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Abstract. This paper considers cooperative transferable utility games with graph structure,
called graph games. A graph structure restricts the set of possible coalitions of players, so that

players are able to cooperate only if they are connected in the graph. Recently the average tree
solution has been proposed for arbitrary graph games by Herings et al. The average tree solution
is the average of several specific marginal contribution vectors, and was shown to belong to the
core if the game exhibits link-convexity. In this paper the main focus is placed on the relationship

between the core and the average tree solution, and the following results were obtained. Firstly,
it was shown that some marginal contribution vectors do not belong to the core even though the
game is link-convex. Secondly, an alternative condition to link-convexity was given. Thirdly, it
was proven that for cycle-complete graph games the average tree solution is an element of the

core if the game is link-convex.

1. Introduction

In many settings of cooperative games, players gain more benefits by cooperating rather than
by acting on their own. A subgroup of players is called a coalition and the total profit they
can obtain from cooperation is called its worth. If the players are able to divide the worth of a
coalition(transferable utility), there arises the question of how to allocate the worth among the
players. The core is a classical set-valued solution, where the set of payoff vectors satisfy the
following two conditions. First, the worth of the whole set of players (the grand coalition) is
distributed among the players (efficiency),∑

i∈N

xi = v(N).

Second, no coalition receives less than its worth (non-domination),∑
i∈S

xi ≥ v(S), for all S ⊆ N with S 6= ∅.

If a payoff vector is an element of the core, no sub-coalitions can do better by being on their own.
Thus, the payoff vector prevents the collapse of the grand coalition. The core, however, has two
possible problems: it might be empty, and it might contain many elements. To overcome these
problems, several single-valued solutions have been suggested.

The Shapley value is the most well-known single-valued solution, see Shapley [10]. At the
Shapley value each player is promised the average of all his marginal contributions to any coalition
that he joins. The Shapley value is an element of the core if the game exhibits convexity. However, it
is not always true that any coalition S can form and achieve worth v(S). In many cases cooperation
among players relies on their communication structure.

In this paper we study cooperative games with limited communication structure represented by
an undirected graph. These so-called graph games were introduced by Myerson [8]. A group of
players is only able to cooperate if they are connected in the graph. The best known single-valued
solution for such games is the Myerson value, which is characterized by efficiency and fairness.
The Myerson value coincides with the Shapley value when the underlying graph is complete. Van
den Nouweland and Borm [7] showed that the Myerson value lies in the core if the game exhibits
convexity and the underlying graph is cycle-complete.
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Herings et al. [5] proposed the average tree solution for the class of cycle-free graph games.
The average tree solution is the average of marginal contribution vectors over a set of rooted
spanning trees. Herings et al. proved that the corresponding solution is in the core if the game
exhibits superadditivity, while the Myerson value or the position value may not. The condition of
superadditivity was relaxed to a weaker one by Talman and Yamamoto [12].

In Herings et al. [6] the average tree solution was generalized for the class of arbitrary graph
games. They constructed a specific set of rooted spanning trees, called admissible spanning trees.
The generalized average tree solution coincides with the Shapley value when the underlying graph
is complete and with the average tree solution as defined by Herings et al. [5] when the underly-
ing graph is cycle-free. They also introduced the notion of link-convexity for graph games. For
games with complete graph, link-convexity coincides with convexity, but in general the condition
is weaker than convexity. For games with a cycle-free graph, link-convexity is even weaker than
superadditivity. Herings et al. also claimed that the average tree solution is in the core if the game
is link-convex. Baron et al. [1] defined the average tree solution with respect to trees constructed
by Depth First Search (DFS) and Breadth First Search (BFS). When the underlying graph is
complete, the average tree solution with respect to DFS trees coincides with the Shapley value and
the solution with respect to BFS trees yields the equal surplus division.

In this paper we discuss the relationship between the core and the average tree solution. We first
show that some link-convex graph games have some marginal vectors which are not in the core.
Secondly, we refine link-convexity to the condition that ensures the average tree solution belongs
to the core for arbitrary graph games. Thirdly, we prove that for the class of cycle-complete graph
games which satisfy link-convexity the average tree solution is an element of the core.

This paper is organized as follows. Section 2 is a preliminary section on games with graph
structure. Section 3 introduces the average tree solution for arbitrary games with graph structure.
Section 4 relates the average tree solutions to the core. Finally in section 5 we give some conclusions.

2. TU-games with communication structure

In this paper we consider cooperative transferable utility games with graph structure, called
graph games introduced by Myerson [8]. A graph game is represented by a triple (N, v, L) where
N is a set of n players, v : 2N → R a characteristic function that assigns the worth to coalitions,
and L ⊆ {{i, j} | i 6= j, i, j ∈ N } is a collection of communication links between players. The
pair (N, L) is called an undirected graph with N the set of nodes, being the players of the game,
and L the collection of edges (links) between the nodes. In case L = { {i, j} | i 6= j, i, j ∈ N } the
game (N, v, L) is said to have full communication structure and is simply denoted by (N, v). A
payoff vector x ∈ Rn is an n-dimensional vector giving payoff xi to player i ∈ N . For simplicity
we denote x(S) =

∑
i∈S xi for S ∈ 2N .

Next, we will provide several notations for an undirected graph. For a graph (N, L) and a subset
K ⊆ N , the set L(K) is given by

L(K) = { {i, j} ∈ L | i, j ∈ K }.

