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SUMMARY In optical networks, wavelength converters are
required to improve the efficiency of wavelength-division multi-
plexing. In this paper, we propose a genetic algorithm to deter-
mine the optimal locations of the nodes in the network where a
given number of converters are placed. Optimality is achieved by
the minimum wavelength blocking probability. Our algorithm is
applied to two realistic networks constructed from the locations
of major cities in Ibaraki Prefecture and from those in Kanto Dis-
trict in Japan and is shown to reach the nearly optimal solution
in a limited number of generations. The accuracy is verified by
simulation. The computational time is compared with that of an
exhaustive search algorithm.
key words: optical network, wavelength converter placement,

genetic algorithm

1. Introduction

In communication networks, the use of the optical tech-
nology has been popular for the need of wide band-
width, high-speed transmission and a large number
nodes. For optical transmission, wavelength division
multiplexing (WDM) is proposed which has the ability
to allocate many independent optical wavelengths on a
single fiber link. One wavelength is dedicated to each
channel between two adjacent nodes of the network. In-
terconnection between distant nodes is made possible
by a set of available wavelengths over the path.

A lightpath is an optical communication path be-
tween a pair of source and destination nodes, and it
may span multiple links. Because of the limitation on
the number of wavelengths in each direct link, there
may not be a through wavelength on all links of a path.
With wavelength conversion capabilities inside the net-
work, the nodes are capable of routing different wave-
lengths, which can be reused throughout the network to
establish all the required connections [1]–[3]. A wave-
length converter is a device that can be placed on the
node where the wavelength conversion mechanism is as-
signed. It converts an incoming wavelength to a differ-
ent outgoing wavelength. It can improve the utilization
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of wavelengths and lower the wavelength blocking prob-
ability compared with the case in which no wavelength
conversion is allowed [3, Sect. 8.4.2].

We consider the converter placement problem as a
kind of combinatorial optimization problem with con-
straints. Converters are placed in distinct nodes be-
cause the number of converters is limited. Each place-
ment yields a blocking probability value of the network.
The optimal solution will be found if a combined place-
ment of converters has the minimum blocking proba-
bility value. The method of searching the optimal so-
lution in a combinatorial problem is problematic due
to the regional search of feasible solutions. Exploring
the search space of feasible solutions to get an optimal
solution has brought several algorithms to develop.

Approaches for the converter placement problem
have been developed in exact as well as heuristic algo-
rithms. Exact algorithms use exhaustive search that
delivers an optimal solution, but they have to examine
all combinations of converter placement [4], [5]. Heuris-
tic algorithms are based on probabilistic performances
with computational results such as random placement
[1]. In [6], the authors use genetic algorithms (GAs)
for placing full- and limited-range wavelength convert-
ers so as to minimize the blocking probability, which is
evaluated by network simulator for each individual in
the population. They conclude that “the approach of
using GA . . . is extremely time consuming.”

In this paper, we also propose a genetic algorithm
to determine the set of nodes with full-range wavelength
converters which gives the minimal blocking probabil-
ity. Unlike [6], however, we employ the numerical eval-
uation of the approximate blocking probability values
so that we can handle much larger networks than those
in [6] in a relatively short time.

Genetic algorithms have been applied to various
optimization problems, including those in the telecom-
munication field [6]–[8]. In general, the GA process
uses a mechanism of natural selection from biology con-
cept [9]–[11]. This is an evolution of individuals from
one generation to the next, based on the elimination of
weak individuals and the reproduction of strong indi-
viduals. The individuals are analogous to the possible
solutions of the problem. The stronger individuals are
related to the nearly optimal solutions that we search in
optimization problems. These individuals will survive
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over a number of generations until the strongest one
remains, that is, an optimal solution of the problem
is obtained. For reproducing individuals in the pop-
ulation, genetic operators such as selection, crossover,
and mutation are used. These operators will explore
more combinations of individuals which may lead to an
optimal solution of the problem.

