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Initially this paper considers an assignment game without side payments and proves the non-
cmptiness of the core of it. Next, a market model with indivisible goods but without the
transferable utility assumption is presented, and the non-emptiness of the core and the existence
of a competitive equilibrium of the market model are shown, using the first result. Finally this
paper presents a generalization of the market model and also shows the non-emptiness of the
core and the existence of a competitive equilibrium using the results in the previous model.

1. Introduction

(1) The perfect divisibi'ity of goods is assumed in most usual studics of
market economies. If they consider economies where the numbers of units of
goods consumed or produced are not small for any economic agents, this assump-
tion would not be inadequate even though the goods are considered to be
substantially indivisible, because models with perfect divisibility could be
good approximations of such economics. However, if some goods have indivi-
sible and large units and come in small number of units for somc economic
agents, this perfect divisibility assumption would not be so good. Therefore
if we want to consider such a kind of market cconomy, we should give a
model where such goods are treated as indivisible goods. A housing market
is considercd to be a typical example of such markets.

The model given by Shapley and Shubik (1972) is suited to the study
of such a kind of market economy, though it is restrictive.! In their
model the economic agents consist of sellers and buyers, and indivisible
goods arc traded for money which is considered to be a composite good.
Each seller owns one unit of indivisible good initially and wants to sell it,

*The research in this paper was partially sponsored by the Office of Naval Research Contract
no. N00014-77-C-0518.

'von Béhm-Bawerk (1923) and von Neumann and Morgenstern (1953) already considered this
kind of problem, though their models are very restrictive. Telser (1972) also considered it in the
same line. Gale (1960) approached it from the dual price of assignment problem.
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but never buys any indivisible goods. Each buyer wants to purchase at most
one unit of the indivisible goods. This model is generalized by Kaneko
(1976a) to the case where sellcrs may own more than one unit of indivisible
goods as initial endowments.

The transferable utility assumption, however, is imposed upon these
studies, which makes the analysis of them much easier. The transferable
utility assumption does not allow any diminishing marginal utility of money
and makes it constant.’> In other words it does not permit any income effect.
Since the goods have large units in the model, the proportions of the prices
of indivisible goods to the initiai endowments of money (the income levels) of
some economic agents can not be negligible. Therefore it is inadequate to
assume that the marginal utility of moncy is constant for such agents [e.g,
buyers in the models of Shapley and Shubik (1972) and Kaneko (1976a)].

(2) The purpose of this paper is to extend the models of Shapley and
Shubik (1972) and Kaneko (1976a) to cases without the transferable utility
assumption.® Section 2 provides an abstract generalization of Shapley-
Shubik’s model, which we call a central assignment game, and proves the
non-emptiness of the core of it, showing the balancedness. Section 3
considers the market model given by Shapley and Shubik (1972) without
making the transferable utility assumption, and proves the non-emptiness of
the core of the market, using the non-emptiness of the core of the
central assignment game. Furthermore, the equivalence of the core and the
competitive equilibria 1s shown, which implies the existence of a competitive
cquilibrium. Section 4 extends thc model of scetion 3 to a case where sellers
may own more than one unit of indivisible goods as initial endowments but
the transferable utility assumption is imposed upon the sellers. This model is
a generalization of that of Kaneko (1976a).# In this model thc non-cmptiness
of the core and the existence of a competitive equilibrium are also shown,
and the rclationship between them is considered. The equivalence of them
does not necessarily hold, but a sufficient condition for it is provided, though
it is less general than that of Kaneko (1976a) in the case with the transferable
utility assumption. Since the sufficient condition, however, is very weak, it
teaches us that the competitive equilibria can be represcntatives of the core
in the market models, which makes our further analysis much easicr.”

2The transferable utility assumption is explained in Kaneko (1976b) and briefly in section 4 of
this paper.

*Recently, Crawford and Knoer (1981) provided a generalization of Shapley-Shubik’s model
to the case without the transferable utility assumption. They proved the non-emptiness of the
core of their model. We will discuss their results briefly in section 2.

“Exactly speaking, this market model is neither any generalization of that of section 3 nor
that of Kaneko (19764a) in the usual mathematical sense.

*In Kaneko (1980), the theory of this paper is applied to a rental housing market, in whlch
several properties of competitive rents are investigated.



M. Kaneko, The central assignment game 207

2. The central assignment game

This section presents an abstract generalization of Shapley—-Shubik’s
assignment game and proves the non-emptiness of the core of it.

(3) Consider an m+n-person game (M UN, V)=({1,....,m}u{l',... .0}, V)
without side payments, where V is a characteristic function from the class of
all coalitions to a class of subsets of RM“Y ie, V(S)cRM“¥ for all
Sc=MUN. Here RM“Y is the m+n-dimensional Euclidean space whose
coordinates are indexed by the members in MUN. We assume: for all
non-empty ScM UN,

V(S) is a closed set in RM“N, (1)

if xeRMYYN and ye V(S) with y,=x, for all ieS,
then x e V(S), (2

proS[V(S)—'US (interior of V({i}))} is bounded and non~empty.°(3)

We say that a non-empty coalition S can improve upon a vector xe V(M U N)
iff there is a vector ye V(S) such that y, > x; for all i€ S. The core of (M UN, V)
is the set of all vectors in V(M u N) which cannot be improved upon by
any non-empty coalition,

Let
n={ScMuUN:|S|=1or (S|=2, SAM+¢, SAN )},

where |S| denotes the number of members in S. We call ps={T,,..., T} a =n-
partition of S iff ps is a partition of S such that T,exn for all t=1,..,k. Let
P(S) be the set of all m-partitions of S.

