
Retrial Queueing Models: A Survey on Theory and
Applications

Tuan Phung-Duc
Faculty of Engineering, Information and Systems

University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Email: tuan@sk.tsukuba.ac.jp

Abstract

Retrial phenomenon naturally arises in various systems such as call centers, cellu-
lar networks and random access protocols in local area networks. This paper gives a
comprehensive survey on theory and applications of retrial queues in these systems.
We investigate the state of the art of the theoretical researches including exact so-
lutions, stability, asymptotic analyses and multidimensional models. We present an
overview on retrial models arising from real world applications. Some open problems
and promising research directions are also discussed.

1 Introduction

The loss models (including Erlang loss model) assume that an arriving customer that sees

the service area being fully occupied is blocked and is lost forever. On the other hand, in

models with an infinite waiting capacity, a customer waits until being served. However,

there are various situations in our everyday life and in various systems where blocked

customers are not willing to wait and they temporarily leave the service facility for a while

but try again after some random time. A blocked customer is said to be in a virtual waiting

room called orbit before retrying to occupy a server again. These situations are modeled as

retrial queues.

For example, in a call center, if a customer makes a phone call when all the agents

are busy, the customer will try to make a phone call again after some random time. In

computer networks, if a packet is lost, the packet may be retransmitted at a later time

by a retransmission mechanism such as the TCP (Transmission Control Protocol) [24, 25].

In these applications, the orbit is virtual and cannot be observed. Figure 1 represents a

general multiserver retrial queue.
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In many applications, the customers in the orbit act independently of each other, thus

the retrial rate depends on the number of customers in the orbit. As a result, the underlying

Markov chains of retrial queues have a spatially non-homogeneous structure. Due to the

spatial non-homogeneity of the underlying Markov chains, the analysis of retrial queues is

more complex and challenging than that of standard queues. For an extensive comparison

of standard and retrial queueing systems, the readers are referred to the paper of Artalejo

and Falin [15]. Even for the M/M/c/c retrial queue, where retrial interval of customers

follows an exponential distribution, analytical solutions are obtained in only a few special

cases [15, 57].

Service Area

Orbit

System 
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No

Waiting 
room
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Figure 1: A general multiserver retrial queue.

Classical retrial policy

In a retrial queue with the classical retrial policy, each blocked customer stays in the orbit

for an exponentially distributed time independently of other customers. As a result, the

retrial rate is proportional to the number of customers in the orbit. The classical retrial

policy naturally arises from applications such as call center and telephone exchange system,

where customers in the orbit act independently because a retrial customer cannot observe

the behavior of the others. Retrial queues with the classical retrial policy have attracted

many researchers since they naturally arise from various applications with random access.

Under some Markovian settings of the service time distribution and the arrival process, the

underlying stochastic process is a level-dependent quasi-birth-and-death (LDQBD) process

where the level is the number of customers in the orbit and the phase represents the states

of the servers. For general LDQBD processes, some general numerical algorithms are avail-
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able [31, 99]. The sparsity of the block matrices of the LDQBD processes of retrial queues

could be used to develop efficient computational algorithm [101].

Constant retrial policy

There are several applications in communication networks, where the retrial of customers

is controlled. It means that the retrial rate may not depend on the number of customers

in the orbit. For example, Choi et al. [35] study the stability of the CSMA/CD (Carrier

Sense Multiple Access with Collision Detection) protocol, by a retrial queue with a constant

retrial rate. Avrachenkov and Yechiali [24, 25] use a retrial queueing network with constant

retrial rate to model TCP traffic. Constant retrial rate could be interpreted by the so-called

“calling for blocked customers”. When the server is idle, it calls blocked customers one by

one. The time for the server to pick up a blocked customer could be interpreted as the

retrial time.

Artalejo et al. [12] formulate a multiserver retrial queue (M/M/c/c) with constant retrial

rate by a level-independent QBD process which could be analyzed efficiently using matrix

analytic methods invented by Neuts [87, 93]. As in the classical retrial rate, the block

matrices of the level-independent QBD process are also sparse leading to efficient algorithms

for the stationary distribution. These algorithms are discussed by Artalejo et al. [12] using

a matrix analytic method and by Do et al. [] using the spectral expansion method [44, 45].