The rest of the paper is organized as follows. Sec-
tion 2 contains formulation of the converter placement
problem and evaluation of the blocking probability.
The implementation of GA for the converter placement
problem is given in Sect. 3. Results of experiments with
GA and comparison of the GA solutions to those found
by the exhaustive search algorithm and simulation are
presented in Sect. 4. In Sect. 5 we make some conclud-
ing remarks.

2. Converter Placement Problem

In this section, we formulate the optimal converter
placement problem for the WDM optical networks,
show a procedure for evaluating the blocking proba-
bility, and discuss the exhaustive search algorithm.

2.1 Network Model

Following [5], we introduce a network model of the con-
verter placement problem using graph theoretic termi-
nology. We consider a directed graphG = (V, L), where
V is the set of vertices representing the network nodes
and L is the set of directed edges representing the uni-
directional fiber links in the network.

The traffic matrix of the network is given by {λsd},
where λsd, s �= d, denotes the mean number of calls
that arrive at source node s destined for destination
node d per unit time. The call durations are assumed
to be exponentially distributed with a mean taken as
the unit of time. We assume that calls arrive at each
node in a Poisson process. The path from node s to
node d is predetermined for every pair of s, d ∈ V . Let
F be the number of wavelengths on each direction of
every link in the network. Every call requires a full
wavelength on each link it traverses.

Let lij denote the directed link from node i to node
j ∈ V . The link load ρij per wavelength for link lij is
defined as the probability that a given wavelength is
occupied by a lightpath on link lij . Thus it is given by

ρij =

∑
s,d λsd

F
, (1)

where the summation is taken over all (s, d) pairs such
that the path from s to d traverses lij . It is assumed for
the stability of the network that λsd’s are small enough
so that ρij < 1 for all i, j ∈ V .

2.2 Blocking Probability

Let N be the number of nodes in the network, out of

which K nodes are equipped with converters. When a
call arrives at a source node, a lightpath is established
if at least one wavelength is available on every link it
traverses on the path to the destination node, while the
same wavelength must be used between the converter
nodes. Otherwise it is blocked, for no alternative paths
are allowed by assumption.

For the evaluation of blocking probabilities, we as-
sume that the wavelength occupancy on each link is sta-
tistically independent of the occupancy of other wave-
lengths on the same link as well as that on other links.
This “independence assumption” is commonly used in
the analysis of blocking probability of optical networks
[1]–[6], [12]. It yields the approximate values for the
blocking probability very quickly (which is mandatory
when used in each generation of GA). In Sect. 4 of this
paper, we present the simulation result for a specific
network example that validates the optimization by
means of this assumption.

Let us first consider the path from node i to node
j, which contains no converter nodes. Suppose that
this path consists of successive links lii1 , li1i2 , . . . , linj ,
where i1, i2, . . . , in are the nodes between i and j along
the path. A lightpath must use the same wavelength
through these links. We define ρ̄xy := 1 − ρxy for link
lxy, which is the probability that a given wavelength on
lxy is empty at an arbitrary time as well as at a time
when a call arrives (due to a property of the Poisson
process). Then, ρ̄ii1 ρ̄i1i2 · · · ρ̄inj is the probability that
a given wavelength is available on all links over the
path from i to j. Hence the probability that a call
successfully finds a lightpath on the path from i to j is
given by

f(i, j) = 1− (1− ρ̄ii1 ρ̄i1i2 · · · ρ̄inj)F . (2)

We next consider the path from source node s to
destination node d that includes converters at nodes
c(1), c(2), . . . , c(k). The set of these nodes is a subset
of given converter placement C in the entire network.
The probability of successfully establishing a lightpath
on the path from s to d is given by

Ssd(C) =
k∏

i=0

f(c(i), c(i+ 1)), (3)

where c(0) := s and c(k + 1) := d. Thus the blocking
probability for the path from s to d is given by

Psd(C) = 1− Ssd(C). (4)

Finally, the blocking probability over the entire
network with converter placement C is given by

Γ(C) =

∑
s,d∈V λsdPsd(C)∑

s,d∈V λsd
. (5)

This formula is used to select the optimal C that min-
imizes Γ(C) in our genetic algorithm.
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2.3 Exhaustive Search Algorithm

A straightforward way to solving the optimal converter
placement problem is the exhaustive search of all com-
binations of converter locations. Given a network of
N nodes with links and the number K of converters,
it finds an optimal placement of converters that mini-
mizes the blocking probability in the following steps.