A sequence of different nodes P = {i1, i2, . . . , im} is a path from i1 to im in the graph (K,L(K))
if {ik, ik+1} ∈ L(K) for all k ∈ {1, 2, . . . , m − 1}. The path P is denoted by i1 ∼K im, where
i1 ∼ im stands for a path in (N,L). Two nodes i, j ∈ N are connected in (K, L(K)) if either
i = j or there exists a path i ∼K j. For a path P = {i1, i2, . . . , im}, the number, m − 1, is said
to be the length of P . A path between i1 and im is shortest if the length is minimal among all
paths connecting i1 to im. A graph (N, L) is connected if any two nodes i, j ∈ N are connected
in (N, L). A subset of nodes K ⊆ N is said to be a connected subset of N when the subgraph
(K, L(K)) is connected. The collection of all connected subsets of K in (K, L(K)) is denoted by
CL(K), i.e., CL(K) := {S | S ⊆ K is a connected subset of K }. A subset K ′ of K is called a
connected component of (K,L(K)) if K ′ is maximally connected, that is, K ′ is connected but the
set K ′ ∪ {j} is not connected for any j ∈ K \K ′. The collection of all connected components of
(K, L(K)) is denoted by ĈL(K), i.e., ĈL(K) := {S | S ⊆ K is a connected component of K }. A
sequence of nodes {i1, i2, . . . , im} is called a cycle in a graph (N, L) if

(i) m ≥ 3,
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(ii) all nodes i1, i2, . . . , im are different,
(iii) im+1 = i1,
(iv) {ik, ik+1} ∈ L for k = 1, 2, . . . , m.
A graph is said to be a tree if it is connected and does not contain any cycle. A spanning tree
of (N,L) is a tree containing all the nodes N . A graph is said to be cycle-free when it does not
contain any cycle. A graph is said to be complete when any two of its nodes are connected by an
edge. A graph is said to be cycle-complete if the following holds: if {i1, i2, . . . , im, i1} is a cycle
in the graph (N, L) then {ik, ih} ∈ L for all distinct k, h ∈ {1, 2, . . . , m}. Since cycle-free graphs
do not contain any cycle, they trivially satisfy the requirement of cycle-completeness. The class of
complete graphs is another class of graphs that are cycle-complete.

In this paper it is assumed that without loss of generality in a graph game (N, v, L), the grand
coalition N is always connected in the graph (N,L), i.e., N ∈ CL(N). We also assume that players
of a coalition S ∈ 2N are able to cooperate only if all players of S can communicate directly or
indirectly with each other, i.e., S ∈ CL(N). For S ∈ CL(N), the worth v(S) is the maximum
amount of payoff a coalition S can obtain for its players.

Superadditivity and convexity are defined below, referring the definitions in Talman and Ya-
mamoto [12]. Convexity of (N, v, L), however, is originally defined in this paper.

. (N, v) is superadditive if

v(S) + v(T ) ≤ v(S ∪ T )

for all S, T ∈ 2N satisfying S ∩ T = ∅.

. (N, v, L) is superadditive if

v(S) + v(T ) ≤ v(S ∪ T )

for all S, T ∈ CL(N) satyisfying S ∪ T ∈ CL(N) and S ∩ T = ∅.

. (N, v) is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

for all S, T ∈ 2N .

It is equivalent to

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T )

for all S, T ⊆ N \ {i} satyisfying S ⊆ T.

. (N, v, L) is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

for all S, T ∈ CL(N) satyisfying S ∪ T ∈ CL(N) and S ∩ T ∈ CL(N) ∪ {∅}.

For a graph game (N, v, L) a payoff vector x is said to be efficient if x(N) = v(N). The core,
denoted by Core(N, v, L), of a graph game (N, v, L) is the set of efficient payoff vectors that are
not dominated through any connected coalition,

Core(N, v, L) := {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ∈ CL(N) }.

The core of a game (N, v) with full communication is denoted by Core(N, v), i.e.,

Core(N, v) := {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ∈ 2N }.

Given a graph game (N, v, L), Myerson [8] defined the restricted game (N, vL) as

vL(S) =
∑

T∈ĈL(S)

v(T ), for S ∈ 2N .

Notice that the core of a graph game Core(N, v, L) equals the core Core(N, vL) of the restricted
game (N, vL) when the graph (N, L) is connected.
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3. The average tree solution

In this section we provide two definitions of the average tree solution, the solution given by
Herings et al. [6] and the solution constructed by Depth First Search algorithm. To describe the
average tree solution we first need to give some definitions of a directed graph.

3.1. Definition of directed graph. A graph (N, A) is directed if A ⊆ N ×N , i.e., A is a set of
ordered pairs of nodes. An ordered pair of nodes is called an arc. For a graph (N, A) a sequence
{i1, i2, . . . , im} is a directed path if (ik, ik+1) ∈ A for all k ∈ {1, 2, . . . ,m − 1}. For A ⊆ N × N
let L(A) = { {i, j} | (i, j) ∈ A }, i.e., the undirected version of A. A directed graph (K, T ) is said
to be a rooted tree if the undirected graph (K, L(T )) induced by T is a tree and each node has at
most one arc entering the node. Clearly, a rooted tree has exactly one node that no arc enters,
which is called the root, and there is a unique directed path from the root to every node. A rooted
spanning tree (N, T ) is a rooted tree containing all the nodes N . For a given rooted spanning tree
(N, T ) and a subset K ⊆ N , the set T (K) is given by

T (K) := { (i, j) ∈ T | i, j ∈ K }.

For a rooted spanning tree (N, T ), a node j ∈ N is a successor of i ∈ N if (i, j) ∈ T . A node j ∈ N
is a descendant of i ∈ N if j = i or there is a directed path from i to j in (N,T ). Given a rooted
tree (N, T ), we denote the sets of successors and descendants of i ∈ N by sucT (i) and desT (i)
respectively. A node j ∈ N is said to be an ancestor of i ∈ N if j 6= i and there is a directed path
from j to i.

