
An Efficient Dynamic Offloading Approach based on Optimization
Technique for Mobile Edge Computing

Kai Guo∗, Mingcong Yang∗, Yongbing Zhang†, and Yusheng Ji‡

∗†Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
‡Information Systems Architecture Science Research Division, National Institute of Informatics, Japan

Email: ∗{s1730141, s1730144}@s.tsukuba.ac.jp, †ybzhang@sk.tsukuba.ac.jp, ‡kei@nii.ac.jp

Abstract—Mobile Cloud Computing (MCC) is a new paradigm
to provide computation capabilities at the edge networks near
mobile devices to speed up the executions of mobile applications
and reduce the power consumptions at mobile devices. In this
paper, we focus on the problem of how to dynamically offload
the computation intensive tasks of newly executed mobile appli-
cations from resource-scarce mobile devices to the servers located
at the edge networks in order to minimize the average application
completion time. We consider a system model in which there are
a set of mobile devices connected to an edge server by a shared
communication network. Furthermore, we take into account of
possible transmission collisions at the shared network when more
than one mobile device attempts to transmit data simultaneously.
We first formulate a static offloading problem as an MIP problem
that can be solved using an appropriate optimization tool such
as Gurobi optimizer. Then, we extend the static problem to solve
the dynamic offloading problem considered in this paper. Using
simulation experiments, we show that our proposed approach
outperforms significantly previous approaches for a wide range
of system parameters.

I. INTRODUCTION

The edge computing paradigm has been attracting interest
from researchers in speed-up for both data- and time-intensive
mobile applications and in energy saving of mobile devices
such as sensors and smartphones. The servers located on the
edge networks, called the edge servers, extend the computation
and storage capabilities of mobile devices and furthermore
reduce the power consumptions at mobile devices [1], [2].
Computation intensive tasks are migrated (offloaded) from
mobile devices to the edge servers for remote processing [3],
[4], [5], [6], [7]. Since the offloading performance depends
heavily on not only the characteristics of both the applications
and the mobile devices but also the communication networks
connecting the mobile devices to the servers, it is crucially
important how to offload mobile tasks to the servers. A number
of mobile devices are usually connected to an edge server
via a shared radio access network such a Wireless LAN and
therefore the data transmission from a mobile device to the
server may collide with other transmissions over the shared
network. The possible collisions over the shared communi-
cation network should be taken into account in offloading
decisions.

There are some researches focusing on computation offload-
ing [4], [7], [8], [9]. The authors [4], [7] only considered the
task offloading for simple applications each of which consists
of a single task chain. The optimal offloading strategy can

be found for such a single chain application but it cannot be
applied to a more complex application such as an application
with parallel tasks or with even parallel and sequential mixed
tasks. The authors [9], [8] considered the offloading problem
for applications with parallel tasks and tried to find the offload-
ing decisions using heuristic method. However, they focused
on how to minimize the average execution time of each task
in an application instead of the application completion time.
In this paper, we aim at minimizing the average completion
time for mobile applications with both sequential and parallel
tasks.

When the task execution times and the data sizes sent
between tasks in each application and furthermore the time
instant the application is executed are known in advance, the
offloading problem is static in nature and can be solved using
an Integer Programming (IP) approach. A software package
such as the Gurobi Optimizer [10] or the IBM ILOG CPLEX
[11] can be used to solve a static offloading problem if the
problem size, i.e., the number of tasks in an application and
the number of applications in the system, is limited. In this
paper, we consider a dynamic offloading problem in the sense
that the task execution time and the data transmission size of
an application are known in advance but when the application
is executed is unknown, i.e., an application can be executed at
any time. We formulate the dynamic offloading problem as a
Mixed Integer Programming (MIP) problem [12] and attempt
to minimize the average completion time of the applications.