Combinatorial enumeration: We produce the set of all(
N
K

)
converter placements.

Blocking probability calculation: For each combination,
we calculate the blocking probability according to
Eq. (5).

Optimal placement selection: We select a converter
placement that yields the minimum blocking prob-
ability as the optimal placement.

This method surely leads to the globally optimal solu-
tion. Obviously, however, it is not an efficient way to
solve the problem unless N and K are small.

3. Genetic Algorithm

In this section, we present a GA for the converter place-
ment problem. Each individual in the population repre-
sents a possible converter placement as a string of bits.
The objective is to find the placement that minimizes
the blocking probability. The GA starts with creat-
ing the initial population. Better placements are se-
lected over a number of generations. Operators such as
crossover and mutation explore further possible place-
ments. With proper constraint handling, the GA re-
tains only feasible placements. When the stopping cri-
terion is satisfied, an optimal placement is found.

3.1 Representation of Converter Placement

We use binary representation in encoding the possible
solution. The converter placement is represented by an
array of values 0 and 1. We can use this bit array for
two alternative meanings.

In the first meaning of bit values, it represents the
combination number in all converter placement combi-
nations. For example, consider a network with 5 nodes
and 2 converters to be placed. The number of combi-
nations is

(
5
2

)
= 10, and 1 ≤ j ≤ 10 corresponds to

number j of the combinations. We construct the or-
dered set of 2-out-5 combinations as follows: number 1
is the converter placement at nodes 1 and 2, number 2
at nodes 1 and 3, and so on until number 10 at nodes
4 and 5. Thus we form the bit array of length 4. Since
we have 10 combinations the size of search must not
exceed 10. An infeasible solution occurs if the bit array
has a value 0 or greater than 10.

The second meaning of bit values has a direct rep-
resentation of the converter placement. For example, in

Fig. 1 Diagram of a GA process.

a network with 5 nodes and 2 converters to be placed,
vector solution x = (xj), 1 ≤ j ≤ 5, means that if
xj = 1, node j is selected, and if xj = 0 otherwise.
The length of the array is 5, since there are 5 nodes in
the network. The bit array 01100 means that it selects
nodes 2 and 3 for converter placement. An infeasible
solution occurs when the number of 1-bits exceeds the
number of converters to be placed. The weakness of this
representation can be solved by a constraint handling
method. Another problem is that it produces sparse
vectors when the number of converters is small in a
network with a large number of nodes. For example,
vector 0000011000 means that it selects nodes 6 and 7
out of 10 nodes in a network. Then this representation
has high possibility to produce infeasible solutions.

In our implementation of GA for the converter
placement problem, we may employ either representa-
tion depending on the case. If the number of converters
is small, it tends to produce many infeasible solutions;
we then use the first representation. If the number of
converters is large, we may not have too many infeasible
solutions; we can then use the second representation.

3.2 GA Process

Let us elaborate each procedure of the GA process for
searching the optimal combination of nodes with con-
verters, as shown in Fig. 1.

Initialization: Each individual of the population is a
possible solution to the problem. The GA starts
with an initial population which is generated from
the random seeds.

Evaluation of fitness value: The objective function to
be minimized is the value of blocking probability
given in Eq. (5). To maintain uniformity over the
problem domain, we use a fitness value for the ob-
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jective function normalized to a convenient range.
The normalized objective function indicates the fit-
ness of an individual that the selection uses to eval-
uate. Individuals with good fitness value will be
selected for the next generation.

