realistic) upper bound of x > 0 m > 0: (realistic) lower bound of x > 0 $x > 0 \rightarrow m \le x \le M$

1.
$$[x > 0 \rightarrow \delta = 1] \equiv [x - M\delta \le 0]$$

2. $[\delta = 1 \rightarrow x > 0] \equiv [x - m\delta \ge 0]$

Exercise:

Represent the following constraint as inequalities using indicator variables

If Product A or Product B is produced then at least one of three products, Product C, Product D or Product E should be produced. Intoroduce five indicator variables

$$\begin{split} &\delta_A : [\delta_A = 1] \equiv X_A \quad \text{where } X_A \text{ denotes "Product A is produced"} \\ &\delta_B : [\delta_B = 1] \equiv X_B \quad \text{where } X_B \text{ denotes "Product B is produced"} \\ &\delta_C : [\delta_C = 1] \equiv X_C \quad \text{where } X_C \text{ denotes "Product C is produced"} \\ &\delta_D : [\delta_D = 1] \equiv X_D \quad \text{where } X_D \text{ denotes "Product D is produced"} \\ &\delta_E : [\delta_E = 1] \equiv X_E \quad \text{where } X_E \text{ denotes "Product E is produced"} \end{split}$$

The constraint can be represented by

 $X_A \lor X_B \to X_C \lor X_D \lor X_E$

$$X_{A} \lor X_{B} \equiv \left[\delta_{A} + \delta_{B} \ge 1\right]$$
$$X_{C} \lor X_{D} \lor X_{E} \equiv \left[\delta_{C} + \delta_{D} + \delta_{E} \ge 1\right]$$

Let δ be another indicator variable which denotes $X_A \lor X_B \rightarrow [\delta = 1]$

To ensure the above, we should impose that $[\delta_A + \delta_B \ge 1] \rightarrow [\delta = 1]$

Since

$$\delta_A + \delta_B > 0 \leftrightarrow \delta_A + \delta_B \ge 1$$

 $\delta_A + \delta_B \le M = 2,$

be.

$$\left[\delta_A + \delta_B \ge 1\right] \rightarrow \left[\delta = 1\right]$$

can be represented by

$$\delta_{A} + \delta_{B} - M\delta \leq 0$$

i.e.,
$$\delta_{A} + \delta_{B} - 2\delta \leq 0$$

Next let us represent $[\delta = 1] \rightarrow X_C \lor X_D \lor X_E$ i.e., $[\delta = 1] \rightarrow [\delta_C + \delta_D + \delta_E \ge 1]$

Since

$$\delta_{C} + \delta_{D} + \delta_{E} \ge m = 1 \leftrightarrow \delta_{C} + \delta_{D} + \delta_{E} > 0,$$

 $\begin{bmatrix} \delta = 1 \end{bmatrix} \rightarrow \begin{bmatrix} \delta_C + \delta_D + \delta_E \ge 1 \end{bmatrix}$ can be represented by

$$\left(\delta_{C} + \delta_{D} + \delta_{E} \right) - m\delta \ge 0$$

i.e.,
$$\left(\delta_{C} + \delta_{D} + \delta_{E} \right) - \delta \ge 0$$

Summarizing, we have $X_A \vee X_B \rightarrow [\delta = 1]$ is represented by $(\delta_A + \delta_B) - 2\delta \ge 0$ and $[\delta = 1] \rightarrow X_C \lor X_D \lor X_E$ is represented by $[\delta = 1] \rightarrow [\delta_C + \delta_D + \delta_F \ge 1]$

$$\left(\delta_{C} + \delta_{D} + \delta_{E} \right) - m\delta \ge 0$$

i.e.,
$$\left(\delta_{C} + \delta_{D} + \delta_{E} \right) - \delta \ge 0$$

If Product A or Product B is produced then at least one of three products, Product C, Product D or Product E should be produced.