We call (MUN, V) a central assignment game iff V satisfies

ViS)= {J () WT) forall ScMUN. (@)

pSeP(S) Tepg

Definition (4) means that every coalition is subdivided into a partition which
consists of singleton sets and pairs of players in M and N. Thus the central
assignment game has the same thought as Shapley-Shubik’s game. It is,
however, not permitted in ours that any commodity (transferable utility or

oprog X ={(x)ies:x€ X} for all S MUN and X cR¥“¥
"Note that V satisfies the super additivity property.
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other commodity) is transferred freely in coalitions with more than two

members. This is the main difference from Shapley-Shubik’s. In fact, this

difference is not important in considering the core concept. Here we explain

this and the relations between our model and some related studies, briefly.
An assignment game (M U N,v) with side payments is defined by

u(S)= max Y oT) forall ScMUN.

pSeP(S) TEI’S

This game is represented by the following game (MUN, V) without side
payments:

I7(S)={xeRM“N: ingv(S)} forall ScMUN.

icS

Then this (MU N, ¥) is not a central assignment game, because transferable
utility is transferred freely in coalitions with more than two members, but we
can define a new central assignmen! game (M UN, V) by

7$)= {J () WT) forall ScMUN.

pSeP(S) Teps

Then the following lemma holds:

Lemma 1. The core of (M UN, V), ie., the core of (MUN,v), coincides with
the core of (MU N, V).

Proof. Obvious,

This implies that the central assignment game is a generalization of Shapley-
Shubik’s game. Furthermore it is easily verified that Gale-Shapley’s (1962)

marriage problem and Crawford-Knoer’s (1981) job matching problem are
special cases of the central assignment game.

The main result of this section is the following theorem:
Theorem 1. Every central assignment game has a non-empty core.

(4) This subsection proves Theorem 1. It is necessary to prepare certain
concepts. Let us call a family T of non-empty coalitions of MU N balanced
iff the system of equations

Y dg=1 forall jeMUN, )

S:83j

has a non-negative solution with 53=0 for all S¢ T. The numbers {Js} are
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called balanced weights for T A game (MU N, V) in characteristic function
form is said to be halanced iff the following inclusion statement,

M V(S) e V(MUN), (6)
SeT
holds for all balanced families T. The fundamental theorem of Scarf (1967)
states that the core of a balanced game (MU N, V) with (1), (2) and (3) is non-
empty. Hence, it is sufficient to show that every central assignment game
(M UN, V) is balanced.

For any non-empty coalition S, if (m+#n) by (m+n) zero-one matrix Ag
=(as.,;), all rows and columns of whicl: are indexed by members in M UN,
satisfies

Y agg=1 if jeS§, Y ag.;=1 if ieS,

ieMuUN jeMuUN (7)

=0 if ¢S, =0 if j¢§,

then we call Ag an S-permutation matrix. We define Dy(b)=(d. (b)) for each b
in RMY¥ and each non-empty coalition S as follows:

dy.;(b)=1 if ieSnM, jeN, beV({ij}),
=1 if ieSnM, jeM, beV({i}), (8)
=1 if ieSAN, jeN, beV({,
=1 if ieSAN, jeM,

=0 otherwise.

Lemma 2. V(S)={beRM“¥:Dy(b)= As for some S-permutation matrix Ag} for
all Sc MUN.

Proof. See the appendix.

Now we are in a position to prove that (M UN, V) is a balanced game.
The following proof is almost the same as that of the theorem of Shapley
and Scarf (1974) that the core is non-empty in the market model where only
indivisible goods are exchanged. But as our game is more complicated, we
give the proof of it for mathematical completeness.

Proof of the Balancedness. Let T be an arbitrary balanced family of
coalitions, and let be [g.r V(S). Let {Js} be balancing weights for T. Then it
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holds that

DM U N(b) = Z 55Ds(b)-

SeT

For, if dy oy (b)=1, then dg.(b)=1 if ieS and dy,,;(b)=0 if i¢S by (8),
which implics

Z 6SdS:i_i(b): Z 5s=1,

and if dy, y.;{b)=0, then dg,;(b) =0 for all SeT, which implies

Z 6SClSlj(b):0
SeT

Sincc be V(S) for each Se T, there is an S-permutation matrix Ag by Lemma
2 such that Dy(b)= A, and so

Y 5sDg(h)z Y dsAs.

SeT SeT

Call the matrix on the right B; then we have

Dy nb)2B.

The crucial fact about B is that it is doubly stochastic, ie., it is non-negative
and has all row- and column-sums equal to 1. This follows dircctly from the
definition of balancing weights; in fact, the jth column sum is

Zésas:ijzszl'(ss Z dg.ij

ieMUNSeT ieMON

and the argument for the row-sum is the same.