The structure and aim of this chapter are as follows. First in Section 2, we provide a

comprehensive review of retrial queues in real world applications. Second, in Section 3, we

present the main results on the analysis of retrial queueing models. The aim of this survey

is to provide a guide for researches who want to enter and deepen the understanding of

the field of retrial queues. To this end, we point out some open problems and promising

research topics.

2 Retrial Queues in Applications

In this section, we present several retrial queueing models arising from real world applica-

tions.
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2.1 Call Centers

A call center is important for a company because it provides a channel for customers to

contact the company. In a call center, agents are the people who answer the calls from the

customers. When a customer makes a phone call, if there is an idle call agent, the customer

is immediately answered by the call agent. If all the agents are busy, the customer may

hear some massage such as “the system is busy at the moment, please wait for a moment”.

At this moment, the customer either hangs up the phone immediately or continues to hear

the message. In the former case, the customer may try again after some time. Customers

who decide to wait for a free call agent may renege if the waiting time is too long. These

customers may also make a phone call later.
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Figure 2: A retrial queueing model for call centers.

One of the most important performance measures for a call center is the blocking proba-

bility that a customer cannot find a free call agent upon arrival. From the customer’s point

of view, a low blocking probability is desirable. In order to keep the blocking probability to

be low, a simple solution is to increase the number of agents. However, from a management

point of view we need to minimize the number of agents, due to the fact that the cost of

a call center is mainly the human cost [121]. In order to achieve the customer satisfaction

under some constraint on the cost, we need some mathematical model to express the trade-

off between the customer satisfaction and the human cost. A queueing model is one of the

most appropriate mathematical models for the design of call centers. In addition, in order

to capture the retrial phenomenon as presented above, a retrial queueing model is expected

to be more appropriate than the corresponding standard queueing model [62, 81, 121, 1].

See Figure 2 for a simple retrial queueing model for call centers. For a detailed explanation

on call centers, we refer to the book by Stolletz [121]. Numerical results by Phung-Duc et
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al. [101] show that approximating retrial flow by a Poisson process leads to a large error

under the fast retrial regime. This is an evidence for modelling call centers by retrial queues.

Phung-Duc and Kawanishi [104] consider two-way communication retrial queueing sys-

tems as the models for blended call centers. Queueing models without retrials for blended

call centers are proposed and analyzed in [32]. Two-way communication retrial queues

are studied by Artalejo and Phung-Duc in [21, 22] where some analytical results such as

the stability condition and generating functions are obtained. The main contribution in

Phung-Duc and Kawanishi [104] is to propose an efficient computational algorithm for

multiserver retrial queues with distinct distributions of incoming and outgoing calls. The

algorithm [104] could be considered as a matrix version of the one by Phung-Duc et al. [101].

In two-way communication queueing systems, a server not only receives incoming calls but

also makes outgoing calls to outside in its idle time. This is the situation in blended call

centers where the operators may make outgoing calls to the customers for some marketing

purposes etc.

Furthermore, Phung-Duc and Kawanishi [105] analyze a fairly general and practical

retrial model for inbound call centers with after-call work and abandonment. After-call

work is a typical task in call centers where after a conversation with a customer, the

operator should do some after-call work for that customer after the customer departs from

the system. It means that a call line is released for a newly arrived customer. In [105], the

effects of retrials by blocked and abandoned customers on the waiting time distribution are

investigated.

2.2 Cellular Communication Networks

In a cellular network, the service area is divided into cells. Users (mobile stations) in each

cell are served by a base station with a limited number of channels. Therefore, only a

limited number of users can communicate at the same time. A base station serves two

types of calls: fresh calls and handover calls. A fresh call is made by a user that stays

inside the current cell and a handover call is made by a user that has been traveling from

an adjacent cell into the current cell. Because a handover call has been communicating by

a channel in an adjacent cell, the call should be assigned a channel upon its arrival into the

current cell as soon as possible for a continuous communication. Therefore, a handover call
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should be given a priority over a fresh call.
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Figure 3: Two adjacent cells in cellular networks.

There are several channel assignment policies that provide some priority for handover

calls over fresh calls [45, 123]. In a guard channel policy, a number of channels are reserved

for handover calls. The rest of channels are equally shared by both fresh and handover calls.