The contributions of this paper can be summarized as
follows. 1) We formulate a static offloading problem as a
MIP problem so that we can use an appropriate software
package to obtain its solution. 2) We propose a dynamic
offloading approach that offloads a newly executed application
on condition that the offloading decisions of all the applica-
tions executed previously than the new one are given. The
tasks of previous applications that are under either execution
or transmission will not be interrupted. By simulation, we
see that this approach works quite well when the network
load is not high. However, when the network is congested,
the computation time for offloading decisions may become
extremely long. 3) In order to reduce the computation time,
we propose another dynamic offloading approach in which the
offloading decisions of the previously executed application are
not changed. According to simulation experiments, we see that
this approach outperforms a previous approach significantly.



The remainder of this paper is organized as follows. In
section 2, we review the related works on computation of-
floading. In section 3, we describe our system model of
application offloading problem. In section 4, we formulate the
static offloading problem as a MIP problem. In section 5, we
formulate the dynamic offloading problem as a MIP problem
and give a dynamic offloading approach for this problem. The
performance evaluation of our proposed approach compared
with previous algorithms is shown in section 6. Finally, we
conclude this paper in section 7.

II. RELATED WORK

There is a promising way to provide powerful computing
resources to mobile devices for reducing the application com-
pletion time that deploying small-scale servers at the edge of
the Internet as shown in Figure 1. Computation-intensive and
time-sensitive applications such as mobile augmented reality
[9] and face recognition [13] ran at mobile devices can offload
their computation to the server on the network to accelerate
the application execution and reduce the energy consumption.

Early researches [3], [5] showed the advantages of com-
putation offloading that leads to not only the execution time
reduction for mobile applications but also the energy saving at
mobile devices. Computation offloading approaches from an
application viewpoint are proposed by the authors [14], [15],
[16] in which an application is considered as an inseparable
job and can be offloaded to server integrally. They formulated
the problem of how to reduce the energy consumption as a
competition game and each application acted as a competitor
who just considered of its own gain. They found a Nash
equilibrium for mobile users to offload their applications of
not for getting the largest gain. However, there is a truth that
application is usually comprised of a number of dependent
tasks each of which can be considered as an independent entity
for offloading.

Fig. 1. Edge computing for mobile clouds.

Furthermore, researchers [4], [7], [8], [9] focused on the
application offloading for speeding up the execution of the
application. Chun et al. [4] aimed to pre-calculate an offload-
ing decision before executing each application at a mobile
device. However, such a pre-calculated approach is difficult to
correspond to an unpredictable dynamic situation. Ra et al. [7]

proposed a greedy offloading algorithm for mobile applications
each of which consists of multiple tasks that are processed
serially. Jia et al. [8] considered an application with pure
parallel or pure serial tasks and proposed a heuristic offloading
algorithm that tries to make the load balancing between the
mobile device and the cloud server. However, in real case,
there always be both parallel tasks and serial tasks in the same
application. Wu et al. [9] considered with both parallel tasks
and serial tasks in the same application and tried to find a
better offloading strategy to reduce the application completion
time by a heuristic algorithm. Yang et al. [17] proposed
a heuristic offloading algorithm that aims to minimize the
average completion time of applications each of which consists
of a task chain. However, they did not consider the collision
of the data transmissions and the heuristic algorithm can not
find the optimal solution.

Until now, there is no work in the literature taking into
account of the parallel property of tasks in general application
and the collision between data transmissions over the shared
communication channel. Furthermore, all of the researchers
tried to solve the problem by heuristic algorithm, which
can not get the optimal solution. In this paper, we aim to
propose an optimal offloading approach in order to minimize
the average completion time of all of applications with the
considering of parallel property of tasks and the collision
between data transmissions. We consider the application model
in which the tasks of an application can be expressed by a
general task graph and formulate the offloading problem as a
MIP problem. At last, we find the optimal solution from this
MIP problem using an optimization solver.

III. SYSTEM MODEL

A. Mobile Cloud Computing System Model

In this paper, we consider a mobile cloud computing system
model as shown in Figure 1. There are a set of mobile devices,
denoted by N = {1, 2, · · · , N}, connected to an edge server.
We assume that each server is deployed at the edge network
near the mobile devices and the computing power of an edge
server is much stronger than any mobile device. A number of
mobile devices are connected to an access point (AP) via a
shared radio communication channel, e.g., a wireless network.
The AP is connected to the edge server via a high speed link
and the transmission delay between AP and edge server can
be neglected. We assume that both the edge server and the
mobile devices have enough CPU resources so that each task
can be executed independently by a dedicated CPU.