The next step is to change B into an Mu N-permutation matrix Ay,
ie., to eliminate any fractional entries without changing the row- or column-
sums and to do so without disturbing any entries which are already 0 or 1.
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Since all entries of Dy ub) are 0 or 1, we will thereby ensure that
Dy o WB) = Ay w» which implies be V(M U N).

Since a fraction cannot occur alone in any row- or column, either B 1s
already an M u N-permutation matrix or there is a closed loop of fractional
entries:

i2d7 izis

i

pdt iplp

Alternately adding and subtracting a fixed number ¢>0 to the elements of
this loop will clearly preserve row- and column-sums. If ¢ is too large, the
negative entrics will be created, but making ¢ as large as possible consistent
with non-negativity will produce a new doubly stochastic matrix B’ that has
at least one morc zero than B, and hence fewer fractional entries. If B is not
yet an M u N-permulation matrix, we repeat the same operation. Eventually
we can obtain what we want — an M u N-permutation matrix A,y such
that Dy, db)=4y . n. QED.

3. The assignment market

This section reformulatecs the market model of Shapley and Subik (1972)
without making the transferable utility assumption and shows that there
exist a non-empty core and a competitive equilibrium in the market.

(5) Consider a market consisting of players M={1...,m} and N
={l',...,n'}. A playcr in M may be called a seller and onc in N a buyer in
the following. In this market s-kinds of indivisible goods are exchanged for
money. A seller owns exactly one unit of indivisible good before trade. Hence
M can be subdivided into M, UM, U ...UM, where ieM, (t=1,...,5) owns
one unit of the rth indivisible good. Without loss of generality, we can
assume that M,#¢ for all t=1,...,s, and M,={m,_+1,...,m,} for all
t=2,...,s, where 0<m, <m,<...<m;=m. No buyer owns any indivisible
goods before trade. Each player ie MUN owns [;>0 amount of money
initially, where money is perfectly divisible and should be interpreted as a
composite good. That is, player i’s initial endowment is (¢',1,) if ie M, and
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(0,1,) if ieN, where ¢' is the s-dimensional unit vector with e¢/=1. For
simplicity, we denote s initial endowment by (d',I)) (ie MU N).

Each player ie MUN has a preference relation R; on the consumption set
X=Iy xR, where I, is the set of all non-negative integers, [% the direct
product of s number of I, and R, the set of all non-negative real numbers.
(x,m)eX means amounts of the indivisible goods and money to be
consumed. We assume that every R, (e MUN) is a weak ordering
(x,m)R|(y,m;) means that player i prefers (x,m,) to (y,m,) or is indifferent
between them. We define i’s strict preference P; by (x,m,)P(y,m,)< not
(y,my)Rx,m;) and s indifference relation Q; by (x,m)0(y,m,)=
(x, m)R(y, m,) & (y,my)R{x, m;). We assume — for all ieM U N:

(A)  Monotonicity with respect to money. 1f m, >m,, then (x,m;)P(x,m,)
for all xel*,.

(B)  Archimedean property. If (x,m,)P(y,m,), then there is an m; such that
(xs ml)Qi(y5 m3)'

It would not be necessary to explain the meanings of these assumptions.

Lemma 3. If (x,m)R(0,0) for all (x,m)e X, then there is a continuous utility
function U* on X, ie., (x,m)R,(y, m,) iff U'(x, m;)= Uiy, m,), where the relative
topology of the (s+ 1)-dimensional Euclidean space RS*' is introduced into
X=F xR,.

Proof. See the appendix.

We make the following assumptions separately on the sellers and the
buyers — for all sellers ie M, (t=1,...,s):

(C8) Satiation. For each (x,m)e X, if x,=0, then (x, m)Q,(0,m) and if x, =1,
then (Xa m)Qi(et5 m)Pl(07 m)

And for all ie N:

(CB) Satiation. For each (x,m)e X, if x,=1 for some ¢ and (', m)R(¢*, m)
for all k with x, =1, then (x, m)Q,(¢', m)P{0, m).

The last assumption is:

(D) For all ie N, (0, 1;)P(x,0) for all xe I°,.

It is noted that assumptions (CS) and (CB) are stronger than the
supposition of Lemma 3, which implies that Lemma 3 holds under these
assumptions.
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Assumption (CS) means that even if seller ie M, has indivisible goods other
than the tth good or more than onc unit of the tth good, then his utility does
not rise more than that of the initial state. It follows from this assumption
that sellers never buy any indivisible goods. Assumption (CB) means that
cven if buyer i consumes more than one unit of indivisible goods, then his
utility does not risc more than that of having one unit of the most preferred
one in the goods. More precisely, if the buyer purchases one unit of a more
preferred good as the second wunit, his utility increase, but it is indifferent
from this to purchase the good as the first unit. This assumption implies that
buyers never purchase more than one unit if all the prices of the goods are
positive. Assumption (D) means that any buyer purchases no indiyisible good
by paying all his income. When the marginal utility of money at (x,0) is very
large and the income I; is not too small, this assumption is satisfied. Since
assumption (CS) implies that no seller buys any indivisible goods, ie., lower
his amount of money, it is not necessary to consider vectors (x,0) in the case
of sellers. Therefore assumption (D) is imposed only upon the buyers.

