Workshop in Mathematical Programming

Model building in Mathematical Programming Oct. 10 - Nov. 14, 2006 Akiko Yoshise Materials are available at http://infoshako.sk.tsukuba.ac.jp/-yoshise/Course/MC/

Schedule:

I. Oct. 10
\square What is Mathematical Programming
\square How to get XPRESSMP
\square Case study I
II. Oct. 17
\square Some Special Types of Mathematical Programming
\square Case study II
\square Assignment \#1

- Due date Oct. 30

Schedule:

III. Oct. 24:
\square Building Integer Programming Model
\square Case study III
\square Assignment \#2

- Due date Nov. 20
IV. Nov. 1:
\square Solving Linear Programming Model
\square Solving Integer Programming Model
V. Nov. 8:
\square Discussions
VI. Nov. 15:
\square Presentation of Assignment\#3

Evaluation:

- Assignment \#1 allotted 30
- Assignment \#2 allotted 70
- Evaluation
$\sum_{i=1}^{2}$ Score of \#ix(\# of Students -\# of Group members +1 $)$

What is Mathematical Programming

- Optimization
\square An objective function which we want to minimize or maximize
\square A set of unknowns or variables which affect the value of the objective function
\square A set of constraints that allow the unknowns to take on certain values but exclude others
- Find values of the variables that minimize or maximize the objective function while satisfying the constraints

Optimization Problem

General form:

$$
\begin{aligned}
& \text { Minimize } f(x) \\
& \text { subject to } g_{i}(x) \leq 0(i=1,2, \ldots, m) \\
& \qquad x \in X
\end{aligned}
$$

What is Mathematical Programming

Step1: Formulate a mathematical model
Determine the objective function, the variables, the constraints

Step2: Solve the problem to find a solution
Choose a suitable algorithm or develop an algorithm
Step3: $\sum_{i}^{\text {important }}$ Interpret the solution
Is the solution satisfactory? If not, Go To Step1

Formulating a mathematical model Objective function

- What are you planning to do?
- Can you describe it using the word Minimize or Maximize
- No objective function
\Rightarrow Finding a feasible solution
- Multi objective functions
\Rightarrow Minimizing Weighted Sums of Functions importants The magnitude of the functions

Formulating a mathematical model Variables and Constraints

- Find unknowns which affect the value of the objective function
- Constraints are given by equalities or inequalities of the which are
\square greater-than-or-equal-to (>)
\square less-than or-equal-to (<)
\square or equal-to (=)
a constant term (the right hand side).

Formulating a mathematical model In Xpress-MP (IVE)

- Variables are declared by mpvar and expected to be nonnegative $\stackrel{\text { importants }}{\text { s. }}$
\square is_binary: 0-1 Integer
\square is_integer: (nonnegative) Integer
\square Others: (nonnegative) Real

Formulating a mathematical model In Xpress-MP (IVE)

- Basically, Objective function and Constraint functions are expected to be given by
Linear Expression: $\underset{\sim}{\text { smportants }}$
A term (or sum of terms) of the form
(constant) \times (variable)

Linear Expression

Constants : $\alpha_{i}(i=1,2, \ldots, n), \beta_{j}(j=1,2, \ldots, m)$
Variables: $x_{i}(i=1,2, \ldots, n), y_{i j}(i=1,2, \ldots, n, j=1,2, \ldots, m)$

Linear expression : $\sum_{i=1}^{n} \alpha_{i} \times x_{i}, \sum_{i=1}^{n} \alpha_{i} \times\left(y_{i j}-\beta_{j}\right), \cdots$
Nonlinear expression : $\sum_{i=1}^{n} x_{i} \times x_{i}, \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \times x_{j}, \sum_{i=1}^{n} x_{i}^{\alpha_{i}}, \ldots$

Why we should use Linear Expression?

- Based on Linear Programming Problem \square Lecture IV

$$
\begin{aligned}
& \text { Minimize } \quad \mathbf{c}^{T} \mathbf{x}=\sum_{i=1}^{n} c_{i} x_{i} \\
& \text { Subject to } \begin{aligned}
\mathbf{A x} & =\mathbf{b}, \quad\left(\Leftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}(i=1,2, \ldots m)\right) \\
& \mathbf{x} \geq \mathbf{0} \quad\left(\Leftrightarrow x_{j} \geq 0(j=1,2, \ldots n)\right)
\end{aligned}
\end{aligned}
$$

- Many problems can be expressed by Linear Expression \square Lecture III

How to get XPRESS-MP

■ Student version (IVE):
http://www.dashoptimization.com/index.html

- Manual:
\square Essentials
\square Optimizer-ref
- Version 13 on shakosv
\square Remember some commands:
shakosv:[22]: mp-mosel २
>> help
>> exec <file name>.mos
>>exit

The Burglar Problem

Xpress-MP Essentials p. 108

■ Burglar Bill breaks into a house one night with a sack to carry away items of interest to him. He identifies a number of items which have the following weights and estimated values:

- Bill can only carry items up to a total weight of 102 pounds. Subject to this, his aim is to maximize the estimated value of the items that he takes.