Selection: We use the tournament selection method for
selecting two parents to produce new individuals
for the next generation [9, p.121]. This selection
leaves only those individuals with highest fitness
values in the population.

Crossover: Crossover explores the diversity in the indi-
vidual’s bits. We use the uniform crossover opera-
tor by which a single child is created from two par-
ents by copying each bit value from either parent
[10, p.49]. The probability of crossover is given in
the parameter setting. Using the random sequence
of 0’s and 1’s generated with this probability, GA
selects the parent from which each bit is copied.

Mutation: The mutation procedure is applied after the
crossover on each child independently. Every child
gets an opportunity for changing each bit value ac-
cording to the probability of mutation. This prob-
ability is also given in the parameter setting. The
mutation plays a role to restore lost genetic values
when the population converges too fast [9, p.14].

Replacement: The new individual replaces the old indi-
vidual or their parent in order to maintain a fixed
population size if the fitness value of the new indi-
vidual is higher than that of their parent. If the fit-
ness value of the new individual is lower than that
of their parent, the new individual is discarded and
the next generation employs the old individual.

3.3 Constraints Handling

In our GA process, the initialization, crossover, and mu-
tation procedures will breed new individuals with new
fitness values. If they do not satisfy the constraint con-
ditions, the GA produces infeasible solutions. We avoid
producing infeasible solutions by changing the bits of
binary representation in accordance to the constraint.

Let us refer back to the representation examples
in Sect. 3.1. In the first meaning of representation, the
feasible solution of bit array must be between 0001 and
1010 both inclusive. If the new individual does not fall
in this region, the constraint is violated. To satisfy the
constraint, some value must be added if the individual
has a bit array 0000; some value must be subtracted
from a bit array greater than 1010. In the second rep-
resentation, the number of 1-bits denotes the number
of converters. If it exceeds the given number of convert-
ers, the constraint is violated. To satisfy the constraint,
some 1-bits must be changed to 0-bits. If the number of
1-bits is less than that of converters, some 0-bits must
be changed to 1-bits. For changing the bit values, we
manipulate each bit randomly until the constraint is

satisfied.
The method of handling constraints modifies the

GA process. It is incorporated in the initialization,
crossover, and mutation procedures in order to produce
only feasible solutions. Then the space of feasible so-
lutions may include the optimal solution. The speed
of convergence to the optimal solution depends on the
probabilities of crossover and mutation. The crossover
and mutation should maintain a certain degree of diver-
sity in the population so as not to converge prematurely
to some sub-optimal solution.

3.4 Stopping Criteria

A disadvantage in the optimization with GA is the diffi-
culty of deciding when to stop [7]. Although statistical
variables, such as average and best fitness values, are
available in each generation, their values change almost
unexpectedly as generations evolve. Stopping after a
certain number of iterations with no improvement or
when the change in average fitness is small may cause
the algorithm to stop too early or too late.

Another stopping criterion may be that if the av-
erage fitness attains the value we expect then the iter-
ation stops. In this case, the number of iterations may
become large and the long computation may be needed.

In the present study, we have used a stopping cri-
terion based on the number of generations. Our algo-
rithm stops when the generation counter exceeds the
preset maximum number of generations.

4. Experimental Results

In this section we show some numerical examples of us-
ing the GA for the converter placement problem. We
have also conducted random-event simulation which
simply counts the number of blocked calls out of all
arriving calls over a long period. Recall that the evalu-
ation of the blocking probability in each generation of
our GA relies on the “independence assumption” men-
tioned in Sect. 2.2. Comparison with simulation shows
that GA can attain nearly optimal solutions.

4.1 Construction of Network Examples

Before presenting the numerical results for specific net-
work examples, some remarks may be in order for their
construction and the preparation of the shortest paths,
which are commonly used by GA and simulation.