These assumptions (CS) and (CB) seem to look strange at a first glance
and are unfamiliar to one having the knowledge of the standard equilibrium
theory. Then we should justify these assumptions. Consider an example of a
market with s kinds of houses for rent, and consider two cases where a buyer
(household) i rents one unit of kth house and where he rents two units of the
house.® These states are represented as(e®, m,) and (2, m,), where m, and m,
are the amounts of money after paying the rents for the house(s), respectively.
It is natural to suppose that there is a non-negative real number ¢ such that

(eka m;)Q(2e*, my —e).

This ¢ is the maximal amount that i pays for the 2nd unit of the house when
he has rented already one unit of it. When the kth house is not small to live
in for him, the real number & could be considered to be small relative to the
rent of the house. Then it is reasonable and convenient to assume that
the number ¢ is zero. This is an assumption for idealization. Next
consider the case where (¢',m;)R{e", m,) and x=e'+¢* Then it is natural to
assume that (x,m;)R(e’,m;), and that (x,m; —&)Q{e',m,) for some ¢=0. By
the same reasoning as the above, this ¢ could be assumed to be zero. We also
can explain the meaning of (CS) in almost the same way.

Assumption (D) is justified in the context of the above rental housing
market as follows. Our market model is a partial equilibrium model, which
focus our consideration on the indivisible goods (rental housings) in question,
and ‘money’ is the composite good of all other commodities which are not
considered explicitly in our model. Buyer i’s consumption vector (x!, 0) means

®A rental housing market of this type is considered in Kaneko (1980).
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that he rents x' units of houses but does not consume any commoditics.
Conversely, (0, I,) means that he does not rent any house in question but can
consume some commodities, using his income I;. This means that he can rent
a house (an apartment) or can live in a hotel which are not included in our
market model. Thus (0, ;) is a normal state but (x,0) an abnormal one for
an individual life. Therefore it is innocuous to assume (D).

The above formulation is a reformulation of Shapley-Shubik’s market
model without making the transferable utility assumption. We call the above
market model an assignment market.

(6) Now we are in a position to discuss the main theme of this section.
For any non-empty coalition S, we call (x5,m%) =((x',m"));.s an S-allocation
iff

(x,mYeX forall ie§, 9)
¥ ()= (@ 1), (10)

We call an M U N-allocation simply an allocation. We say that a non-empty
coalition S can improve upon an allocation (x™~N m™v¥) iff there is an S-
allocation (y°, m3) such that

(v, m)P(x',m}) forall ieS. (1

The core of the assignment market is the set of all allocations which can
not be improved upon by any non-empty coalition.

.The characteristic function ¥ of the assighment market is defined in the
usual manner as follows — for all Sc MU N:

V(S)={beRM"": for some S-allocation (x*,m°),

b; < UY(x',m) for all i€ S}. (12)

It is easily verified that for any b in the core of (MUN, V), there is an
allocation (x™“¥ m™“") in the core of the assignment market such that
Ui(x', m") = b, for all ie M U N, and conversely that (U(x’, m)),c» ., ~ belongs to
the core of (MUN, V) for any allocation (x¥“Y, m¥“¥) in the corc of the
assighment market. Hence thc non-emptiness of the core of (MUN, V) is
equivalent to that of the core of the assignment market. So, we show the
non-emptiness of the core of (MUN, V).

We define another characteristic function ¥, using V as follows — for all
non-empty Sc M UN:

Vo= ) [ ") (13)

pSeP(S) TEpS
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Of course the new game (M UN, V) is a central assignment game. Hence the
core of (M UN, V,) is non-empty by Theorem 1.° Although V, is different
from V, the following relations hold:

Vo(S)= V(S) forall ScMUN,

=V(S) forall Sen. (14)

Morcover we can prove:

Theorem 2. The core of (M UN, V) coincides with the core of (MUN, V).

From Theorems 1 and 2 and the above remark, we get:

Theorem 3. The cores of (MUN, V) and the assignment market are non-
empty.

Next let us consider the relationship between the core and the competitive
equilibria in the assignment market. We call a pair (p,(x™“Y, m™-") of a
price vector p=(p,,...,p,) €R% and an allocation (x ¥ mM ™) a competitive
equilibrium iff

forall ieMUN, (x,m)R(y,m) forall (V,m)eX
such that py 4+ mi <14 pd, (15)
forall ieMUN, px'+m'=I,+pd. (16)

We call (x*°N m™°™) a competitive allocation iff there is a price vector such
that (p,(x™“¥, m™ ™)) is a competitive equilibrium, and p a competitive price
vector.

Shapley and Shubik (1972) show that the core always coincides with the
set of all competitive allocations in the assignment market with the
transferable utility assumption. This theorem is true even in the assignment
market without the transferable utility assumption.

Theorem 4. The core coincides with the set of all competitive allocations in
the assignment market.

From this theorem and Theorem 3, we get:
Theorem 5. There exists a competitive equilibrium in the assignment market.

°It is clear that ¥, satisfies conditions (2) and (3). It follows from Lemma 3 that V, satisfies
condition (1).
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Let us summarize the results which have been demonstrated:

in the sense mentioned in this subsection.

2).

assignment market (Theorem 4).

Therefore we have:

(6) There exists a competitive equilibrium in the assignment market

(Theorem 5).

The logical relations are

illustrated 1n fig. 1.