3.2. Admissible coalitions. To generalize the average tree solution to the class of arbitrary graph
games, Herings et al. [6] consider a collection of admissible coalitions constructed as follows.

Definition 3.1 (Admissible Coalitions). For a graph (N, L), B = {B1, B2, . . . , Bn} of n subsets
of N is a collection of admissible coalitions if it satisfies the following conditions:

(i) For all i ∈ N , i ∈ Bi, and for some j ∈ N , Bj = N ;
(ii) For all i ∈ N and K ∈ ĈL(Bi \ {i}), K = Bj and {i, j} ∈ L for some j ∈ N .

Definition 3.2. For a graph (N, L), let B = {B1, B2, . . . , Bn} be a collection of admissible coali-
tions. Define the directed graph (N, TB) as

TB := { (i, j) | i, j ∈ N, Bj ∈ ĈL(Bi \ {i}) }.

According to Lemma 3.2 in Herings et al. [6] the above collection of admissible coalitions B has
the following property.

Lemma 3.3 ([6]). For a graph (N, L), let B = {B1, B2, . . . , Bn} be a collection of admissible
coalitions. Then, (N,TB) is a rooted spanning tree.

We denote the collection of all rooted spanning trees of Definition 3.2 by BADM. Herings et
al. [6] defined their average tree solution with respect to the rooted spanning tree of BADM.

Definition 3.4. For a graph game (N, v, L), the marginal contribution vector yT ∈ Rn corre-
sponding to T ∈ BADM is the vector of payoffs given by

(3.1) yT
i = v(Bi)−

∑
K∈ĈL(Bi\{i})

v(K), i ∈ N.

According to Herings et al. [6], the average tree solution is defined as follows.

Definition 3.5 (Herings et al. [6]). On the class of arbitrary graph games (N, v, L), the average
tree solution is defined by

(3.2) ȳ =
1

|BADM|
∑

T∈BADM

yT .
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3.3. Depth First Search Tree. Now we introduce a tree growing algorithm, called Depth First
Search(DFS), and define the average tree solution based on the collection of all rooted spanning
trees constructed by DFS. Baron et al. showed the set of all rooted spanning trees of the connected
graph (N, L) coincides with the set of all rooted spanning trees introduced by Herings et al. [6].

The pseudocode of DFS is presented as follows.

Algorithm 1 Depth First Search

Input: a connected graph G = (N, L)
Output: a spanning tree of G with predecessor function p, and two time functions d and f
1: k ← 0, S ← ∅
2: choose any node r (as root)
3: k ← k + 1
4: color r black
5: set d(r) := k
6: add r to S
7: while S is nonempty do
8: consider the top node i of S
9: k ← k + 1

10: if i has an uncolored neighbor j then
11: color j black
12: set p(j) := i and d(j) := k
13: add j to the top of S
14: else
15: set f(i) := k
16: remove i from S
17: end if
18: end while
19: return (p, d, f)

The DFS procedure computes the predecessor function p and two time functions, the discovery
time function d and the finishing time function f . The function p forms the subgraph (N, T ),
where

T = { (i, j) | i = p(j), j ∈ N \ {r} }.
Since it is assumed that (N, L) is connected, the resulting graph (N, T ) is a rooted spanning tree,
called a depth first search tree (DFS tree for short). We denote the collection of all DFS trees by
BDFS. Several properties of DFS trees are given here.

Lemma 3.6. For a graph (N, L), let T ∈ BDFS and S ∈ CL(N). Let i1 be the first node discovered
by DFS in S. Then it follows that

(3.3) desT (i) ⊆ desT (i1) for all i ∈ S \ {i1}.

Proof. It holds from the construction of DFS tree. �

Theorem 3.7 ([1]). For a graph (N, L), let BDFS be the collection of all rooted spanning trees of
(N, L) constructed by DFS. Let BADM be the collection of all rooted spanning trees of Definition
3.2. Then it follows that

BDFS = BADM.

The average tree solution over a set of DFS trees is defined as follows.

Definition 3.8. For a graph game (N, v, L), the marginal contribution vector xT ∈ Rn corre-
sponding to T ∈ BDFS is the vector of payoffs given by

(3.4) xT
i = v(desT (i))−

∑
K∈ĈL(desT (i)\{i})

v(K), i ∈ N.
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Definition 3.9 (Average Tree Solution). On the class of arbitrary graph games (N, v, L), the
average tree solution constructed by DFS is given by

(3.5) x̄ =
1

|BDFS|
∑

T∈BDFS

xT .

To distinguish from the average tree solution of Definition 3.5, the average tree solution con-
structed by DFS is denoted by x̄.

4. Average Tree Solutions and the Core

This section studies conditions for graph games such that average tree solutions belong to the
core. We first introduce link-convexity given by Herings et al. [6] and present an alternative
condition for arbitrary graph games to make the average tree solution lie in the core. Next we
give the class of graph games such that link-convexity ensures that the average tree solution is an
element of the core.

4.1. Link-convexity.

Definition 4.1 (Link-convexity). (N, v, L) is link-convex if

(4.1) v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K)

for all S, T ∈ CL(N) that satisfy
(LC1) S \ T ∈ CL(N) and T \ S ∈ CL(N)
(LC2) (S \ T ) ∪ (T \ S) ∈ CL(N)
(LC3) N \ S ∈ CL(N) or N \ T ∈ CL(N).

It was shown in Herings et al. [6] that for games on a complete graph link-convexity and convexity
coincides with each other and that for games on a cycle-free graph link-convexity is even weaker
than superadditivity.

Concerning arbitrary graph games satisfying link-convexity the following is claimed in Herings
et al. [6].

Claim 4.2 (Herings et al. [6]). Let (N, v, L) be a link-convex game. Then, the average tree solution
ȳ is an element of the core.