In a fractional guard channel policy, fresh calls are accepted with a probability depending

on the number of currently occupied channels, while handover calls are accepted as long

as an idle channel is available [114]. Both fresh calls and handover calls may be blocked

due to the limit on the number of channels. In modern cellular communication systems

(e.g. mobile phone system), if a call is blocked, a redial can be made easily, for example

just by pushing only one button. In some applications, blocked calls are automatically

redialed. Thus, the consideration of retrial calls is very important while designing these

systems [123].

Figure 3 represents two adjacent cells in a cellular networks. In Figure 4, a buffer for

handover calls represents overlap areas of the current cell with the adjacent cells. Handover

calls in the overlap areas can receive signals from both the adjacent cell and the current cell.

Thus, if a channel in the current cell is not yet available, the handover call can continue

to communicate using the occupying channel in the adjacent cell. However, the handover

call is terminated if it exceeds an overlap area but no idle channel in the targeting cell is

available. In this case, the handover call may attempt again after some random time as a

fresh call.

In addition to the pure Markovian models presented in [45, 123], more general models

with correlated arrival processes such as Markovian Arrival Processes (MAP) and Batch

Markovian Arrival Processes (BMAP) and phase type service time distributions are investi-
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gated in [2, 37, 74, 75]. A model under random environment is presented in [20]. In all these

models, the performance measures are directly calculated from the stationary probabilities.

Economou and Lopez-Herrero [52] provide some more sophisticated performance measures

such as waiting time distribution, idle time of guard channels etc.

Handover calls

Fresh calls
Accept?

Yes

No

Figure 4: A model of cellular networks with overlapping cells.

2.3 Local Area Networks

In a local area network (LAN), multiple nodes share a physical link (channel) in order to

transmit their data (packets). Assuming that multiple nodes send their packets at the same

time, a collision may occur and all the packets will be destroyed.

Because nodes in a LAN are located closely to each other, propagation delays are much

shorter than data transmission time. Therefore nodes can obtain useful information about

the channel by sensing the presence of signals on the channel. Taking this property into

account, CSMA (Carrier Sense Multiple Access) protocols have been developed. The fun-

damental idea of a CSMA protocol is that it senses the channel before transmitting data.

In a 1-persistent CSMA protocol, when a node is ready to send its data, the node checks if

the channel is busy. If the channel is busy, then the node continues to sense the link until

the channel is idle and then immediately sends a frame. In case of collision, the node waits

for a random period of time and tries to transmit again. The problem of the 1-persistent

CSMA protocol is that in a highly loaded condition, there may be several nodes waiting

for the availability of the channel and they send data at the same time when the channel

becomes idle. Therefore, collisions occur with a high probability.

Another protocol is non-persistent CSMA, in which if a node is ready to send data, it

senses the channel and transmits data immediately if the link is available, otherwise the

node waits for a random time and tries to retransmit again. A p-persistent CSMA protocol
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is considered to be a hybrid of 1-persistent CSMA and non-persistent CSMA protocols. In

a p-persistent CSMA, if the channel is idle, the node transmits a frame with probability p

and delays its transmission for one unit time (channel propagation delay) with probability

1 − p. If the channel is busy, the node continues to sense until the channel becomes idle

and repeat the same procedure to send its frame.

Because the collisions in CSMA protocols cannot be completely avoided, the retrial phe-

nomenon occurs in local area networks, e.g. wireless networks. Therefore, retrial queueing

models are considered to be more appropriate than standard queueing models in modelling

and performance analysis of these protocols [35, 67]. The readers are referred to the book

by Kurose and Ross for a detailed explanation on protocols for local area networks [83].

Because the behaviors of nodes in radio networks depend on each other, analysis of an

exact model representing the states of all nodes is very challenging. Assuming that the

behaviors of nodes are independent, Bianchi [28] demonstrates a simple analysis of this

complex system. Recently, Fiems and Phung-Duc [60] propose a light traffic analysis by a

series expansion method for a retrial model which represents all the states of nodes con-

currently. The accuracy of the model is validated by simulations. The series expansion

method [60] might be useful for other retrial models for local area networks with random

access protocols.