The Core of (M UN, VO) * ¢

’ [ Theorem 2

The Core of (MUN, V) #* ¢

’ 1 Definition

The Core of the Assignment
Market # ¢

Theorem 4

|

The Competitive Equilibria of
the Assignment Market % ¢

‘ Definition

The Competitive Equilibria of
the Agent Assignment Market # ¢

Theorem 6

The Competitive Equilibria of
the Generalized Assignment
Market # ¢

Under the Assu

of Theorem 10

mption

ﬂ Well Known

The Core of the Generalized
Assignment Market # ¢

Fig. 1

Every central assignment game has a non-empty core (Theorem 1).
The core of the assignment market is equivalent to the core of (MUN, V)

The core of (M UN, V,) coincides with the core of (M UN, V) (Theorem

The core coincides with the set of all competitive allocations in the

Theorem 1

Theorem 3

Theorem 3

Theorem 5

Theorem 7

Theorem 8
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A distinctive feature of the assignment market is bilateral exchange
between sellers and buyers. The core concept represents this feature very
well (see also Corollary 7), but the competitive equilibrium does not.
Furthermore we do not make any assumption of ‘largeness’ on the market
but allow commedity differentiation. Therefore the competitive equilibrium
could not be justified in the standard way. However, we have shown the
equivalence of the core and the competitive equilibria. One practical
advantage of the competitive equilibrium is that the definition of it is much
easier and more manageable than that of the corc. Therefore our result
implies that for a practical purpose it is enough to consider the competitive
equilibrium in the assignment market.

(7) This subsection proves Theorems 2 and 4. The following lemmas are
necessary to prove Theorem 2. The proofs of them are given in the appendix.

Lemma 4. For any allocation (xM°Y m™“¥), if a non-empty coalition S
satisfies
Y (d 1)=) (x,m) and m'>0 forall ieS, (17)
ieS ieS

then S can improve upon the allocation (x™ ¥,

but x#y.

mMYN) Here x>y means x=y

Lemma 5. Let (xYN,m™“") belong to the core of the assignment market.
Then there are partitions of M and N such that M={i,,...i,}UM,, N
={jlsecndiy UNg and

(xila mit) + (xjtn mjr) = (ai" Ii,) + (ajlﬂ Ij,) and

x'=0 foral t=1,..,k, (18)

(x,m)=(d, 1) forall ie MyUN,. (19)
Note that x"=a" for all t=1,...,k by (I8).

The proof of Lemma 5 implies the following corollary:

Corollary 6. Under the supposition of Lemma 5, for all ie M, {i,,....i,} and
J€{its--wjx} with xX=¢, it holds that

(x, m) + (), m)= (", 1)+ (a, 1 ).

Proof of Theorem 2. Let b be in the core of (M UN, V). Since b can not be



218 M. Kaneko, The central assignment game

improved upon in (MUN, V,) by (14), it is sufficient to show that b is in
VolM U N). There is an allocation (x"°" m"“") such that Ui(x',m’)>b,
for all ie MUN. Note that this allocation is in the core of the assign-
ment market. Let the partitions of M and N given in Lemma 5 be
M={iy,...,ii} UMy and N={j,,....j,} U No. We put My={i(1),...,i(g)} and
No={j(1),...,j(h)}. We define a n-partition py,y={T},..., T;} (f=k+g+h) as
follows:

T,={i,.j.} forall t=1,..,k,
Tov={i(t)} forall t=1,..g,
Tivg+={(0)} forall t=1,...h.

By Lemma 5 it holds that be V(T) for all Tepy,u. 1€, beﬂrep‘ww\, V(T).
This means that b is in V(M U N).

Conversely, we show that any b in the core of (MU N, V) belongs to the
core of (MUN, V). Suppose b is in the core of (MUN,V,). By (14) b is in
V(IMUN). We prove that if b can be improved upon by a non-empty
coalition in the game (M U N, V), then b can be also improved upon by some
non-empty coalition in the game (M U N, V). So, we will complete the proof.

Since b is in V(M UN), there is a m-partition p,,,y of MUN such that
be(VrepmonV(T). We put the set of pairs

{T:|T‘:2 and Tepyont=1{{in j1}s-o Uik Ju) )
and

Mo=M—{iy,...i} and No=N—{j,... jx}.
Then it holds that
beV({i,j}) forall t=1,..,k
eV({i}) for all ie MyUN,.
Hence there is an allocation (x™ ¥, m™“¥) such that
(", ) + (o, mi) = (a", ) +(a?, 1) for all t=1,...,k,
(X, m)=(d,I;) forall ieM,uUN,,

Uix',m)=b, forall ieMUN.
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Suppose that U'(x’, m")>b, for some ie M UN. If ie My U Ny, then
by < Ui(x', my=sup prog, V({i})=sup proyVy({i}),

which is a contradiction to the supposition that b is in the core of
(MUN, V). Let i=j, (t k). If m*=0, then

Ut(x, m") < Ua”, 1;) = sup prog; Vo({i})s

by assumption (D), which is a contradiction. Then we have m'>0. So, we
can choose a positive real number ¢ by Lemma 3 and assumption (A) such
that

Un, mi —e)> b,

and  U'(x", m"+€)>b, .