Herings et al. [6] proved Claim 4.2 by showing that all the marginal contribution vectors of
Definition 3.4 are in the core of the game, i.e.,

(4.2) yT ∈ Core(N, v, L) for all T ∈ BADM.

From the above, ȳ ∈ Core(N, v, L) holds since the core is a convex set.
We give here an example of link-convex game and its marginal contribution vectors yT ∈ Rn.

Example 4.3. Consider the graph game with N := {1, 2, 3, 4, 5} and L := {{1, 2}, {1, 4}, {2, 3},
{3, 4}, {3, 5}, {4, 5}} shown in Figure 1. The characteristic function values are given below.

• For S ∈ CL(N),

v({1}) = 0 v({1, 4}) = 1 v({1, 2, 4}) = 1 v({1, 2, 3, 4}) = 10
v({2}) = 0 v({2, 3}) = 6 v({1, 3, 4}) = 2 v({1, 2, 3, 5}) = 7
v({3}) = 0 v({3, 4}) = 1 v({1, 4, 5}) = 7 v({1, 2, 4, 5}) = 7
v({4}) = 0 v({3, 5}) = 6 v({2, 3, 4}) = 9 v({1, 3, 4, 5}) = 13
v({5}) = 0 v({4, 5}) = 1 v({2, 3, 5}) = 6 v({2, 3, 4, 5}) = 10
v({1, 2}) = 1 v({1, 2, 3}) = 6 v({3, 4, 5}) = 7 v({1, 2, 3, 4, 5}) = 19.

• For S 6∈ CL(N),

v({∅}) = 0 v({1, 5}) = 0 v({2, 5}) = 0 v({1, 3, 5}) = 0
v({1, 3}) = 0 v({2, 4}) = 0 v({1, 2, 5}) = 0 v({2, 4, 5}) = 0.
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1

2 3 4

5

Figure 1. graph

1

2 3 4

5

Figure 2. tree T

It is a routine to see that this graph game is link-convex.
Consider a tree T := {(2, 1), (1, 4), (4, 5), (5, 3)} ∈ BADM in Figure 2. Then the corresponding

marginal contribution vector is given as follows.

yT
1 = v({1, 3, 4, 5})− v({3, 4, 5}) = 13− 7 = 6

yT
2 = v({1, 2, 3, 4, 5})− v({1, 3, 4, 5}) = 19− 13 = 6

yT
3 = v({3}) = 0

yT
4 = v({3, 4, 5})− v({3, 5}) = 7− 6 = 1

yT
5 = v({3, 5})− v({3}) = 6− 0 = 6.

Then we have

yT ({2, 3, 4}) = yT
2 + yT

3 + yT
4 = 6 + 0 + 1 = 7 < v({2, 3, 4}) = 9,

hence
yT 6∈ Core(N, v, L).

This vector is a counter-example to the statement (4.2).

4.2. Revised link-convexity. The next condition should replace to link-convexity for the average
tree solution to lie in the core.

Definition 4.4 (Revised link-convexity). (N, v, L) is revised link-convex if

(4.3) v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K)

for all S, T ∈ CL(N) that satisfy
(RL1) S \ T ∈ CL(N)
(RL2) S ∪ T ∈ CL(N)
(RL3) N \ S ∈ CL(N).

If S, T ∈ CL(N) satisfy (LC1) and (LC2), these two sets also satisfy (RL2). Additionally, it is
clear that (RL1) is a weaker condition of (LC1) and (LC3). Thus in general revised link-convexity
is a stronger condition than link-convexity.

Theorem 4.5. Let (N, v, L) be a revised link-convex game. Then, the average tree solution x̄ is
an element of the core.

Proof. Since the core is a convex set, it suffices to prove that for every T ∈ BDFS the marginal
vector xT with respect to tree T ∈ BDFS is an element of the core, i.e.,

xT ∈ Core(N, v, L) for all T ∈ BDFS.

Take any tree T ∈ BDFS and let xT be the corresponding marginal contribution vector. Let
des(i) denote the descendants of i in the tree T for i = 1, 2, . . . , n. We will show that

xT (S) ≥ v(S) for all S ∈ CL(N),
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from which it follows that xT ∈ Core(N, v, L). Take any S ∈ CL(N). The subgraph (S, T (S)) has
components S1, S2, . . . , Sm, which are all rooted trees with roots r1, r2, . . . , rm. Let r1, r2, . . . , rm

be indexed such that d(r1) > d(r2) > · · · > d(rm). Then it follows that

(4.4) m1 < m2 ⇒ des(rm1) ⊆ des(rm2) or des(rm1) ∩ des(rm2) = ∅.
For k = 1, . . . ,m, let Dk := des(r1)∪ des(r2)∪ · · · ∪des(rk), with the convention that D0 = ∅. For
k = 1, . . . ,m, those successors of Sk in the tree T that lie outside S are denoted by δ(Sk) := { i |
(j, i) ∈ T, j ∈ Sk, i 6∈ Sk} = {i1, i2, . . . , il }. We write R := {r1, r2, . . . , rm} and I :=

∪m
k=1 δ(Sk).

For a node i ∈ I we define ∆(i) := { r ∈ R | des(r) ⊆ des(i) }, ∆∗(i) := { r ∈ R | des(r) ⊆
des(i), @r′ ∈ R \ {r} s.t. des(r) ⊆ des(r′) ⊆ des(i) }. Note that

∪
r∈∆(i) des(r) =

∪
r∈∆∗(i) des(r).

For i ∈ N we simply denote Di := des(i). Consider some k ∈ {1, 2, . . . , m} and suppose
δ(Sk) 6= ∅. Take any ih ∈ δ(Sk) and consider the following two sets

U := S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1

W := Dih
.