B. Application Model

We assume that there is only one application executed at
each mobile device. For mobile device i ∈ N , also called
user i or application i, there are a set of tasks constitute
application i, which is denoted as N i = {0, 1, 2, · · · ,M i}.
All of these tasks except the start task 0 and the end task M i

can be offloaded to edge server. Without loss of generality,
we assume that the execution relationship can be represented
by using a directed task flow graph as shown in Figure 2 in



which the set of nodes denoted by N i indicate the computation
tasks of application i. The set of directed arcs denoted by E i

connecting two nodes indicate data flows from tasks to tasks
and a directed arc eij,k ∈ E i is used to indicate that after
executing task j there are the output data sent to task k of
application i. The data size transmitted from task j to k of
application i is denoted as dij,k and the transmission delay
of this data over communication channel is dij,k/s where s
denotes the transmission rate. Particularly, for two connected
tasks j and k of application i which are processed at the same
side, either a mobile device or the edge server, we assume
that the transmission delay from task j to k can be neglected.
We also assume that parallel tasks such as task 1 and task
2 shown in Figure 2 can be processed in parallel at either a
mobile device or at the edge server. Furthermore, we assume
that a task can be processed only if it receives all the input
data from its previous tasks. For example, task 4 can only be
processed after it receives the input data from both tasks 1 and
2.

Fig. 2. An application model.

C. Wireless Network Model

The network model considered in this paper is shown in
Figure 3 where a number of mobile devices are connected to
the edge server via a shared communication channel and may
compete with each other for data transmission if they transfer
data simultaneously. We assume that the data transmitted
based on first-in-first-out (FIFO) principle over the commu-
nication channel and an ongoing data transmission cannot be
interrupted by any other data transmission. We denote the
transmission speed as s.

Fig. 3. Network model.

IV. STATIC OFFLOADING PROBLEM

In this paper, we focus on the problem of how to offload
each newly executed application in order to minimize average
application completion time. The completion time of an appli-
cation means the time period from the instant the application
is executed at a mobile device to the instant the mobile device

receives the output result. In the static offloading problem, we
assume that the edge server knows the information of each
application such as execution start time of each application,
workload of each task, the relationship of tasks and the data
transmission size of each data between connected tasks. The
server also knows the computing capability of mobile devices
so that it can decide which tasks should be offloaded in order
to minimize the average application completion time.

According to the execution time of each task and the
capacities of both the mobile devices and the server, we can
calculate the computation time of task j of application i at
the mobile device and the server, denoted by mi

j and cij ,
respectively. Since the computing power of the server is greater
than any mobile device, we have mi

j ≥ cij . The computation
start and end times of task j of application i are denoted
by τ ij and T i

j , respectively. The start and end times of the
data transmission from task j to task k of application i are
denoted by ωi

j,k and W i
j,k, respectively. A set of binary integer

variables xi = {xi
0, x1, · · · , xi

Mi} are used to show whether
the tasks of application i should be offloaded or not. If task j
of application i should be offloaded, xi

j = 1 and if it should
be executed at mobile device, xi

j = 0. We further assume that
tasks 0 and M i are not eligible for offloading, i.e., xi

0 = 0
and xi

Mi = 0. Furthermore, we use an integer variable yij,k to
show whether two tasks j and k of application i are executed
at same side or not. The value of yij,k is 0 if task j and task
k are executed at the same side, either mobile device i or
the server, and 0 otherwise. In order to ensure that there are
only one data transmission over the wireless communication
channel at the same time, we use a integer variable zi,i

′

j,k,j′,k′

to denote whether the data transmission from task j to k of
application i is earlier than another data transmission from task
j′ to k′ of application i′ or not. The value of zi,i

′

j,k,j′,k′ is 1 if
ωi
j,k ≤ ωi′

j′,k′ or 0 otherwise. We let δi denote the execution
start time of application i. The notation used in this paper is
shown in Table I.