2.4 Retrial Queues for Cognitive Networks

Recently, cognitive radio networks are extensively studied. The spectrum for wireless net-

works is physically limited. On the other hand, the amount of traffic by smart phones

and other devices vastly increases day by day. However, most of bandwidth is granted to

licensed users (primary users). The bandwidth is not always used by primary users. The

idea of cognitive networks is to provide the opportunity for secondary users to use this

bandwidth when it is not used by the primary users. Secondary users are interrupted upon

the arrivals of primary users. Queueing analysis of cognitive networks has been presented

by Konishi et al. [80] using a multiserver priority model without buffer where interrupted

secondary users are lost. In practice, interrupted users may retry again. From this point of

view, appropriate retrial queueing models might be useful for cognitive systems. Wang et

al. [127, 128] use some simple M/M/1/1 retrial queueing models to study strategic behav-
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ior of secondary users in cognitive networks. Dudin et al. [50] propose a multiclass retrial

queueing model for cognitive systems. Salameh et al. [124]study retrial queueing models

taking into account the sensing time of interrupted secondary users. Because cognitive ra-

dio is promising solution for the insufficiency of wireless spectrum [80], new retrial models

for various scenarios and technologies in cognitive systems are promising topics for future

researches.

2.5 Retrial Queues in other Applications

Beside concrete applications mentioned in previous subsections, retrial queues are also

ubiquitous in other applications. Retrial queues for optical networks are presented in [96,

61, 29]. Furthermore, some emerging technology such as cloud computing, one can also find

various situations where retrial queues are applicable. For example, single server retrial

queues with setup time are proposed for power-saving servers [107, 110]. Phung-Duc and

Kawanishi [113] investigate the impact of retrial phenomenon on power saving data centers

by an M/M/c/c retrial queue with setup time. In cloud systems, the computing unit and

the storage unit may be separated leading to the transmission time between them. A

retrial model for such a situation is initiated in [109]. Furthermore, in cloud systems, the

capacity of the server can be scaled according to the workload in the system. Taking this

into account, Phung-Duc et al. [108, 111] propose single server retrial queueing models with

speed scaling and setup time where the speed of the server is proportional to the number

of jobs in the system.

3 Models and Methodologies

In the analysis of retrial queueing models, we need to keep track not only of the state of

the servers but also the number of customers in the orbit. Under the assumption that

retrial customers behave independently, the retrial flow by repeated customers makes the

underlying stochastic process non-homogeneous. As a result, the analysis of retrial queues

is more difficult than the corresponding models with infinite waiting room. Indeed, the

model with infinite waiting room could be obtained from the corresponding retrial models

by taking the limit as the retrial time tends to zero. In this section, we show methods and

analytical results for some major retrial queueing models.
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3.1 M/G/1/1 Retrial Queues and Their Variants

In this model, there is only one server and there is not a waiting room before the server.

Customers arrive at the system according to a Poisson process and the service time for

a customer is arbitrarily and identically distributed. An arriving customer immediately

occupies the server if it is idle. Otherwise, the customer will join the orbit from which he

will retry again in an exponentially distributed time with positive mean. This model could

be analyzed by either embedded Markov chain or by complementary variable method as

for the original M/G/1 model without retrials.

Let πi,n denote the stationary probability that the server is at state i (i = 0 if the server

is idle and i = 1 if the server is busy) and there are n customers in the orbit. Furthermore,

let Πi(z) =
∑

∞

n=0
πi,nz

n (i = 0, 1). For this model, the generating functions, i.e., Πi(z)

(i = 0, 1) of the number of customers in the orbit can be obtained in an integral form [57].

Furthermore, π0,0 is given in an integral form and other probabilities πi,j are recursively

computed. If the service time is exponentially distributed, the integral forms of Πi(z)

(i = 0, 1) become explicit. Furthermore, under the light-tailed assumption of the service

time, asymptotic formula for the joint queue length distribution is known. In particular,

π0,n ≍ C0n
a−1σ−n and π1,n ≍ C1n

aσ−n as n → ∞ [78] for some positive constants C0, C1,

a and σ > 1.

Artalejo and Phung-Duc [22] study M/G/1/1 retrial queue with two-way communica-

tion where the server makes an outgoing call in an exponentially distributed idle time with

mean 1/α. In [22], incoming calls and outgoing calls follow two distinct arbitrary distri-

butions. Under light-tailed assumption of the service time distributions of incoming and

outgoing calls, asymptotic analysis of the joint queue length is also presented in [22] using

a simpler method in comparison with that of Kim et al. [78] for the M/G/1/1 retrial queue

without outgoing calls. Under some heavy tailed assumptions of the service times, the

queue length asymptotics is presented in Shang et al. [116] for the M/G/1/1 model and by

Yamamuro [129] for MX/G/1/1 retrial queue.