Since (U(x",m" +¢), UMx, m"—&)) x (b)), ; belongs to V({i,j.})=Vol{inj})
{i,,j,} can improve upon b in the game (M UN, V;), which is a contradiction.
Let i=i, (t<k). Then U'(x",m"y2Ua" 1) together with assumptions (A)
and (CS) implies mi’glir> 0. So, we can get a contradiction similarly with the
above if Ui(x" m")>b,. Hence it holds that

Ulx, m'y=b; forall ieMUN.

Suppose that a non-empty coalition § can improve this allocation
(xMvN mMYN) in the assignment market, which is equivalent to that S can
improve upon b in the game (M U N, V). This means that there is an S-

«allocation (y%, m?) such that
Uiy, m)>Uix",m’) forall ieS. (20)

We choose a buyer je$ such that y; =1 and Uie/, m})=U/(y/,m}) for some
f<s. which implies that there is a seller ie SmM with y,=0. This choice is
always possible because if not, (20) can not hold. Of course, it holds that
Vi+yzd+al If mi+m|<I,+1;, then the coalition {i,j} can improve upon
(xM-N mMed) by (20) and the choice of i, which is a contradiction to the
supposition that b is in the core of (M UN, V). Hence we have m) +m} >
I;+1;, which implies

1

¥ ) 4 and Yo omi< Y .

teS—1{i, j} teS —ii, j) teS—{i,j} teS —{i,j}

It follows that if S—{ij}#¢, S—{i,j} can improve upon (MYN Moy e,
there is an (S—{i,j})-allocation (z5 % m3 =7 such that

Uz, mh) > Uy, m') > U'(x,m") for all teS—{ij}.
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This is (20) for the case of S—{i,j} and S—{i,j} is two members less than S.
If S={ij}. then {i,j} can improve upon b in the game (MUN,V,). If
S {i,j}. then, repeating the same argument as the above, we can reach a T
allocation (w',mf) such that [T|<2 and U'(w',mb)>U'(x',m") for all teT.
Hence b can be improved upon in the game (MUN, V). Q.E.D.

The latter part of the proof of Theorem 2 implies the following corollary:

Mo N’ Mu N)

Corollary 7. An allocation (x m is in the core of the assignment
market iff (x*>", m"“N) can not be improved upon by any coalition S in T.

It should be noted that since any allocation in the core of the assignment
market is the sum of partial allocations as shown in Lemma 5, we do not
need to consider the grand coalition MU N.

This corollary has an important implication. It is often said that the core-
theory neglects costs of coalition-formations and that as costs of forming
large coalitions are very large, it is implausible to assume to be able to
bargain freely. This author readily agrees on this criticism in general.
However, this corollary implies that this criticism is not persuasive at
least in the assignment market because the same result is derived even if only
the coalitions in n are permitted and the coalitions in n are very small
Therefore the core of the assignment market is free from this criticism.

Proof of Theorem 4. It can be shown in the well-known manner that the
competitive allocations arc included by the core. Hence we need to show
the converse inclusion.

Let (x*“N m™“") be in the core. Let us consider the partition given by
Lemma 5. If there is a seller ie{iy,....iijnM, and a buyer je{j.... .}
such that x'=e/, m/=1,—r, m'=I,+r and r#7, then we have m'4m'L
I;+1;, which is a contradiction to Corollary 6. Hence it holds that if there is
a buyer je{j,..., i} with x=e/, there is a real number 7, such that

m'=I+r, forall ieM n{i,...i},
m=I,—r;, foral je{j,. .j} with x/=e’
If r <0, then U'(e/,I))>UX0,1;+r)) for all ie M, n{i,.....i,} by assumption
(CS), which is a contradiction. Hence we have r,>0.
We define p=(p,,..., p,) by
pr=ry; if there is a buyer je{j;,....ji,} with x/=¢/

= min g (i) otherwise, (21
ieMI
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where (i) is defined by U'(e’, 1)=U0, I;+q i) for all ieM, (f=1,...,s).
The existence and uniqueness of g (i) are ensured by assumptions (A) and (B).
It is clear by assumption (CS) that g () >0 for all ie M. Hence p,>0 for all
f=s. 1t can easily be verified that the budget constraint (16) follows from (21)
and Corollary 6. Hence we need only to show (15).

Suppose that there is a (y,mi)eX for some ie MUN such that
Uiy, my)>Ux',m") and py' +m\ <I,+pa'. First, let ie M,. In this case it is
sufficient to assume y'=0 by assumption (CS) and the individual rationality
U':(x", mi); U'd',1;). Then we have p,>min . q.i), because otherwise,
UN0,m)=UY0,I;+p)SUYd", I)SUY(x',m"), which is a contradiction. If
ieM n{i},...,i,}, then the existence of such a (y,m}) is impossible by
(CS), (21) and Corollary 6. So, ie My M. Since pf>minierqf(i), there
is a buyer je{j,...,j,} with x’=e/. For a sufficiently small real number
¢>0, it holds by assumption (A) that

UHO, I+ p,—e) > Ul(x', m),
Ui(x, Ii—p+e)> Ulx], mi).