In this section, we formulate the static offloading problem as
a mixed integer programming (MIP) problem (1) in the sense
that the execution time of each application is given in advance.
Then, in the next section we extend the static problem to a
dynamic offloading problem.

min T =
1

N

∑
i∈N

(
T i
Mi − τ i0

)
, (1)

subject to
W i

j,k = ωi
j,k + yij,kd

i
j,k/s,

j, k ∈ N i, eij,k ∈ E i, i ∈ N (2)

T i
j = τ ij + xi

jc
i
j + (1− xi

j)m
i
j ,

j ∈ N i, i ∈ N (3)
ωi
j,k ≥ T i

j , j, k ∈ N i, eij,k ∈ E i, i ∈ N (4)

τ ik ≥ W i
j,k, j, k ∈ N i, eij,k ∈ E i, i ∈ N (5)

yij,k ≥ xi
j − xi

k, j, k ∈ N i, eij,k ∈ E i, i ∈ N (6)

yij,k ≥ xi
k − xi

j , j, k ∈ N i, eij,k ∈ E i, i ∈ N (7)



TABLE I
NOTATION USED IN THIS PAPER.

Symbol Meaning
N set of applications
N i set of tasks of application i
Ei set of directed link connecting two tasks of application i

eij,k link from task k to task j on the task flow graph of
application i

mi
j execution time of task j of application i at mobile device
cij execution time of task j of application i at cloud server

dij,k data size transmitted from task j to k of application i

τ ij start time of the execution of task j of application i

T i
j end time of the execution of task j of application i

ωi
j,k start time for data transmission from task j to k of

application i
W i

j,k end time for data transmission from task j to k of appli-
cation i

xi
j decision variable indicating whether to offload task j of

application i to cloud
xi decision variables for tasks of application i, i.e., xi =

{xi
j}, j ∈ N i

yij,k a binary integer variable indicating whether two consecu-
tive tasks j and k of application i are executed at different
sides, either at mobile device or at the server

zi,i
′

j,k,j′,k′ a binary integer variable indicating whether the data trans-
mission from tasks j to k of application i precedes another
data transmission from tasks j′ to k′ of application i′

s channel transmission rate
I a positive constant that is larger than any value we use for

a variable in this paper
δi execution start time of application i

yij,k ≤ xi
j + xi

k, j, k ∈ N i, eij,k ∈ E i, i ∈ N (8)

yij,k ≤ 2− xi
j − xi

k,

j, k ∈ N i, eij,k ∈ E i, i ∈ N (9)

0 ≤ (ωi
j,k − ωi′

j′,k′)/I + zi,i
′

j,k,j′,k′ , j, k ∈ N i,

j′, k′ ∈ N i′ , eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ ,

i, i′ ∈ N , (i, j, k) ̸= (i′, j′, k′) (10)

1 ≥ (ωi
j,k − ωi′

j′,k′)/I + zi,i
′

j,k,j′,k′ , j, k ∈ N i,

j′, k′ ∈ N i′ , eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ ,

i, i′ ∈ N , (i, j, k) ̸= (i′, j′, k′) (11)

1 = zi,i
′

j,k,j′,k′ + zi
′,i
j′,k′,j,k, j, k ∈ N i,

j′, k′ ∈ N i′ , eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ ,

i, i′ ∈ N , (i, j, k) ̸= (i′, j′, k′) (12)

ωi′

j′,k′ ≥ W i
j,k − I(3− zi,i

′

j,k,j′,k′ − yij,k − yi
′

j′,k′),

j, k ∈ N i, j′, k′ ∈ N i′ ,

eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ , i, i′ ∈ N ,

(i, j, k) ̸= (i′, j′, k′) (13)
xi
0 = 0, xi

Mi = 0, τ i0 = δi, i ∈ N (14)

Constraint (2) shows the relationship between the start
and end times for data transmission from task j to task
k of application i. Here, dij,k/s denotes the time for data
transmission from task j to task k in application i over the
shared channel. Constraint (3) shows the relationship between

computing start and end times of task j of application i.
Constraint (4) shows that the data transmission form task j
to task k of application i should be after than the end time
of the computing for task j of application i. Constraint (5)
indicates that task k of application i can only be processed
after receiving all the input data from its previous tasks j
(eij,k ∈ E i). Constraints (6)–(9) show that the value of yij,k
is determined by the offloading decision variables xi

j and xi
k.