Heavy traffic asymptotics is presented in Falin [57]. In particular, when the traffic

intensity is close to one, the scaled queue length distribution tends to Gamma distribution.

Furthermore, when the retrial rate is extremely low, the distribution of the scaled number

of customers in the orbit tends to Gaussian distribution. Sakurai and Phung-Duc [115]
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study heavy traffic analysis for M/G/1/1 retrial queue with two-way communication. In

addition to the two heavy traffic regimes: i) traffic intensity is close to 1 and ii) extremely

slow retrial rate, the authors also study the regime iii) where length of an outgoing call

is extremely long. Sakurai and Phung-Duc prove that in regime iii), the distribution for

the scaled number of customers in the orbit tends to Gaussian distribution. We refer to

recent work of Nazarov et al. [91] and Fedorova [59] for recent development on heavy traffic

analysis of retrial queues without and with random environment.

An extension of the M/G/1/1 retrial queues with nonpersistent customers is proposed

by Yang et al. [131]. In this model, a blocked fresh customer joins the orbit with probability

p while a blocked retrial customer joins the orbit with probability q, respectively. With the

complementary probability, they abandon joining the orbit. In the case q = 1, the analysis

is almost the same as that of the basic model with p = q = 1. However, the analysis

for the case q < 1 is essentially different from that of the case q = 1. In particular,

although the equations for the partial generating functions of the joint queueing length

distribution are obtained, the solution for these equations is not obtained. It is shown

that all the quantities interest such as the joint stationary joint queue length distribution

and the factorial moments are expressed in terms of the utilization of the server which

is unknown. A numerical algorithm is then developed to determine the utilization of the

server. However, analytical expression for the utilization remains an open problem.

3.2 Multiple Server Models

While the single server model is relatively tractable in comparison with that without retrials,

multiserver retrial queues are much more difficult than those without retrials. The basic

M/M/c/c retrial queues with classical retrial rate (i.e. exponential retrial intervals) has

been studied by Cohen [38]. In this system customers arrive at the system according to

a Poisson process with rate λ, the service time of a customer is exponentially distributed

with mean 1/ν and the retrial intervals are exponentially distributed with mean 1/µ.

In this model, let πi,j denote the joint stationary probability that there are i (i =

0, 1, . . . , c − 1, c) busy servers and j customers (j ∈ Z+) in the orbit. Furthermore, let

Πi(z) =
∑

∞

j=0
πi,jz

j (i = 0, 1, . . . , c). Explicit expressions for πi,j and Πi(z) are obtained

for the case c = 1. For c = 2, πi,j and Πi(z) are expressed in terms of hypergeometric
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functions [71]. For the case c ≥ 3, it is challenging to obtain analytical solutions for πi,j

and Πi(z). Pearce [95] constructs a solution to the balance equations in terms of generalized

continued fraction. Phung-Duc et al. [97] prove for the case c = 3, 4 that πi,j is expressed

in terms of the minimal solution of a three-term recurrence relation and thus in terms of

continued fractions.

Phung-Duc et al. [98] extend the analysis to M/M/c/c (c ≤ 4) retrial queues with

nonpersistent customers where a blocked fresh customer and a blocked retrial customer

joins the orbit with probability p and q, respectively. As shown in [98], the solution for

the model q = 1 is almost the same as that of the basic model with p = q = 1, while the

solution for the case q < 1 exhibits a different structure. Furthermore, an accurate algorithm

is developed to calculate these continued fractions with pre-specified accuracy [98].

Tail asymptotic analysis for the queue length distribution of M/M/c/c retrial queues has

been extensively investigated. Liu and Zhao [86] show that πc−i,j is of the order of ja−iρj

as j → ∞ for some constant a where ρ = λ/(cν) < 1, using a matrix analytic method. The

analysis of Liu and Zhao [86] is based on the series expansion (up to second order) of the

rate matrix Rn of the underlying level-dependent QBD process in terms of 1/n. The series

expansion is extended to any order by Phung-Duc [106] for M/M/c/c models with two types

of non-persistent customers. It should be noted only the last row of Rn is non-zero in these

models. Kajiwara and Phung-Duc [72] further extend the analysis of Phung-Duc [106] to

an M/M/c/c retrial model with one guard channel for priority and retrial customers where

the last two rows of the rate matrix Rn are non-zero. Kim et al. [76, 77] refine the results

of [86] by a generating function approach.