	Weight	Value
Camera	2	15
Necklace	20	100
Vase	20	90
Picture	30	60
TV	40	40
Video	30	15
Chest	60	10
Brick	10	1

- Formulating the Burglar Problem mathematically is relatively simple.
- Suppose that we have a variable, camera, which has
\square the value 1 if Bill takes the camera and the value 0 otherwise.
- Suppose also that we have a similar set of variables for the other items.

Problem expression

Problem 1

Maximize: 15^{*} camera $+100^{*}$ necklace $+90^{*}$ vase + 60^{*} picture $+40^{*}$ tv $+15^{*}$ video $+10^{*}$ chest + 1*brick
Subject to: 2^{*} camera $+20^{*}$ necklace $+20^{*}$ vase + 30^{*} picture $+40^{*} t v+30^{*}$ video $+60^{*}$ chest + $10 *$ brick ≤ 102
camera, necklace, vase, picture, $t v$, video, chest, brick $\in\{0,1\}$

Listing 5.1 Declaring decision variables

```
model burglar
    declarations
        camera, necklace, vase, picture: mpvar
        tv, video, chest, brick: mpvar
    end-declarations
end-model
```


model

The model block defines the problem name and contains all statements to be considered part of the model. Any text a ppearing a fter the end-model is treated as if it were a comment and ignored.

declarations

In the declarations block are defined variables and their type, sets and constants.

Listing 5.2 Adding constraints to the model

```
model burglar
    declarations
        camera, necklace, vase, picture: mpvar
        tv, video, chest, brick: mpvar
    end-declarations
    camera is_binary
    necklace is_binary
    vase is_binary
    picture is_binary
    tv is_binary
    video is_binary
    chest is_binary
    brick is_binary
```

```
Totalweight := 2*camera + 20*necklace + 20*vase +
        30*picture + 40*tv + 30*video +
        60*chest + 10*brick <= 102
TotalValue := 15*camera + 100*necklace + 90*vase +
    60*picture + 40*tv + 15*video +
    10*chest + 1*brick
maximize(TotalValue)
writeln("Objective value is ", getobjval)
end-model
```


Assignment \#1 (Due date Oct.24)

- You are working at an electric power company, and should solve a routing problem for supplying electric power from two generating plants to three demand points.
- The production of electricity at each plant and the amount required at each demand point are given as follows:

Supply and Demand Table:

	Plant S1	Plant S2
Production	$100,000 \mathrm{kw}$	$150,000 \mathrm{kw}$

	Demand D1	Demand D2	Demand D3
Amount	$90,000 \mathrm{kw}$	$100,000 \mathrm{kw}$	$60,000 \mathrm{kw}$

- There are three relay points, T1,T2 and T3, and the electricity can be supplied though these points.
- The cost required to send the unit of electricity from a point to another point is proportional to the distance between two points.

Distance Table:

 blank means no line| | S1 | S2 | T1 | T2 | T3 | D1 | D2 | D3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | 0 | | 50 | | | | | |
| S2 | | 0 | | | 40 | | | 100 |
| T1 | | | 0 | 60 | 20 | 30 | 30 | |
| T2 | | | | 0 | 10 | | 40 | |
| T3 | | | | | 0 | | 5 | 20 |
| D1 | | | | | | 0 | | 30 |
| D2 | | | | | | | 0 | 5 |
| D3 | | | | | | | | 0 |

- Formulate a mathematical model for finding a minimum cost routing from each plant to each demand point.
- Solve the problem using Xpress-MP.
- Remind "What is Mathematical Programming"
\square Describe each step clearly!

What is Mathematical Programming

Step1: Formulate a mathematical model
Determine the objective function, the variables, the constraints

Step2: Solve the problem to find a solution
Choose a suitable algorithm or develop an algorithm
Step3: $\sum_{i}^{\text {important }}$ Interpret the solution
Is the solution satisfactory? If not, Go To Step1