Then U,W ∈ CL(N) and satisfy the following three conditions of Definition 4.4.
(RL1) W \ U = Dih

\ (
∪

r∈∆(ih) Dr) = Dih
\ (

∪
r∈∆∗(ih) Dr) ∈ CL(N)

(RL2) U ∪W = S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∪Dih
∈ CL(N)

(RL3) N \W = N \Dih
∈ CL(N).

Now it follows from revised link-convexity that for ih ∈ {i1, i2, . . . , il},

v(S ∪Dk−1 ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1)) + v(Dih
)

≤ v(S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∪Dih
) +

∑
r∈∆∗(ih)

v(Dr).

By repeated application of this argument, it follows that

(4.5) v(S ∪Dk−1) +
∑

i∈δ(Sk)

v(Di) ≤ v(S ∪Dk) +
∑

i∈δ(Sk)

∑
r∈∆∗(i)

v(Dr).

Notice that this formula (4.5) is also valid if δ(Sk) = ∅, since S ∪ Dk−1 = S ∪ Sk ∪ Dk−1 =
S ∪Drk

∪Dk−1 = S ∪Dk. By repeated application of the last inequality (4.5), we see that

(4.6) v(S) +
m∑

k=1

∑
i∈δ(Sk)

v(Di) ≤ v(S ∪Dm) +
m∑

k=1

∑
i∈δ(Sk)

∑
r∈∆∗(i)

v(Dr).

Recall that rm is the first node discovered by Depth First Search in S. From lemma 3.6, it follows
that

Dr ⊆ Drm for all r ∈ R \ {rm}.
Hence, every Drk

for k = 1, 2, . . .m− 1 appears exactly once in the right-hand side, i.e.,
m∑

k=1

∑
i∈δ(Sk)

∑
r∈∆∗(i)

v(Dr) =
m−1∑
k=1

v(Drk
).

Since v(S ∪Dm) = v(Drm
), we obtain

v(S ∪Dm) +
m∑

k=1

∑
i∈δ(Sk)

∑
r∈∆∗(i)

v(Dr) =
m∑

k=1

v(Drk
).

Therefore,

(4.6)⇔ v(S) +
m∑

k=1

∑
i∈δ(Sk)

v(Di) ≤
m∑

k=1

v(Drk
)

⇔ v(S) ≤
m∑

k=1

(v(Drk
)−

∑
i∈δ(Sk)

v(Di)) =
m∑

k=1

xT (Sk) = xT (S).

�
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Corollary 4.6. Let (N, vL) be a convex game. Then, the average tree solution x̄ is an element
of the core.

Proof. Let S, T ∈ CL(N) satisfy the conditions (RL1) and (RL2) of revised link-convexity. Con-
vexity of (N, vL) implies that

vL(S) + vL(T ) ≤ vL(S ∪ T ) + vL(S ∩ T )

⇔ v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K).

Thus the game (N, v, L) is revised link-convex. It immediately follows from Theorem 4.5 that the
average tree solution is an element of the core. �

4.3. Cycle-complete graph. As we have seen in the previous section, for arbitrary graph games
link-convexity is not a sufficient condition to make all the marginal contribution vectors lie in the
core. In this section we consider games on the class of cycle-complete graphs, which includes the
class of cycle-free and complete graphs. It will be proved that the marginal contribution vectors
belong to the core for arbitrary cycle-complete graph games satisfying link-convexity.

4.3.1. Convexity on cycle-complete graph games. Van den Nouweland and Borm [7] showed that
convexity of (N, v) implies convexity of (N, vL) for cycle-complete graphs. We will prove that
convexity of (N, v, L) is a necessary and sufficient condition for convexity of (N, vL) when the
underlying graph is cycle-complete, following the proof given by Van den Nouweland and Borm [7].

Theorem 4.7. Let (N,L) be a cycle-complete graph. (N, v, L) is a convex game if and only if
(N, vL) is convex.

Proof. Suppose that (N, vL) is convex. Let S, T ∈ CL(N) be such that S∪T ∈ CL(N) and S∩T ∈
CL(N) ∪ {∅}. Then, from convexity of (N, vL), it holds that

vL(S) + vL(T ) ≤ vL(S ∪ T ) + vL(S ∩ T )

⇔ v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

For the converse part, suppose (N, v, L) is convex. Let i ∈ N and S ⊆ T ⊆ N \ {i}. It suffices
to show that vL(S ∪ {i})− vL(S) ≤ vL(T ∪ {i})− vL(T ), i.e.,

(4.7)
∑

K∈ĈL(S∪{i})

v(K)−
∑

K∈ĈL(S)

v(K) ≤
∑

K∈ĈL(T∪{i})

v(K)−
∑

K∈ĈL(T )

v(K).

Now, let E denote the set of connected components containing at least one node j with {i, j} ∈ L,
i.e.,

E := { E ∈ ĈL(S) | ∃j ∈ E s.t. {i, j} ∈ L },
and let Ei := {i}∪

∪
E∈E E. By definition, we have Ei ∈ ĈL(S∪{i}), and for every E ∈ ĈL(S∪{i})

such that E 6= Ei it holds that E ∈ ĈL(S). As a consequence, we obtain∑
E∈ĈL(S∪{i})

v(E)−
∑

E∈ĈL(S)

v(E) = v({i} ∪ (
∪

E∈E

E))−
∑
E∈E

v(E).