A simple and accurate fixed point approximation is proposed by Cohen [38] for the case

where the retrial rate is relatively small in comparison with the service rate. In such a

situation, the total arrival flow by both fresh customers and retrial ones is approximated

by a Poisson process whose rate is the solution of a fixed point equation (See e.g. Falin [57]

for details). Let λ + r denote the arrival rate of the approximated Poisson process, where

r is the additional arrival rate due to retrial customers. Let B(λ, c) denote the blocking

probability of the corresponding Erlang-loss system without retrials where ν = 1. The

additional arrival rate r is the solution of

r = (λ+ r)B(λ+ r, c). (1)
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The main reason for this approximation is that under low retrial regime, the retrial flow

is likely to form a Poisson process. Recently, the heavy traffic analysis (also known as

Halfin-Whitt regime) for equation (1) is presented by Avram et al. [27].

For a numerical computation of the joint stationary distribution, we need somehow to

truncate the orbit at some truncation point. The simplest truncation method is limiting the

number of customers in the orbit to N . Thus, a blocked customer that sees N customers

in the orbit is lost. Another truncation method is to modify the structure of the original

Markov chain after the truncation point. The modification makes Markov chain analytically

tractable. This is referred to as generalized truncation in the literature [57, 92, 8, 14]. The

idea in [57, 14] is to disregard the states (after the truncation level (orbit size)) having small

probability mass.

More general models with MAP or BMAP arrivals and phase-type service time are also

investigated [30, 79, 74, 73] by means of the so-called quasi-Toeplitz Markov chains [79].

3.3 Stability Conditions

The stability condition of the basic M/M/c/c retrial queue is simply given by λ < cν or the

offered load (λ/ν) is less than the number of servers. The proof of this result is based on an

appropriate Lyapunov function of a linear form f(i, j) = ai+j, where i is the number of busy

servers and j is the number of customers in the orbit [57]. Artalejo and Phung-Duc [21]

derived the necessary and sufficient condition for M/M/c/c retrial queues with two-way

communication where an idle server may make an outgoing call after some exponentially

distributed idle time with mean 1/α. In [21], incoming calls and outgoing calls follow two

distinct exponential distributions. It turns out that the stability condition of the M/M/c/c

retrial queues with two-way communication coincides with that of the corresponding model

without outgoing calls, i.e., λ < cν. Phung-Duc and Dragieva [112] obtain the stability

condition for a multiserver retrial queue with interaction between servers and orbit where

not only customers retry but also servers call for customers from the orbit. The Lyapunov

function for the models in [21, 112] is of the form f(i, j, k) = ai + bj + k where i and j

are variables representing the states of the servers and k is the number of customers in the

orbit.

For retrial models whose LDQBD process has complex phase structure, it is efficient

13



to use the Lyapunov function proposed by Diamond and Alfa [41]. This approach has

been used to show the stability condition for MAP arrival models, model with after call

work [103, 105] and model with setup time [113].

In a recent paper, Shin [118] proves that the stability condition for the multiclass

M/M/c/c retrial queue is that the total offered load of all classes is less than the num-

ber of servers. The proof of Shin [118] is based on a Lyapunov function that is a linear

combination of the numbers of customers in the orbits of all classes and the states of the

servers. The stability condition concerns when there are a very large number of customers

in the orbit. Thus, the time that a retrial customer reaches an idle server is almost zero

in such a situation. This is an intuitive observation that the stability condition of retrial

queues coincides with that of corresponding models with infinite buffer. Recently, Dayar

and Can Orhan [39] prove the stability condition for multiclass MAP/PH/c retrial queues

with cyclic PH retrial times. The proof in [39] is based on a Lyapunov function which is

also a linear function of the numbers of customers in the orbit. It should be noted that the

Lyapunov function approach is applied for Markovian models only.

In a fairly general class of retrial queues (both single and multiple class models) with

classical retrial rate, the coincidence in the stability conditions between retrials models and

non-retrial models is confirmed by Morozov et al. [89, 90] for more general non-Markovian

models (i.e., arbitrary renewal arrivals and arbitrary service time) using the regenerative

approach. The regenerative approach of Morozov et al. is also used to prove other models

with constant retrial rate [3, 4]. The result in [90] generalizes that of Shin [118].

