Workshop in Mathematical Programming

Model building in Mathematical Programming Oct. 10 - Nov. 14, 2006 Akiko Yoshise Materials are available at http://infoshako.sk.tsukuba.ac.jp/-yoshise/Course/MC/

Schedule:

I. Oct. 10
\square What is Mathematical Programming
\square How to get XPRESSMP
\square Case study I
II. Oct. 17
\square Some Special Types of Mathematical Programming
\square Case study II
\square Assignment \#1

- Due date Oct. 30

Schedule:

III. Oct. 24:
\square Building Integer Programming Model
\square Case study III
\square Assignment \#2

- Due date Nov. 20
IV. Nov. 1:
\square Solving Linear Programming Model
\square Solving Integer Programming Model
V. Nov. 8:
\square Discussions
VI. Nov. 15:
\square Presentation of Assignment\#2

Model 1:

Maximize $\sum_{i=1}^{3} \sum_{j=1}^{5} b_{i j} x_{i j}-\sum_{l=1}^{3} \sum_{k>i} \sum_{j=1}^{3} \sum_{i=1}^{5} c_{j l} q_{i k} x_{i j} x_{k l}$
subject to $\sum_{j=1}^{3} x_{i j}=1 \quad(i=1,2,3,4,5)$

$$
x_{i j} \in\{0,1\} \quad(i=1,2,3,4,5, j=1,2,3)
$$

Model 1:

Quadratic function

Maximize $\sum_{i=1}^{3} \sum_{j=1}^{5} b_{i j} x_{i j}-\sum_{l=1}^{3} \sum_{k>i} \sum_{j=1}^{3} \sum_{i=1}^{5} c_{j l} q_{i k} x_{i j} x_{k l}$
subject to $\sum_{j=1}^{3} x_{i j}=1 \quad(i=1,2,3,4,5)$

$$
x_{i j} \in\{0,1\} \quad(i=1,2,3,4,5, j=1,2,3)
$$

New representation (variable):

$y_{i j k l}= \begin{cases}1 & \text { if } x_{i j}=1 \text { and } x_{k l}=1 \\ 0 & \text { otherwize }\end{cases}$

Note: $y_{i j k l}$ is only defined for $i<k$ and $q_{i k} \neq 0$

Constraints for the new variables

$$
\begin{aligned}
& y_{i j k l}= \begin{cases}1 & \text { if } x_{i j}=1 \text { and } x_{k l}=1 \\
0 & \text { otherwize }\end{cases} \\
& \begin{array}{l}
\hat{\imath}
\end{array} \\
& y_{i j k l} \in\{0,1\} \\
& y_{i j k l}=1 \rightarrow x_{i j}=1 \text { and } x_{k l}=1 \\
& x_{i j}=1 \text { and } x_{k l}=1 \rightarrow y_{i j k l}=1
\end{aligned}
$$

Constraints for the new variables

For $y_{i j k l} \in\{0,1\}$ and $x_{i j} \in\{0,1\} \quad(i<k)$

$$
y_{i j k l}=1 \rightarrow x_{i j}=1 \text { and } x_{k l}=1
$$

$$
\mathbb{1}
$$

$$
\left\{\begin{array}{l}
y_{i j k l}-x_{i j} \leq 0 \\
y_{i j k l}-x_{k l} \leq 0
\end{array}\right.
$$

Constraints for the new variables

For $y_{i j k l} \in\{0,1\}$ and $x_{i j} \in\{0,1\} \quad(i<k)$

$$
\begin{gathered}
x_{i j}=1 \text { and } x_{k l}=1 \rightarrow y_{i j k l}=1 \\
\mathbb{\imath} \\
x_{i j}+x_{k l}-y_{i j k l} \leq 1
\end{gathered}
$$

Generalization:
 Logical Condition and 0-1 Variables

H. Paul Williams, Model Building in Mathematical Programming

- 0-1 variables are often introduced into an LP (or sometimes an IP) model as decision variables or indicator variables.
- Having introduced such variables it is then possible to represent logical connections between different decisions or states by linear constraints involving 0-1 variables.
- It is at first slight rather surprising that so many different types of logical condition can be imposed in this way.

Propositional Logic

p, q, r :proposition
t :true, f :false
$\vee:$ or, \wedge :and, \neg :not
$p \equiv q: p$ is equivallent to q,
$p \rightarrow q: p$ implies q

Basic Properties:

1. $p \vee p \equiv p, \quad p \wedge p \equiv p$
2. $(p \vee q) \vee r \equiv p \vee(q \vee r),(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
3. $p \vee q \equiv q \vee p, \quad p \wedge q \equiv q \wedge p$
4. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$,

$$
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
$$

5. $\quad p \vee t \equiv t, \quad p \wedge t \equiv p, \quad p \vee f \equiv p, \quad p \wedge f \equiv f$
6. $p \vee \neg p \equiv t, \quad p \wedge \neg p \equiv f, \neg t \equiv f, \neg f \equiv t$
7. $\neg \neg p \equiv p$

Basic Properties:

8. $\neg(p \vee q) \equiv \neg p \wedge \neg q, \quad \neg(p \wedge q) \equiv \neg p \vee \neg q$
9. $p \rightarrow q \equiv \neg p \vee q$
(hence $\neg(p \rightarrow q) \equiv \neg(\neg p \vee q) \equiv p \wedge \neg q)$
10. $p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$

$$
p \rightarrow(q \vee r) \equiv(p \rightarrow q) \vee(p \rightarrow r)
$$

$$
(p \wedge q) \rightarrow r \equiv(p \rightarrow r) \vee(q \rightarrow r)
$$

$$
(p \vee q) \rightarrow r \equiv(p \rightarrow r)_{\wedge}(q \rightarrow r)
$$

11. $\neg(p \vee q) \equiv \neg p \wedge \neg q, \neg(p \wedge q) \equiv \neg p \vee \neg q$

Propositions and Indicator Variables

P_{i} : proposition
δ_{i} : indicator variable, $\delta_{i} \in\{0,1\}$

$$
P_{i} \equiv\left[\delta_{i}=1\right]
$$

1. $P_{1} \vee P_{2} \equiv\left[\delta_{1}+\delta_{2} \geq 1\right]$
2. $P_{1} \wedge P_{2} \equiv\left[\delta_{1}=1, \delta_{2}=1\right]$
3. $\neg P_{1} \equiv\left[\delta_{1}=0\right] \equiv\left[1-\delta_{1}=1\right]$
4. $\quad P_{1} \rightarrow P_{2} \equiv \neg P_{1} \vee P_{2} \equiv\left[\left(1-\delta_{1}\right)+\delta_{2} \geq 1\right] \equiv\left[\delta_{2}-\delta_{1} \geq 0\right]$
$P_{1} \leftrightarrow P_{2} \equiv\left[\delta_{2}-\delta_{1}=0\right]$

Indicator Variables and Real Variables

$x \geq 0$: real variable
$M>0$: (realistic) upper bound of $x>0$ $m>0$: (realistic) lower bound of $x>0$

$$
x>0 \rightarrow m \leq x \leq M
$$

$$
\text { 1. }[x>0 \rightarrow \delta=1] \equiv[x-M \delta \leq 0]
$$

2. $[\delta=1 \rightarrow x>0] \equiv[x-m \delta \geq 0]$

Exercise:

- Represent the following constraint as inequalities using indicator variables

If Product A or Product B is produced then at least one of three products, Product C, Product D or Product E should be produced.

Intoroduce five indicator variables
$\delta_{A}:\left[\delta_{A}=1\right] \equiv X_{A} \quad$ where X_{A} denotes "Product A is produced" $\delta_{B}:\left[\delta_{B}=1\right] \equiv X_{B} \quad$ where X_{B} denotes "Product B is produced" $\delta_{C}:\left[\delta_{C}=1\right] \equiv X_{C} \quad$ where X_{C} denotes "Product C is produced" $\delta_{D}:\left[\delta_{D}=1\right] \equiv X_{D} \quad$ where X_{D} denotes "Product D is produced" $\delta_{E}:\left[\delta_{E}=1\right] \equiv X_{E} \quad$ where X_{E} denotes "Product E is produced"

The constraint can be represented by $X_{A} \vee X_{B} \rightarrow X_{C} \vee X_{D} \vee X_{E}$

$$
\begin{aligned}
& X_{A} \vee X_{B} \equiv\left[\delta_{A}+\delta_{B} \geq 1\right] \\
& X_{C} \vee X_{D} \vee X_{E} \equiv\left[\delta_{C}+\delta_{D}+\delta_{E} \geq 1\right]
\end{aligned}
$$

Let δ be another indicator variable which denotes $X_{A} \vee X_{B} \rightarrow[\delta=1]$

To ensure the above, we should impose that $\left[\delta_{A}+\delta_{B} \geq 1\right] \rightarrow[\delta=1]$

Since
$\delta_{A}+\delta_{B}>0 \leftrightarrow \delta_{A}+\delta_{B} \geq 1$
$\delta_{A}+\delta_{B} \leq M=2$,
$\left[\delta_{A}+\delta_{B} \geq 1\right] \rightarrow[\delta=1]$
can be represented by
$\delta_{A}+\delta_{B}-M \delta \leq 0$
i.e.,
$\delta_{A}+\delta_{B}-2 \delta \leq 0$

Next let us represent
$[\delta=1] \rightarrow X_{C} \vee X_{D} \vee X_{E}$
i.e.,
$[\delta=1] \rightarrow\left[\delta_{C}+\delta_{D}+\delta_{E} \geq 1\right]$

Since
$\delta_{C}+\delta_{D}+\delta_{E} \geq m=1 \leftrightarrow \delta_{C}+\delta_{D}+\delta_{E}>0$,
$[\delta=1] \rightarrow\left[\delta_{C}+\delta_{D}+\delta_{E} \geq 1\right]$
can be represented by
$\left(\delta_{C}+\delta_{D}+\delta_{E}\right)-m \delta \geq 0$
i.e.,
$\left(\delta_{C}+\delta_{D}+\delta_{E}\right)-\delta \geq 0$