This binary integer variable indicates whether the data sent
from task j to k is transmitted over the communication channel
or not. If both of tasks j and k are decided to be offloaded,
the value of yij,k is 0. On the other hand, if only one of either
task j or k is decided to be offloaded, the value of yij,k will
be 1. Constraints (10)–(12) show that the value of zi,i

′

j,k,j′,k′ is
determined by the transmission start times for applications i
and i′, ωi

j,k and ωi′

j′,k′ , respectively. Here, a positive constant
denoted by I is used and it is greater than any other variable.
We have zi,i

′

j,k,j′,k′ = 1 if the data transmission from task j to
k in application i is early than the data transmission from task
j′ to k′ in application i′. Constraint (13) guarantees that there
is only one data transmission over the communication channel
at any time. For two data transmissions, i.e., yij,k = yi

′

j′,k′ = 1,
if the transmission from task j to k in application i is earlier
than that from task j′ to k′ in application i′, i.e., zi,i

′

j,k,j′,k′ = 1,
ωi′

j′,k′ should be later than the end time W i
j,k to avoid the

collisions of the two transmissions.
When the number of applications in the system and the

number of tasks in each application are limited, we can utilize
an appropriate optimization software package such as the
Gurobi Optimizer [10] to solve the static offloading problem.
However, in real systems, it is difficult to know when an
application is executed in advance. In the next section, we
focus on how to determine the offloading decision for each
application on condition that the application can be executed
at any time.

V. DYNAMIC OFFLOADING PROBLEM

Generally, each application is executed repeatedly but with-
out any information about when it is executed. In this paper,
we consider the case in which each application can be executed
at any time at a mobile device and after the execution the
device sends the information about the application such as the
execution time of each task and the data size sent between
tasks to the edge server to make the offloading decision.
The server then sends the offloading decision back to the
mobile device. Therefore, the time needed for the offloading
decision is also crucially important to the offloading approach.
Since the data size of the characteristics and the offloading
decision for an application is significantly smaller than that
sent between tasks of that application, we assume that the
delay for transmitting the information about an application
and the offloading decision can be ignored.

For a newly executed application, its data transmission
cannot interfere with the underway data transmissions of other
applications that are executed earlier than the new application.



However, the offloading decisions of those tasks and data
transmissions that are not still be executed or transmitted
may be changed in order to minimize the average application
completion time. The set of applications including those
under execution and the newly executed one is denoted by
N ′, but the applications are ordered by their execution start
times. Especially, the newly executed application is denoted
by N ′, and we let N ′ = {1, 2, · · · , N ′}. For each executed
application i (i < N ′) we can have the following relations
(15)–(20).

x′i
j = xi

j , i < N ′, j ∈ N i (15)

τ ′ik = τ ik, i < N ′, j ∈ N i (16)
T ′i
j = T i

j , i < N ′, j ∈ N i (17)

y′ij,k = yij,k, i < N ′, j, k ∈ N i (18)

ω′i
j,k = ωi

j,k, i < N ′, j, k ∈ N i (19)

W ′i
j,k = W i

j,k, i < N ′, j, k ∈ N i (20)

Here, we attempt to minimize the completion time of the
newly executed application but at the same time to avoid the
disturbance to the applications under execution. Therefore, we
reconsider the offloading decisions only for the tasks and the
data transmissions of the executed applications that are not
still be performed. We formulate a new MIP problem (21) for
each newly executed application N ′ by extending problem (1)
as follows.

min T =
1

N ′

∑
i∈N ′

(
T i
Mi − τ i0

)
, (21)

subject to
(2)–(14)

xi
j = x′i

j , τ
i
k = τ ′ik , T

i
j = T ′i

j , i < N ′,

j ∈ N i, τ ′ik ≤ δN
′
, (22)

yij,k = y′ij,k, ω
i
j,k = ω′i

j,k,W
i
j,k = W ′i

j,k,

i < N ′, j, k ∈ N i, ω′i
j,k ≤ δN

′
. (23)

Besides constraints (2)–(14) of problem (1), we have two
additional constraints (22) and (23) to guarantee not to change
the underway task offloading and data transmission decisions
of previous applications.