That is, {i, j} can improve upon (x?“N, m™“¥), which is a contradiction.
Second, let ieN. Then we can assume (), m})=(e’,I;—p,) for some f<s.
Since U'(e’,I;—p,)>UH(x,m)2U%d" 1), we have I,—p,>0 by assumption
(D). Hence if M, {i,...,i,} #¢, then for any je M, {i},...,i,}, it holds that
for some ¢>0

Ule”, I,~p,—e)> Ui(x', m),
UAO, I;+p s+ ) > U0, I+ p )= Ui(x/, m)),

which is a contradiction. Next, if M n{iy,....i,} =¢, then for a seller j with
q0)=min g A1),

Ulte!, I;~p,—e) > U(x', m'),

U¥(0, Ii+p;+¢)> U0, Ii+q.)= Ui, 1) =UI(x/, m)),
because p,=q,(1) and (a/,1)=(x/, m) by the assumption that M, {ij,... i}

=¢, where & is a sufficiently small positive number. This is a
contradiction. Q.E.D.

4. The generalized assignment market

(8) This section considers a generalization of the assignment market, in
which each seller ie M, (k=1,...,s) is permitted to own more than one unit
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of the kth individual good initially. That is, his initial endowment of the
individual goods is w,e® in the model of this section, where w; may be any
positive integer. We assume — for all ie M, (k=1,...,s):

(CS)  Satiation. I (x, )0 (x.e", m) for all (x, m)e X and if x,=w, then
(X, m)Qi(Wiek5 m)P,((W,— l)ekn m)Pz v Pi(eka m)Pl(07 m) '

We can justify this assumption by the similar reasoning to that of
assumption (CB).

We impose the transferable utility assumption on the sellers ie M:
(E)  Constant marginal utility of money. 1f (x, m;)Q(y, m,), then
(x,m; +0)Q(y,m,+3) forall §>0.
Kaneko (1976b) shows that assumptions (A), (B) and (E) imply that

there is a real-valued function ui(x) on I° such that

(6, m)R{y,my) Ml wle)+my Zul(y) +m,. (22)

Assumption (E) would not necessarily be strong for the sellers. This
assumption states that there is no income effect in the sellers’ utility
functions. It would not be inadequate to assume no income effect in the
domain where the amount of money is not small. Each seller’s amount of
money can be only increased by selling his initial endowment. If I, (ie M) is
not small, then we need to consider only the domain where the income effect
can be negligible. Furthermore the sellers are considered to be firms in our
market model. Then it would be natural to assume that each firm’s objective
is to maximize its profits, which is equivalent to assumption (E). Note that
condition (22) does not mean the marginal utility of money is constant in the
sense of von Neumann-Morgenstern’s utility (i.e., risk neutral). That is, any
monotone transformation of u'(x)+m is allowed. Finally note that assumption
(E) should not be made on the buyers because each buyer’s amount of
money is decreased by purchasing an indivisible good and the proportion of
the payment to the initial income is not negligible.

In Kaneko (1976a) it is permitted that a seller owns more than one kind of
goods, i.e., a;>0 for ie M, (f#k), but it is also asssumed that u(x) satisfies
u(x)=3%_ u'(x;e’). When cach u/(x,e/) is not constant return to scale, ie.,
u'(x e’y =x u'(e’), this assumption is inadequate, but rather it is plausible to
assume that u'(x)=u(}"%_ x,e/). Because the indivisible goods are permitted
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to be different but they are not substantially different goods, which is an
implication of (CS’) or the reasoning of (CB). By this reason we do not
generalize the assignment market to such a form. But we note that the
following results can be gained without any essential change in this case.

We put afg)=u(ge")—u'((g—1)e*) for all ieM, (k=1,...,s) and g<w,. We
can put w'(0)=0 without loss of generality. For convenience sake, we put
af{g)=0 for all g>w, (ie M). Then we have

W(x)=Y afg) forall xel. (23)

g=1

Assumption (CS’) implies that afg)>0 for all g<w; (ieM). Further we
assume that the marginal utility of the kth indivisible good is non-increasing
forall ie M, (k=1,...,5s), that is:

(F) Non-increasing marginal utility of the indivisible good. afg)Zafg+1)
for all g.

We call this market model (M, N) a generalized assignment market. The
market models of Shapley and Shubik (1972} and Kaneko (1976a) are special
cases of the generalized assignment market.'®

In order to characterize this market model, we shall define another market
model (M*,N), which we call the agent assignment market of a generalized
assignment market (M, N).!! The buyers N are the same as the buyers N of
the generalized assignment market (M,N). The sellers M* consist of
MY, M¥ 1e, M¥*=M}u M%U...uM¥ such that

Mi= ) {i1),...iw)} forall k=1,...s. (24)

tsMk

We assume that each seller i(g)e M¥ (k=1,...,s) owns one unit of the kth
indivisible good and [;;;>0 amount of money initially, ie. (2", I;,)
=(e’, I,,). Seller i(g)’s utility function is given as

Uf(!lj(x, n]) = ui(")(x) + m, (25)

ulx)=afg) if x21,
=0 otherwise. (26)

°Exactly, it is slightly different from a generalization of that of Kaneko (1976a) as remarked
above.

""The same procedure was employed in Kaneko (1976a).
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Each seller i attaches the label i(g) showing the name of proprietor i and the
number of unit g to each unit and employs an agent acting as a seller of the
unit who has the valuation afg) of the unit given by the proprietor i. Of
course, the agent assignment market is an assignment market given in the
previous section.