Summarizing, we have

$$
X_{A} \vee X_{B} \rightarrow[\delta=1]
$$

is represented by

$$
\left(\delta_{A}+\delta_{B}\right)-2 \delta \geq 0
$$

and
$[\delta=1] \rightarrow X_{C} \vee X_{D} \vee X_{E}$
is represented by

$$
[\delta=1] \rightarrow\left[\delta_{C}+\delta_{D}+\delta_{E} \geq 1\right]
$$

$\left(\delta_{C}+\delta_{D}+\delta_{E}\right)-m \delta \geq 0$
i.e.,
$\left(\delta_{C}+\delta_{D}+\delta_{E}\right)-\delta \geq 0$

If Product A or Product B is produced then at least one of three products, Product C, Product D or Product E should be produced.

Thus the above constraint is given by
$\left(\delta_{A}+\delta_{B}\right)-2 \delta \leq 0, \quad\left(\delta_{C}+\delta_{D}+\delta_{E}\right)-\delta \geq 0$
where
$\delta_{A} \in\{0,1\}, \delta_{B} \in\{0,1\}, \delta_{C} \in\{0,1\}, \delta_{D} \in\{0,1\}, \delta_{E} \in\{0,1\}$

Linearization of Quadratic (Bilinear) Form I

Represent the quadratic term $\delta_{1} \cdot \delta_{2}$ by δ i.e.,
$\delta= \begin{cases}1 & \delta_{1}=1 \text { and } \delta_{2}=1 \\ 0 & \text { otherwise }\end{cases}$

To do this, we should impose that $[\delta=1] \rightarrow\left[\delta_{1}=1\right.$ and $\left.\delta_{2}=1\right]$
$\left[\delta_{1}=1\right.$ and $\left.\delta_{2}=1\right] \rightarrow[\delta=1]$

Linearization of Quadratic (Bilinear) Form I

$$
\begin{aligned}
& {\left[\delta_{1}=1 \text { and } \delta_{2}=1\right] \rightarrow[\delta=1]} \\
& \text { I } \\
& {\left[\delta_{1}=1 \rightarrow \delta=1\right] \vee\left[\delta_{2}=1 \rightarrow \delta=1\right]} \\
& \text { ॥ } \\
& {\left[\delta-\delta_{1} \geq 0\right] \vee\left[\delta-\delta_{2} \geq 0\right]} \\
& \text { I } \\
& {\left[\delta-\delta_{1}+1 \geq 1\right] \vee\left[\delta-\delta_{2}+1 \geq 1\right]} \\
& \text { I } \\
& \left(\delta-\delta_{1}+1\right)+\left(\delta-\delta_{2}+1\right) \geq 1 \\
& \text { (since } \left.\left(\delta-\delta_{1}+1\right) \geq 0,\left(\delta-\delta_{2}+1\right) \geq 0\right)
\end{aligned}
$$

Linearization of Quadratic (Bilinear) Form I

$$
\begin{gathered}
{[\delta=1] \rightarrow\left[\delta_{1}=1 \text { and } \delta_{2}=1\right]} \\
\mathbb{\mathbb { I }} \\
{\left[\delta=1 \rightarrow \delta_{1}=1\right] \wedge\left[\delta=1 \rightarrow \delta_{2}=1\right]} \\
\mathbb{\mathbb { y }} \\
\delta-\delta_{1} \geq 0, \delta-\delta_{2} \geq 0
\end{gathered}
$$

Linearization of Quadratic (Bilinear) Form I

Thus, $\delta_{1} \cdot \delta_{2}$ is represented by δ adding the inequalities
$\left\{\begin{array}{l}\delta_{1}-\delta \geq 0, \quad \delta_{2}-\delta \geq 0 \\ \left(\delta-\delta_{1}+1\right)+\left(\delta-\delta_{2}+1\right) \geq 1\end{array}\right.$
i.e.,

$$
\left\{\begin{array}{l}
\delta_{1}-\delta \geq 0, \quad \delta_{2}-\delta \geq 0 \\
\delta_{1}+\delta_{2}-2 \delta \leq 1
\end{array}\right.
$$

Considering $\delta, \delta_{1}, \delta_{2} \in\{0,1\}$, the above system is equivatent to

$$
\left\{\begin{array}{l}
\delta_{1}-\delta \geq 0, \quad \delta_{2}-\delta \geq 0 \\
\delta_{1}+\delta_{2}-\delta \leq 1
\end{array}\right.
$$

The above inequalities has been used in Assignment \#2

Linearization of Quadratic (Bilinear) Form II

Represent the quadratic term $x \cdot \delta$ by y
where x and y are real variables
i.e.,
$\left\{\begin{array}{l}\delta=0 \rightarrow y=0 \\ \delta=1 \rightarrow y=x\end{array}\right.$

By a similar discussion, we can see that the above is equivalent to

$$
\left\{\begin{array}{l}
y-M \delta \leq 0 \\
-x+y \leq 0 \\
x-y+M \delta \leq M
\end{array}\right.
$$