We can solve problem (21) to obtain the offloading de-
cision for each newly executed application. However, when
the network becomes congested, that is, there are many
transmission requests to the shared communication network,
the computation time for solving problem (21) may become
negligibly long, significantly poisoning the application com-
pletion time. By a simulation experiment in which there are
50 applications and the inter-execution of each application is
only 40s, we obtained a unrealistic result showing that the
average computation time is larger than 1000s. Therefore, this
approach is difficult to apply in real systems.

In order to reduce the computation time, we do not touch
any offloading decision of previously executed applications.

Then, the offloading decision problem for a newly executed
application can be formulated as the following MIP problem
(24).

min T = TN ′

MN′ − τN
′

0 (24)
subject to

WN ′

j,k = ωN ′

j,k + yN
′

j,kd
N ′

j,k/s,

j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(25)

TN ′

j = τN
′

j + xN ′

j cN
′

j + (1− xN ′

j )mN ′

j ,

j ∈ NN ′
(26)

ωN ′

j,k ≥ TN ′

j , j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(27)

τN
′

k ≥ WN ′

j,k , j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(28)

yN
′

j,k ≥ xN ′

j − xN ′

k , j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(29)

yN
′

j,k ≥ xN ′

k − xN ′

j , j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(30)

yN
′

j,k ≤ xN ′

j + xN ′

k , j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(31)

yN
′

j,k ≤ 2− xN ′

j − xN ′

k ,

j, k ∈ NN ′
, eN

′

j,k ∈ EN ′
(32)

0 ≤ (ωi
j,k − ωi′

j′,k′)/I + zi,i
′

j,k,j′,k′ , j, k ∈ N i,

j′, k′ ∈ N i′ , eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ ,

i, i′ ∈ N ′, (i, j, k) ̸= (i′, j′, k′) (33)

1 ≥ (ωi
j,k − ωi′

j′,k′)/I + zi,i
′

j,k,j′,k′ , j, k ∈ N i,

j′, k′ ∈ N i′ , eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ ,

i, i′ ∈ N ′, (i, j, k) ̸= (i′, j′, k′) (34)

1 = zi,i
′

j,k,j′,k′ + zi
′,i
j′,k′,j,k, j, k ∈ N i,

j′, k′ ∈ N i′ , eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ ,

i, i′ ∈ N ′, (i, j, k) ̸= (i′, j′, k′) (35)

ωi′

j′,k′ ≥ W i
j,k − I(3− zi,i

′

j,k,j′,k′ − yij,k − yi
′

j′,k′),

j, k ∈ N i, j′, k′ ∈ N i′ ,

eij,k ∈ E i, ei
′

j′,k′ ∈ E i′ , i, i′ ∈ N ′,

(i, j, k) ̸= (i′, j′, k′) (36)

xN ′

0 = 0, xN ′

MN′ = 0, τN
′

0 = δN
′

(37)

yij,k = y′ij,k, ω
i
j,k = ω′i

j,k,W
i
j,k = W ′i

j,k,

i < N ′, j, k ∈ N i, ω′i
j,k ≤ δN

′
(38)

Constraint (38) guarantees that the offloading decisions of the
previous applications will be unchanged. Since the number of
decision variables here is much less than that of problem (21),
the computation complexity become smaller.