Given an area in Japan, we have selected major
cities in that area as the set of network nodes. The lo-
cations of those cities are extracted from NTT’s public
web site (http://www.ntt-east.co.jp/tariff/ryoukin/).
Then, by the Delaunay triangulation [13, p.175] for the
set of node locations, we get the set of links in the net-
work. Thus we obtain a network topology. We note
that the resulting networks are by no means related to
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the real networks of NTT or any other companies.
Given the network topology, we have applied Di-

jkstra algorithm [13, p.273] to determine the short-
est path for every pair of the source and destination
nodes. Because of high-speedness of optical transmis-
sion, we can assume that the actual length of each link
between adjacent nodes does not affect the network per-
formance. Therefore, we have simply used the number
of links (hops) as the distance measure in the Dijkstra
algorithm. A tie is broken in a specified manner.

4.2 Ibaraki Network

We first consider a network consisting of N = 14 nodes
that represent major cities in Ibaraki Prefecture, which
we call Ibaraki Network for the sake of convenience, as
shown in Fig. 2.

In our experiment, we assume K = 2 and F = 3
for the number of converter nodes and the number of
wavelengths on each link, respectively. We also assume
that calls are generated at rate λsd = 0.1 for every pair
of source and destination nodes in the network. The
GA parameters are as follows:

• Population size = 20
• Probability of crossover = 0.6
• Probability of mutation = 0.00333
• Maximum number of generations = 20
We have conducted the experiment under Unix

on a DEC Celebris GL workstation. Our GA starts
with the initial generation which consists of 20 individ-
uals according the parameter setting. Each individual
represents a combination of converter nodes out of 14
nodes in the network. The fitness value is related to
the blocking probability. An individual with the best
value in each generation is the one with the smallest
blocking probability among all individuals in the pop-
ulation. The average in each generation is the average
value over the 20 individuals in the population.

The results are presented in Fig. 3, which shows

Fig. 2 Configuration of the Ibaraki Network.

the performance of the worst, best and average solu-
tions. The x-axis represents the number of generations
and the y-axis is the value of the objective function, i.e.,
the blocking probability. We see that the initial gen-
eration starts with the average value 0.0512, the worst
0.0545, and the best 0.0454. In generation 4, all indi-
viduals exhibit the same value, which is said that the
GA has come to the premature convergence [9, p.74].
However, after generation 4, the GA improves the in-
dividuals’ values by exploiting the search space with
mutation. Then in generation 10 the optimal solution
is reached with the value 0.0394, for which Daigo and
Ishioka are the converter locations. We observe that
the GA attains an optimal solution in a small num-
ber of generations. Selection of Daigo seems to be a
peripheral effect due to the Delaunay triangulation.

In this case, there are only
(
14
2

)
= 91 combina-

tions of converter placements. Therefore, we can calcu-
late the blocking probabilities for all combinations by
Eq. (5). We have also conducted simulation by generat-
ing 500,000 calls for each combination. The results are
compared in Fig. 4. In both analysis and simulation,
the converter placement in Daigo and Ishioka gives the
minimum blocking probability among all combinations.

Fig. 3 GA performance for the Ibaraki Network.

Fig. 4 Comparison of the blocking probability values by
analysis and by simulation for the Ibaraki Network.
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However, the values by simulation are generally larger
than those by analysis. The reason is explained in the
Appendix.

4.3 Kanto Network

Our second example is a network consisting of N = 82
nodes representing major cities in the Kanto District,
which we call Kanto Network, as shown in Fig. 5.

We first consider the case with K = 2 and F = 3,
and assume that calls are generated at rate λsd = 0.005
for every (s, d) pair. The GA parameters are as follows:

• Population size = 40
• Probability of crossover = 0.6
• Probability of mutation = 0.00333
• Maximum number of generations = 60

The performance of GA for this case is shown in
Fig. 6, where the generation starts with the average
value 0.1961, the worst value 0.1996, and the best value
0.1879. In generations 10 to 37, the GA comes to the

Fig. 5 Configuration of the Kanto Network.