Similarly, we have ∑
F∈ĈL(T∪{i})

v(F )−
∑

F∈ĈL(T )

v(F ) = v({i} ∪ (
∪

F∈F
F ))−

∑
F∈F

v(F ),

where F := {F ∈ ĈL(T ) | ∃j ∈ F s.t. {i, j} ∈ L }. Hence, (4.7) is equivalent to

v({i} ∪ (
∪

E∈E
E))−

∑
E∈E

v(E) ≤ v({i} ∪ (
∪

F∈F
F ))−

∑
F∈F

v(F ).

Next we will consider the relationship between the set E and F . Since S ⊆ T , there exists a
unique F ∈ F with E ⊆ F , for all E ∈ E . Here, we will show that for each F ∈ F ,

∃!E ∈ E s.t. E ⊆ F, or @E ∈ E s.t. E ⊆ F.

9
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Assume that there are E1, E2 ∈ E(E1 6= E2) and F ′ ∈ F such that E1 ⊆ F ′ and E2 ⊆ F ′. Let
j1 ∈ E1 and j2 ∈ E2 such that {i, j1} ∈ L and {i, j2} ∈ L. Note that {j1, j2} 6∈ L since E1 and
E2 are connected components of S, respectively. Since j1, j2 ∈ F ′ ∈ ĈL(T ), there exists a path
j1 ∼F ′ j2. Since i 6∈ T , there is a cycle from i to i over j1 and j2 in (N, L). However, since a graph
(N, L) is cycle-complete this should imply that {j1, j2} ∈ L, which leads to a contradiction. Hence
we can number the elements of E and F as follows:

E = {E1, E2, . . . , Es} and F = {F1, F2, . . . , Ft},
where t ≥ s and Ek ⊆ Fk for all k ∈ {1, 2, ..., s}.

Now, we can use the properties of the game (N, v, L). For all k = s+1, s+2, . . . , t, Fk ∈ CL(N),
{i}∪(

∪s
h=1 Fh) ∈ CL(N) and {i}∪(

∪t
h=1 Fk) ∈ CL(N). Moreover, (N, v, L) is superadditive when

(N, v, L) is convex. Superadditivity of the game (N, v, L) implies

(4.8) v({i} ∪ (
∪

F∈F
F )) ≥ v({i} ∪ (

s∪
h=1

Fh)) +
t∑

h=s+1

v(Fh).

Next, for all k = 1, 2, . . . , s,

Fk ∈ CL(N),

{i} ∪ (
s∪

h=k+1

Fh) ∪ (
k∪

h=1

Eh) ∈ CL(N),

Fk ∩ ({i} ∪ (
s∪

h=k+1

Fh) ∪ (
k∪

h=1

Eh)) = Ek ∈ CL(N) and

Fk ∪ ({i} ∪ (
s∪

h=k+1

Fh) ∪ (
k∪

h=1

Eh)) = {i} ∪ (
s∪

h=k

Fh) ∪ (
k−1∪
h=1

Eh) ∈ CL(N).

Then, convexity of the game (N, v, L) implies

v({i} ∪ (
s∪

h=1

Fh))− v(F1) ≥ v({i} ∪ (
s∪

h=2

Fh) ∪ E1)− v(E1)

...

v({i} ∪ (
s∪

h=k

Fh) ∪ (
k−1∪
h=1

Eh))− v(Fk) ≥ v({i} ∪ (
s∪

h=k+1

Fh) ∪ (
k∪

h=1

Eh))− v(Ek)

...

v({i} ∪ Fs ∪ (
s−1∪
h=1

Eh))− v(Fs) ≥ v({i} ∪ (
s∪

h=1

Eh))− v(Es).

Adding all these s inequalities, we obtain

v({i} ∪ (
s∪

h=1

Fh))−
s∑

h=1

v(Fh) ≥ v({i} ∪ (
∪

E∈E
E))−

∑
E∈E

v(E).(4.9)

Now, (4.8) and (4.9) readily imply (4.7). �

Theorem 4.8. Let (N, L) be a cycle-complete graph and let (N, v, L) be a convex game. Then
(N, v, L) is link-convex.

Proof. Let S, T ∈ CL(N) satisfy (LC1)～(LC3) of Definition 4.1. When S ∩ T = ∅, S ∪ T =
(S \T )∪ (T \S) ∈ CL(N). When S ∩T 6= ∅, clearly S ∪T ∈ CL(N) because S, T ∈ CL(N). Now,
assume that S ∩ T 6∈ CL(N), i.e.,

(4.10) ∃i1, i2 ∈ S ∩ T such that @path i1 ∼S∩T i2.

10
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Since i1, i2 ∈ S ∈ CL(N),
∃path i1 ∼S i2.

Let PS be the shortest path among the above paths. Since i1, i2 ∈ T ∈ CL(N),

∃path i1 ∼T i2.

Let PT be the shortest path among the above paths. By assumption (4.10), PS has at least one
node in S \ T and PT has at least one node in T \ S. Thus PS and PT are different. Let ρ(i1, i2)
denote the sum of the lengths of PS and PT . Let i∗1, i

∗
2 ∈ S ∩ T be such that

ρ(i∗1, i
∗
2) = min{ ρ(i1, i2) | i1, i2 ∈ S ∩ T, @ path i1 ∼S∩T i2 }.

See Figure 3. For i∗1 and i∗2, the corresponding PS and PT form a cycle.
By the assumption that (N,L) is a cycle-complete graph, there exists a edge between any two

nodes in the cycle. Thus, {i∗1, i∗2} ∈ L, which leads to a contradiction and we conclude that
S∩T ∈ CL(N). Convexity of the game (N, v, L) implies that v(S)+v(T ) ≤ v(S∪T )+v(S∩T ) =
v(S ∪ T ) +

∑
K∈ĈL(S∩T ) v(K). �

i1*

i2*

i1*

S T

Figure 3. Nodes i∗1 and i∗2

Theorem 4.9. Let (N, L) be a cycle-complete graph and let (N, v, L) be a link-convex game. Then,
the average tree solution x̄ is an element of the core.