VI. PERFORMANCE EVALUATION

In this section, we describe the performance evaluation
of our proposed approach in comparison with a previous
algorithm that is proposed by Wu et al. [9], and is shown by
”Partial offloaded” in the figures. Two extreme approaches,
called ”Full-offloaded” and ”No offloaded”, respectively, were
also simulated for comparison and in the former all the tasks



except task 0 and M i of each application are offloaded while
in the latter each application is executed locally at the mobile
device it arrives. We considered a system model in which
there are 50 mobile devices each of which has the same
computation power and each mobile device executes its mobile
application 20 times with different input data. We assumed that
each application contains 20 tasks and the task flow graph
was randomly generated. The computation time of each task
locally at a mobile device was generated randomly between
[4, 12]s and the computation times of tasks mi

0 and mi
Mi

were ignored. We also assumed that the computation power of
each mobile device is the same and the ratio of computation
speed of the server to a mobile device was fixed to be 4. The
time instant at which an application is executed at a mobile
device was generated randomly following the Poisson process,
i.e., the inter-execution time between applications follows the
exponential distribution. The data size sent between tasks was
generated randomly between [10, 40]MB.

A. Effect of communication speed

Figure 4 shows the average application completion time of
various algorithms when changing the speed of the shared
communication channel. The application completion time of
our proposed approach in Figure 4 include the computation
time of our approach. The average inter-execution time be-
tween two adjacent application execution is 40s. From Figure
4, we can see that our proposed approach performs much
better than all the other algorithms for a wide range of
communication speed.

When the communication speed is extremely low it is not
beneficial to offload any task to the server due to the com-
munication delay, and we can see that our proposed approach
performs similarly to the case of ”No offloaded”. Under low
communication speed, although a lot of application processing
are overlap with each others, which will lead to longer com-
putation time of our proposed approach, the performance of
our proposed approach is still better other algorithm. When the
communication speed is very fast, offloading tasks to the server
leads to large improvement over the application completion
time and we can see in this case that our proposed approach
performs similarly to the case of ”Full offloaded”. However,
even though the communication speed is very fast, there still
are some tasks need not to be offloaded and our proposed
approach can accurately identify these tasks. Furthermore, the
computation time of our proposed approach was small enough
to be ignored in this case.

We also see that our proposed approach outperforms the
”Partial offloaded” algorithm, even though we assumed that the
”Partial offloaded” algorithm always knows the transmission
delay exactly in order not to cause any bias to its offloading de-
cisions. The key drawback of the ”Partial offloaded” algorithm
is that possible collisions between data transmissions over the
shared communication network are not taken into account,
leading to worse performance when the communication speed
becomes slower.

Fig. 4. Effect of communication speed.

B. Effect of application inter-execution time

Figure 5 shows the average application completion time
of the algorithms under consideration when changing the
application inter-execution time. The shared channel speed was
fixed to 5Mbps. From Figure 5, we see that our proposed
approach performs much better than other ones except when
the network is very congested, e.g., when the inter-execution
time is 5s. That means when the network is very congested,
we can just turn off the offloading mechanism and just let each
mobile device process the arriving application.

Fig. 5. Effect of application inter-execution time.

We also show the average computation time for solving
problem (24) with 5Mbps communication rate and 10Mbps
communication rate respectively in Figure 6. From this figure,
we can see that the solution computation time becomes long
when the network becomes congested. For example, when the
inter-execution time is 5s, the computation time is 8s leading



the server to be overloaded. When the communication speed
becomes faster, there are fewer collisions leading the average
computation time to be faster.

Fig. 6. Average computation time of our proposed approach.

C. Effect of number of tasks of an application

The number of tasks of an application will affect the
computation time of our proposed approach. Hence, we also
compared the effect of different number of tasks of an ap-
plication. We assumed that there is only one mobile device
and executed its application only once. In our simulations, we
considered the number of tasks of an application are 10, 20,
30, 40, 50 respectively and compared the computation time of
our proposed approach. In each simulation, we executed the
application 1000 times with different task flow and input data
and calculated the average computation time of our approach.
From Figure 7, we can find that it has been growing fast when
the number of tasks of an application is greeter than 40. On
the other hand, our approach performs very well when the
number of tasks of an application is less than 40.