3.4 Multiclass Models

3.4.1 Classical retrial policy

We consider the multiclass M/G/1/1 retrial model with classical retrial rate where m

classes of customers arrive at the server according to m distinct Poisson processes with

rate λ1, λ2, . . . , λm. The service times of m classes of customers follow m distinct arbitrary

distributions. A blocked customer of class k, joins the k-th orbit and retries to enter the

server after some exponentially distributed time with mean 1/µk (k = 1, 2, . . . , m). For

this model and its variants the stability conditions are available and the means number of

customers (also mean waiting time) in the orbit for each class are obtained [57, 55, 82].
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Grishechkin [70] studies single server retrial queue with structured batch arrivals and in-

vestigates some heavy traffic limits for the queue length process. Many open questions for

these models such as heavy traffic for slow retrial case, waiting time distribution are still

open for further investigations. Under multiserver settings, only the stability conditions are

known [89, 90, 118, 39].

3.4.2 Constant retrial policy

Multiclass M/G/1/1 retrial queues with constant retrial rates have been paid much atten-

tion in recent years. For this model, under Markovian assumptions, i.e., the service times

of each class follow a distinct exponential distribution; the underlying Markov chain is

multi-dimensional. In the case of two classes, boundary problems are formulated and some

information on the means number of customers of two classes in the orbit may be derived.

Furthermore, information on the joint generating functions of the numbers of customers

in the orbit are obtained [26] using Riemann-Hilbert boundary value problems. Song et

al. [120] study the same model using a kernel approach and obtain tail asymptotic for the

queue length of each class. Dimitriou [42, 43] studies some extended models for network

coding in relay nodes in wireless networks.

3.5 Priority and Related Models

3.5.1 Classical retrial policy

In retrial queues with priority, blocked priority customer can wait in front of the server while

blocked normal customer joins the orbit. Under the classical retrial rate setting, bivariate

generating functions for the joint queue length distribution of the number of customers in

normal queue and that in the orbit is obtained in an integral form [36, 57, 58]. For this

model, heavy traffic analysis (the total traffic intensity tends to 1) is carried out by Falin et

al. [58]. Recently, Walraevens et al. [125] derive tail asymptotic formulas for the stationary

distribution of the number of customers in the orbit. A detailed survey on related models

is presented in [36].

3.5.2 Constant retrial policy

Priority retrial queues with constant retrial rate are also paid much attention. Lower

priority customer joins the orbit while high priority customer joins the priority queue. The
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orbit operates as a single server queue where customers retry to occupy the server according

to a FCFS manner and only the customer in the head of the orbit queue retries at a time.

Under a pure Markovian setting, i.e., exponential retrial time and service time, Li and

Zhao [85] obtain tail asymptotics of the priority queue given a fixed number of customers

in the orbit queue. Gomez-Corral [64] considers the model with constant retrial rate where

the retrial time of the customer in the head of the orbit and the service time are arbitrarily

distributed. Atencia and Moreno [23] analyze the model under general retrial time and

Bernoulli scheduling. In this model [23] an arriving customer that sees the server busy

either joins the priority queue (normal queue) or the orbit queue. The authors [23] obtain

the bivariate generating function of the number of customers in the orbit and that in the

normal queue and the remaining service time or the remaining retrial time. The analysis

of the models with both arbitrary service and retrial times is possible because at any time

we need to keep track of either remain service time or remaining retrial time.

3.6 Queueing Networks with Retrials

In our everyday life, there are various service systems, in which customers are served by a

number of servers in a certain order. For example, in a manufacturing system, a product is

made and checked by a number of persons. In a computer system, a message is transmitted

from a source to a destination through several devices such as computers, routers and

switches. These systems can be modeled by queueing networks.

Queueing networks with retrials do not possess product form solution [16]. Thus, ex-

act solution is obtained in a few special cases [102, 88]. Phung-Duc [102] obtains explicit

solution for a simple two-node tandem network with classical retrials at the first node.

Moutzoukis and Langaris [88] derive the explicit results for the tandem model with con-

stant retrial rate and blocking at the first server. For complex retrial queueing networks, a

practical approach is the fixed point approximation. For example, fixed point approxima-

tions are used to analyze some tandem models with retrials by Avrachenkov et al. [24, 25].

In fixed point approximation, the system is divided into multiple subsystems whose input

parameters are unknown. Furthermore, these subsystems are assumed to be independent.