Proof. We will prove this theorem in a similar way to the proof of Theorem 4.5.
Take any tree T ∈ BDFS and let xT be the corresponding marginal vector. Let des(i) denote the

descendants of i in the tree T for i = 1, 2, . . . , n. Take any S ∈ CL(N), and consider the subgraph
(S, T (S)). It has components S1, S2, . . . , Sm, which are all rooted trees with roots r1, r2, . . . , rm.
Let r1, r2, . . . , rm be indexed such that d(r1) > d(r2) > · · · > d(rm). Then it follows that

(4.11) m1 < m2 ⇒ des(rm1) ⊆ des(rm2) or des(rm1) ∩ des(rm2) = ∅.
For k = 1, . . . ,m, let Dk := des(r1)∪ des(r2)∪ · · · ∪des(rk), with the convention that D0 = ∅. For
k = 1, . . . ,m, those successors of Sk in the tree T that lie outside S are denoted by δ(Sk) := { i |
(j, i) ∈ T, j ∈ Sk, i 6∈ Sk} = {i1, i2, . . . , il }. We write R := {r1, r2, . . . , rm} and I :=

∪m
k=1 δ(Sk).

For a node i ∈ I, we define ∆(i) := { r ∈ R | des(r) ⊆ des(i) }, ∆∗(i) := { r ∈ R | des(r) ⊆
des(i), @r′ ∈ R \ {r} s.t. des(r) ⊆ des(r′) ⊆ des(i) }. Note that

∪
r∈∆(i) des(r) =

∪
r∈∆∗(i) des(r).

For i ∈ N , we simply denote Di := des(i).
Consider some k ∈ {1, 2, . . . , m} and suppose δ(Sk) 6= ∅. Take any ih ∈ δ(Sk) and consider the

following two sets

U := S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1

W := Dih
.

11
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We will show that U,W ∈ CL(N) satisfy (LC1)～(LC3) of Definition 4.1. From the proof of
Theorem 4.5, we obtain W \ U,N \W ∈ CL(N).

Next we will prove that

U \W ∈ CL(N), (U \W ) ∪ (W \ U) ∈ CL(N).

First, we consider whether U \W is connected or not. Since U ∩W =
∪

r∈∆(ih) Dr,

U \W = U \ (U ∩W )

= S ∪Dk−1 ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1) \
∪

r∈∆(ih)

Dr

=
∪

p∈{1,2,...,m}

Sp ∪
∪

p∈{1,2,...,k−1}

Drp ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1) \
∪

r∈∆(ih)

Dr

=
∪

p∈{1,2,...,m}
rp 6∈∆(ih)

Sp ∪
∪

p∈{1,2,...,k−1}
rp 6∈∆(ih)

Drp
∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1).(4.12)

By definition of S1, S2, . . . , Sm,

Sp ⊆ Drp and Drp ∈ CL(N) for all p ∈ {1, 2, . . . ,m}
⇒ Sp ⊆ Drp and Drp ∈ CL(N) for all p ∈ {1, 2, . . . , k − 1}(rp 6∈ ∆(ih)).(4.13)

Since i1, i2, · · · , ih−1 ∈ δ(Sk),

(4.14) Sk ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∈ CL(N).

In addition, rk 6∈ ∆(ih) implies

(4.15) Sk ⊆
∪

p∈{1,2,...,m}
rp 6∈∆(ih)

Sp.

In order to prove U \W ∈ CL(N), from (4.12)～(4.15), it suffices to show that∪
p∈{1,2,...,m}

rp 6∈∆(ih)

Sp ∈ CL(N).

Let Ŝ :=
∪

p∈{1,2,...,m}
rp 6∈∆(ih)

Sp. Since S1, S2, . . . , Sm ∈ CL(N), in order to prove Ŝ ∈ CL(N), it suffices

to show that

for all m1,m2 ∈ {1, 2, . . . ,m} (rm1 , rm2 6∈ ∆(ih),m1 6= m2),
there exists a path i ∼Ŝ j for any i ∈ Sm1 , j ∈ Sm2 .

Now consider two distinct indexes m1,m2 ∈ {1, . . . , m} (rm1 , rm2 6∈ ∆(ih),m1 6= m2). Without
loss of generality we suppose that m2 > m1. From (4.11) we find that des(rm1) and des(rm2)
satisfy

des(rm1) ⊆ des(rm2) or des(rm1) ∩ des(rm2) = ∅.
(I) When des(rm1) ⊆ des(rm2), consider the following two cases.

(i) Suppose @ r ∈ R \ {rm1 , rm2} such that des(rm1) ⊆ des(r) ⊆ des(rm2).
Take any i1 ∈ Sm1 , i2 ∈ Sm2 . Since T is a rooted spanning tree of the graph (N, L),
(N, L(T )) is connected. Hence, there exists a path from i1 ∈ Sm1 to i2 ∈ Sm2 in
(N, L(T )), that is,

∃path i1 ∼T i2.

Let PT be the shortest path among the above paths. By i1, i2 ∈ S ∈ CL(N) it holds
that

∃path i1 ∼S i2.

Let PS be the shortest path among the above paths. Since Sm1 and Sm2 are compo-
nents of (S, T (S)), PT has at least one node that lies outside S. Thus, PT is different

12
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from PS . Let ρ(i1, i2) denote the sum of the lengths of PT and PS determined by i1
and i2. Let i∗1 ∈ Sm1 , i

∗
2 ∈ Sm2 be such that

ρ(i∗1, i
∗
2) = min{ ρ(i1, i2) | i1 ∈ Sm1 , i2 ∈ Sm2 }.