VII. CONCLUSION

In this paper, we focused on the problem of how to offload
the computation intensive tasks of newly executed mobile
applications in order to minimize the average completion time
of all the applications. We considered a realistic model for each
application in which tasks are expressed by a task flow graph.
We also considered the collisions at shared communication
network when more than one mobile device attempts to
transmit data simultaneously. At first, we formulated the static
offloading problem as a mixed integer programming (MIP)
problem. Then, we extended the static problem to a dynamic
offloading problem and solved this problem by optimization
software packages. The proposed approach was examined by
simulation experiments and the results show that our proposed
approach outperforms significantly previous ones in a wide
range of system parameters. Furthermore, the results also show

Fig. 7. Effect of number of tasks in an application.

that our approach is efficient when the number of tasks in each
application are limited.

REFERENCES

[1] X. Fan, J. Cao, and H. Mao, ”A survey of mobile cloud computing”,
ZTE Communications, Vol. 9, No. 1, 2010; 4–8.

[2] F. Liu, et al. ”Gearing Resource-Poor Mobile Devices with Powerful
Clouds: Architecture, Challenges and Applications”, IEEE Wireless
Communications, Vol. 20, No. 3, 2013; 14–22.

[3] K. Kumar, and Y. Lu, ”Cloud computing for mobile users: Can offload-
ing computation save energy?”, IEEE Computer Vol.43, No.4, 2010;
51–56.

[4] B. Chun, et al. ”Clonecloud: elastic execution between mobile device
and cloud”, Proc. ACM Int. Conf. Computer Systems (EuroSys2011),
2011; 301–314.

[5] Z. Li, C. Wang, and R. Xu, ”Computation offloading to save energy on
handheld devices: a partition scheme”, Proc. ACM Int. Conf. Compilers,
Architecture, and Synthesis for Embedded Systems (CASES2001), 2001;
238–246.

[6] M. V. Barbera, et al. ”To offload or not to offload? the bandwidth
and energy costs of mobile cloud computing”, Proc. IEEE Int. Conf.
Computer Communications (INFOCOM2013), 2013; 1285–1293. 10

[7] M. R. Ra, et al. ”Odessa: enabling interactive perception applications on
mobile devices”, Proc. ACM 9th Int. Conf. Mobile Systems, Applications,
and Services (MobiSys2011), 2011; 43–56.

[8] M. Jia, J. Cao, and L. Yang, ”Heuristic offloading of concurrent tasks for
computation-intensive applications in mobile cloud computing”, Proc.
IEEE Int. Conf. Computer Communications Workshops (INFOCOM
WKSHPS), 2014; 352–357.

[9] H. Wu, W. Knottenbelt, K. Wolter, and Y. Sun, ”An Optimal Offloading
Partitioning Algorithm in Mobile Cloud Computing”, Int. Conf. Quanti-
tative Evaluation of Systems (QEST2016) in LNCS 9826, eds. G. Agha
and B.V. Houdt, Springer, 2016; 311–328.

[10] Gurobi Optimization, I. ”Gurobi Optimizer Reference Manual (2016)”,
http://www.gurobi.com/, posted on 2017.

[11] Spacey, S. ”Concise CPLEX”, Imperial Technical Paper http://www.
doc. ic. ac. uk/research/technicalreports/2009/DTR09-7. pdf/, posted on
2009.

[12] Trummer I, Koch C. ”Solving the Join Ordering Problem via Mixed
Integer Linear Programming.” Proc. ACM Int. Conf. Management of
Data. (SIGMOD 2017), 2017; 1025–1040.

[13] A. B. Craig, ”Understanding Augmented Reality: concepts and applica-
tions”, 1st Ed., Morgan Kaufmann, 2013.

[14] X. Chen, ”Decentralized computation offloading game for mobile cloud
computing”, IEEE Trans. Parallel and Distributed Systems, Vol. 26, No.
4, 2015; 974–983.



[15] X. Chen, et al. ”Efficient multi-user computation offloading for mobile-
edge cloud computing”, IEEE/ACM Trans. Networking, 2015; 1–14.

[16] E. Meskar, et al. ”Energy efficient offloading for competing users on a
shared communication channel”, Proc. IEEE Int. Conf. Communications
(ICC2015), 2015; 3192–3197.

[17] L. Yang, et al. ”Multi-user computation partitioning for latency sensitive
mobile cloud applications”, IEEE Trans. Computers, Vol. 64, No. 8,
2015; 2253–2266.