Thus the above constraint is given by $(\delta_A + \delta_B) - 2\delta \le 0, \quad (\delta_C + \delta_D + \delta_E) - \delta \ge 0$ where

$$\delta_{A} \in \{0,1\}, \delta_{B} \in \{0,1\}, \delta_{C} \in \{0,1\}, \delta_{D} \in \{0,1\}, \delta_{E} \in \{0,1\}, \delta_{E$$

Linearization of Quadratic (Bilinear) Form I

Represent the quadratic term $\delta_1 \cdot \delta_2$ by δ i.e.,

$$\delta = \begin{cases} 1 & \delta_1 = 1 \text{ and } \delta_2 = 1 \\ 0 & \text{otherwise} \end{cases}$$

To do this, we should impose that $[\delta = 1] \rightarrow [\delta_1 = 1 \text{ and } \delta_2 = 1]$ $[\delta_1 = 1 \text{ and } \delta_2 = 1] \rightarrow [\delta = 1]$

Linearization of Quadratic (Bilinear) Form I

$$\begin{bmatrix} \delta_{1} = 1 \text{ and } \delta_{2} = 1 \end{bmatrix} \rightarrow \begin{bmatrix} \delta = 1 \end{bmatrix}$$

$$\begin{bmatrix} \delta_{1} = 1 \rightarrow \delta = 1 \end{bmatrix} \lor \begin{bmatrix} \delta_{2} = 1 \rightarrow \delta = 1 \end{bmatrix}$$

$$\begin{bmatrix} \delta - \delta_{1} \ge 0 \end{bmatrix} \lor \begin{bmatrix} \delta - \delta_{2} \ge 0 \end{bmatrix}$$

$$\begin{bmatrix} \delta - \delta_{1} \ge 0 \end{bmatrix} \lor \begin{bmatrix} \delta - \delta_{2} \ge 0 \end{bmatrix}$$

$$\begin{bmatrix} \delta - \delta_{1} + 1 \ge 1 \end{bmatrix} \lor \begin{bmatrix} \delta - \delta_{2} + 1 \ge 1 \end{bmatrix}$$

$$\begin{bmatrix} \delta - \delta_{1} + 1 \ge 1 \end{bmatrix} \lor \begin{bmatrix} \delta - \delta_{2} + 1 \ge 1 \end{bmatrix}$$

$$\begin{pmatrix} (\delta - \delta_{1} + 1) + (\delta - \delta_{2} + 1) \ge 1 \\ (\text{since } (\delta - \delta_{1} + 1) \ge 0, (\delta - \delta_{2} + 1) \ge 0) \end{bmatrix}$$

be.

Linearization of Quadratic (Bilinear) Form I

$$\begin{bmatrix} \delta = 1 \end{bmatrix} \rightarrow \begin{bmatrix} \delta_1 = 1 \text{ and } \delta_2 = 1 \end{bmatrix}$$
$$\begin{bmatrix} \delta = 1 \rightarrow \delta_1 = 1 \end{bmatrix} \land \begin{bmatrix} \delta = 1 \rightarrow \delta_2 = 1 \end{bmatrix}$$
$$\begin{bmatrix} \delta - \delta_1 \ge 0, \quad \delta - \delta_2 \ge 0 \end{bmatrix}$$

Linearization of Quadratic (Bilinear) Form I

Thus, $\delta_1 \cdot \delta_2$ is represented by δ adding the inequalities

$$\begin{cases} \delta_1 - \delta \ge 0, & \delta_2 - \delta \ge 0\\ (\delta - \delta_1 + 1) + (\delta - \delta_2 + 1) \ge 1\\ \text{i.e.,} \\\\ \delta_1 - \delta \ge 0, & \delta_2 - \delta \ge 0\\ \delta_1 + \delta_2 - 2\delta \le 1 \end{cases}$$

Considering $\delta, \delta_1, \delta_2 \in \{0,1\}$, the above system is equivatent to $\begin{cases} \delta_1 - \delta \ge 0, & \delta_2 - \delta \ge 0 \\ \delta_1 + \delta_2 - \delta \le 1 \end{cases}$

The above inequalities has been used in Assignment #2

Linearization of Quadratic (Bilinear) Form II

Represent the quadratic term $x \cdot \delta$ by y where x and y are real variables

i.e.,

$$\begin{cases} \delta = 0 \rightarrow y = 0 \\ \delta = 1 \rightarrow y = x \end{cases}$$

By a similar discussion, we can see that the above is equivalent to

$$\begin{cases} y - M\delta \le 0 \\ -x + y \le 0 \\ x - y + M\delta \le M \end{cases}$$