See Figure 4. Meanwhile, by the assumption, @r ∈ R\{rm1 , rm2} such that des(rm1) ⊆
des(r) ⊆ des(rm2), PT does not contain any nodes in S other than those in Sm1 , Sm2 .
Therefore, the corresponding PT and PS for i∗1, i

∗
2 form a cycle. By the assumption

that (N,L) is a cycle-complete graph, there is an edge between any two nodes in the
cycle. Thus, {i∗1, i∗2} ∈ L, which leads to Sm1 ∪ Sm2 ∈ CL(N).

i2*

i1*

i’
N

S

Figure 4. Nodes i∗1 and i∗2

(ii) Suppose ∃r ∈ R \ {rm1 , rm2} such that des(rm1) ⊆ des(r) ⊆ des(rm2).
Let R∗ = { r ∈ R | des(rm1) ⊆ des(r) ⊆ des(rm2) }. Assume that there is a node
r ∈ R∗ such that r ∈ ∆(ih), i.e., des(r) ⊆ des(ih). By rm1 6∈ ∆(ih), it holds that

des(ih) ∩ des(rm1) = ∅ or des(ih) ( des(rm1),

which implies

des(r) ∩ des(rm1) = ∅ or des(r) ( des(rm1).

This contradicts the fact that r ∈ R∗. Hence, r 6∈ ∆(ih) for all r ∈ R∗. Therefore,

Sp ⊆
∪

rq∈R
rq 6∈∆(ih)

Sq for all rp ∈ R∗,

which implies

(4.16)
∪

rp∈R∗

Sp ⊆
∪

rq∈R
rq 6∈∆(ih)

Sq = Ŝ.

Next, let R∗ := {rπ(1), rπ(2), . . . , rπ(z)}(rm1 = rπ(1), rm2 = rπ(z)) and let rπ(1), rπ(2), . . . , rπ(z)

be indexed such that des(rπ(q−1)) ⊆ des(rπ(q)) for q = 2, 3, . . . , z. From the result of
(i),

Srπ(q−1) ∪ Srπ(q) ∈ CL(N) for q = 2, 3, . . . , z.

Hence, ∪
rp∈R∗

Sp =
z∪

q=1

Srπ(q) ∈ CL(N),

and from (4.16) we obtain

∃path i ∼Ŝ j for all i ∈ Sm1 , j ∈ Sm2 .

13
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(II) When des(rm1) ∩ des(rm2) = ∅, let a ∈ N be the last common ancestor of rm1 and rm2 in
(N,T ). Let r′ ∈ R satisfy

|des(r′)| = min{ |des(r)| | r ∈ R, a ∈ des(r) }.

Analogously, we obtain

∃path i ∼Ŝ r′ for all i ∈ Sm1 ,

∃path j ∼Ŝ r′ for all j ∈ Sm2 .

Thus,

∃path i ∼Ŝ j for all i ∈ Sm1 , j ∈ Sm2 .

Therefore Ŝ ∈ CL(N), i.e., U \W ∈ CL(N).
Now we obtain U \ W,W \ U ∈ CL(N). From ih ∈ δ(Sk), there exists a node j ∈ Sk ⊆

U \W such that {j, ih} ∈ L. Moreover, ih ∈W \ U . Thus (U \W ) ∪ (W \ U) ∈ CL(N).
Hence, U and W satisfy the following conditions of link-convexity.

(LC1) U \W ∈ CL(N) and W \ U ∈ CL(N)
(LC2) (U \W ) ∪ (W \ U) ∈ CL(N)
(LC3) N \W ∈ CL(N).

Now link-convexity of the game implies that for all ih ∈ {i1, i2, . . . , il},

v(S ∪Dk−1 ∪ (Di1 ∪Di2 ∪ · · · ∪Dih−1)) + v(Dih
)

≤ v(S ∪Dk−1 ∪Di1 ∪Di2 ∪ · · · ∪Dih−1 ∪Dih
) +

∑
r∈∆∗(ih)

v(Dr).

By repeated application of this argument, it follows that

(4.17) v(S ∪Dk−1) +
∑

i∈δ(Sk)

v(Di) ≤ v(S ∪Dk) +
∑

i∈δ(Sk)

∑
r∈∆∗(i)

v(Dr).

Notice that this formula (4.17) is also valid if δ(Sk) = ∅, since S ∪ Dk−1 = S ∪ Sk ∪ Dk−1 =
S ∪Drk

∪Dk−1 = S ∪Dk. Repeating the same argument in the proof of Theorem 4.5 completes
the proof. �

Corollary 4.10. Let (N, L) be a cycle-complete graph and let (N, v, L) be a convex game. Then,
the average tree solution x̄ is an element of the core.

Proof. The corollary follows immediately from Theorem 4.8 and 4.9. �

Corollary 4.11. Let (N, L) be a cycle-complete graph and let (N, v) be a convex game. Then, the
average tree solution x̄ is an element of the core.

Proof. Convexity of the game (N, v) readily implies convexity of the game (N, v, L). Then, the
corollary follows immediately from Corollary 4.10. �

5. Concluding remarks

In this paper we have discussed the relationship between the core and the average tree solution.
We gave an alternative condition that should replace link-convexity for the average tree solution to
be an element of the core of arbitrary graph games. For the class of games with a cycle-complete
graph structure, we found that link-convexity guarantees that the average tree solution belongs to
the core. In general, revised link-convexity is weaker than convexity and link-convexity is weaker
than superadditivity for games with cycle-free graphs. Thus the average tree solution lies in the
core for the class of games such that the previous solutions such as the Myerson value and the
position value can be outside of the core. This result suggests that the average tree solution can
be a more stable allocation rule compared to the other single-valued solutions.
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