The output of one subsystem is the input of another subsystem. After some iterative calcu-

lations, one will get a convergence determining all the unknown parameters. One drawback
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of this methodology is that a rigorous proof of the convergence and the accuracy of the

approximation are not always presented. Moreover, the approximation is basically valid

only under the slow retrial regime. Numerical solutions for some simple tandem retrial

models are presented in [74, 73, 122, 65].

Recently, Fiems and Phung-Duc [60] present a light-traffic analysis for finite-source

retrial systems arising from CSMA protocols without collision. These systems could be

formulated by multidimensional Markov chains which are also used to represent retrial

queueing networks. The analysis by Fiems and Phung-Duc [60] is based on series expansion

subject to the arrival rate around the origin and is validated by simulation. Thus, power

series expansion may be useful for analyzing queueing networks with retrials.

3.7 Model with Orbital Search

Orbital search mechanism for customers in the orbit is introduced by Artalejo et al. [10],

where upon service completion, with some probability the server can pick a job from

the orbit with zero searching time. This mechanism is further extended in [49, 40, 84].

Chakravarthy et al. [33] investigate multiserver models where an idle server immediately

picks up a customer from the orbit (zero searching time) with a probability or stays idle

with the commentary probability. Recently, Dragieva and Phung-Duc [112, 48] propose

a related model that the authors call the retrial queueing model with interaction between

server and customers in the orbit. The main idea is that not only customers retry to capture

an idle server (incoming calls) but the server also makes outgoing calls to retrial customers.

The distributions of the durations of incoming calls and outgoing calls are different. Under

M/M/1/1 settings, the authors in [48] obtain explicit solution for the generating functions of

the joint queue length distribution and the stability condition is obtained for the M/M/c/c

model.

3.8 Game Theoretic Analysis

Recently, game theoretic analysis of queues has been attracted much attention. Some

authors study game theoretic analysis for retrial models. In particular, a series of works

by Economou and Kanta [51, 53] provide detailed analysis for retrial models with constant

retrial rate. Wang et al. [126, 127, 128] analyze also the models with classical retrial rate. To
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be more precise, models in Wang et al. [127, 128] are devoted to strategic joining behavior of

secondary users in cognitive networks. It should be noted that these references are devoted

to M/M/1/1 type retrial queues only. Thus, the analyses of more general models might be

promising future topics.

3.9 General Retrial Times

Most of researches assume the exponential retrial time. Only a few references are devoted

to models with other retrial time distributions where each customer in the orbit acts in-

dependently of other customers [34, 117, 119]. In the current literature, there is not an

exact analysis for this type of settings and only some approximations or simulations are

presented. Thus, researches in this direction may be highly appreciated.

3.10 Other Performance Measures

In almost the work mentioned above, the main quantity of interest is the stationary queue

length distribution. A few references are devoted to some new quantities of interest. In par-

ticular, channel idle period is analyzed by Artalejo and Gomez-Corral in [13]. Distributions

of the successful and blocked events are studied in [5, 6, 7]. Maximum queue length in busy

period is presented in [9] while that in a fixed time interval is analyzed by Gomez-Corral

and Garcia [68]. Artalejo and Lopez-Herrero [17] analyze the distribution of the number of

retrials of a tagged customer in M/G/1/1 and M/M/c/c retrial queues. Falin [54] obtain

the distribution of the number of retrials for M/G/1/1 retrial queues. Dragieva [46, 47]

studies the distribution of the number of retrials in model with finite source with arbitrary

service time distribution. Gao et al. [63] obtain the distribution for number of retrials in

an M/M/1/1 retrial queue with constant retrial rate and impatient customers.

4 Concluding Remarks

In this paper, we have surveyed the main theoretical results for retrial queueing models.

We have also investigated retrial queueing models arising from real applications such as call

centers, random access protocols, cellular networks etc. We hope that this paper can be

served as a basic reference for researchers who want to enter and deepen this field. Because

the retrial queue literature is rich, we also refer to some earlier survey papers [130, 56, 11,
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66, 18], two books [57, 19] and the recent Special Issue [69]. Most of references in this

paper is for continuous time retrial queues. We refer to Nobel [94] for a survey on results

of discrete time retrial queues. Sections 1 and 2 are partially based on the dissertation of

the author [100].
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