Fig. 6 GA performance for the Kanto Network with 2
converter nodes (λsd = 0.005).

premature convergence at 0.1764. However, after gen-
eration 38, the GA improves the individuals’ values by
exploitation. In generation 42, the GA finds the op-
timal solution at 0.1673 with converters at Chichibu
and Kuroiso. While Chichibu (with 9 links) is inside,
Kuroiso is on the peripheral of the network. This re-
sult agrees with the exhaustive search of

(
82
2

)
= 3321

combinations of converter placements.
Finally we study the dependence of the GA per-

formance on the number K of the converters. In Fig. 7,
we present the best value performance for K = 0, 2, 3,
5, 10, 20, 50, and 82 for the Kanto Network with F =
3 and λsd = 0.01. The GA parameters are the same as
above except that the maximum number of generations
has been extended to 200.

As expected, a larger number of converters can de-
crease the value of blocking probability. As the search
space becomes larger, the convergence is attained more
slowly. The value K = 0 corresponds to the case in
which no converters are used in the network. It is an
upper bound of the blocking probability. The value
K = 82 corresponds to the case in which all nodes are
equipped with converters. It provides a lower bound of
the blocking probability.

Table 1 compares the computational time of our
GA with the exhaustive search algorithm (ESA) for
the Kanto Network with various numbers of converters.
The computational time requirement of the ESA be-
comes large in proportion to the size of the search space

Fig. 7 GA best value performance for the Kanto Network with
K converter nodes (λsd = 0.01).

Table 1 Run time of exhaustive search algorithm (ESA) and
GA for the Kanto Network with K converter nodes.

K Search Space ESA (min.) GA (min.)

2 3321 1′ 6′′ 5′ 2′′

3 88560 28′45′′ 5′32′′

5 2.72853 × 107 7.45 days 6′ 8′′

10 2.13928 × 1012 - 7′20′′

20 6.20877 × 1018 - 9′ 2′′

50 5.93991 × 1022 - 12′30′′
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which grows exponentially with the number of convert-
ers. In contrast, the computational time requirement of
GA barely grows with the number of converters. This
experiment shows that the computational time of GA
achieves considerable improvement over ESA.

5. Conclusion

The purpose of our GA method is to produce an op-
timal solution for a certain population of individuals
in a limited number of generations. This method has
been tested to obtain the optimal converter placement
for the network examples consisting of major cities in
Ibaraki and Kanto areas. We have compared the GA
performance (accuracy and computational time) with
the ESA and the simulation.

A major difference between GA and ESA is in
the size of the search space for the optimal solution.
The ESA compares the blocking probability values for
all combinations of converter placement in a network.
For large networks where the number of combinations
grows, it needs explosive computational time for search-
ing the optimal solution. On the other hand, since GA
restricts trials to feasible solutions it does not need to
compare all the blocking probability values.

The GA tries to reach an optimal solution for a
certain population in a number of generations. Us-
ing the probability model in crossover and mutation
to produce more diversity in the population, there is a
higher chance of producing the solution with the opti-
mal value. It has been shown by our experiment that
GA can produce a nearly optimal solution in a limited
number of generations by spending less time than the
ESA.

Our GA evaluates the blocking probability by a
procedure that relies on the independence assumption
about the wavelength occupancy on each link. This
leads only to approximate values. However, our goal is
to identify the optimal converter placement quickly, not
the exact evaluation of the blocking probability values
by precise computation. By comparison with simula-
tion, we have shown that the optimal placement se-
lected by GA is nearly correct.
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Appendix: Approximation by Independence
Assumption

As a simple example, suppose that we have load λ on
a unidirectional directed link with F wavelengths. The
mean call duration is unity. Then the blocking proba-
bility is given by the well-known Erlang’s B formula:

PB,exact =
λF

F !

/ F∑
j=1

λj

j!
.

On the other hand, the approximate analysis based on
the independence assumption of Sect. 2.2 yields

PB,approx =
(

λ

F

)F

.

Thus, when λ is small, we have
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PB,exact ≈
λF

F !
> PB,approx.

This indicates that the blocking probability values by
simulation (≈ exact values) are larger than those by
the approximate analysis, as in Fig. 4.
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