We can show that there is a one-to-one mapping from the set of all
competitive allocations in the generalized assignment market to that in the
agent assignment market.

Theorem 6. If (p, (MYN mMYM) is a competitive equilibrium in the
generalized assignment market (M, N), then (p, (x™" N, m™" ™)) defined by

XO=¢t if xizg and ilg)eMF,

=0. otherwise, @7
m@ =p, + Ly if x9=0 and i(g)eMf,
=Ii, otherwise, (28)

is a competitive equilibrium in the agent assignment market (M* N).'?

Conversely if (p, (x* °N,m™*'°M) is a competitive equilibrium in the agent
assignment market, then (p, (x®°~ m™ ™) defined by

X=73 x@ forall ieM, (29)
g=1

m=1+Y (m9—1,) forall ieM, (30)

g=1
is a competitive equilibrium in the generalized assignment market (M, N).
From Theorems 5 and 6, we get:

Theorem 7. There exists a competitive equilibrium in the generalized
assignment market.

Since the core includes the competitive allocations, we get:

Theorem 8. The core of the generalized assignment market is non-empty.

Y2p, x/ and m’ (e N) in (p, (xM 2N, mM ") are the same as those in (p, (x™¥,m" > ¥)).



M. Kaneko, The central assignment game 225

Proof of Theorem 6. Let (p,(x™“Y,m™“") be a competitive equilibrium in
the generalized assignment market. Then it is easily verified that x'

=xe*<we* for all ieM, (k=1,...,s) and x'=0 or ¢ for all jeN. Since

(xMYN mMYN)is an allocation,

Y (m)= Y (d.1).

ieMUN ieMUN

Let (p, (x™ ¥ m™“N) be given by (27) and (28). Clearly the budget
constraint (16) holds for all ie MUN. First, we show that (x" V¥ mM*“N) js
an allocation. By (27) we have

Z x’lczz xk_ Z Z xl(!])_ Z xt(g)_ Z xl(g)

ieM ieM, I(Q]GM ilgye M*
which implies
=Y d.
ieM*UN ieM*UN

It is clear that
S mi=Y I+ Y Z (w; — XDy,
ieM icM k=1ieM

which implies

S mi=Y 1~ ¥ Z Wi—X)p

jeN jeN k=1ieM

Since by (28)

m'? = Z 1(9)+Z Z (w;— pk’

ilgle M* ilgle M k=1ieM

it holds that

m@+ Y m= 3 L+ ¥ I
i(g)e M* jeN i{g)e M* jeN
Clearly the utility maximization (15) is true for all ie N. Hence we need to
show that (15) is true for all ie M*. Suppose that there is an i(g)e M¥ for
whom (15) is not true. This means that if x*@=¢* then

P Lig > a(8) + Ly =t (x"9) + '),
ie., p>afg) and if X9 =0, then

a(8)+ iy > pe+ 1= W)+ m'),
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MuN’ MuN))

1e., a{g)>p, Since (p,(x
that

m is a competitive equilibrium, it holds

i h
Z ag)+ pw;—x)+ ;2 z a{g)+pw;—h)+1; forall h.
§=1 g=1

By this inequality and assumption (F) wc have p,Zayg) for all g<x} and
pr=ag) for all g>xi. This contradicts the above fact, ie., that if x'@=¢* ie.
xi<g by (27, than p,>afg) and if x™ =0, ie, x;<g, then p,<ag). Hence
(15) 1s true for all {g)e M*.

Let (p, (xMN mM*“Y) be a competitive equilibrium in the agent
assignment market, and let (p, (x*°¥, m¥“¥N) be given by (29) and (30).
Similarly with the above, we can show the budget constraint (16) for all ie M
and that (x¥v¥ mMv¥) is an allocation. We show the utility maximization
(16) for all ie M. Suppose that there is a seller ie M, such that for some yi,

i
Xk

w(x)+m'=y afg)+ plw;—xi)+1;
g=1
y;“ . - N .
< Z a(g) + puw;— yi) + I, = u(yie") + mi.
g=1
If x} > yi, then we have
x;-( . .
Y ale)<plx'—y),
g=yi+1

which implies that there is an i(g)e M¥ such that p,>afg) and g<xi. If
x=0, then by (29), x@ =¢* for some g >g For this g, we have
P> aig) = afg) by assumption (F). Hence we can assume that p, >ayg) and
x'@=¢* Thus we have

P + Ii(_q) > a,»(g) + Ii(g) = ui(g](xi(”)) + mi(*"),
' I « -
which is a contradiction to the supposition that (p,(x*"¥¥ m* ") is a
competitive equilibrium. If x{ < yi, then we have
% o
Y af8)>pyi—xi),

g=x;;+ 1

which implies that there is an i(g) e M¥ such that a(g)> p, and x'@=0. Hence
we have

afg) + Liy ="' ) + I ) > P+ L = U™ O(x@) 4 m®),

which is a contradiction. Q.E.D.
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(9) In an assignment market, the core always coincides with the set of all
competitive allocations. It is, however, not necessarily true in a generalized
assignment market, but a weak condition for the equivalence can be given.

In Kancko (1976a) the following theorems are given as more general
versions in a generalized assignment market with the transferable utility
assumption. As the proofs of them are almost the same as Lemma 3 and
Theorem IT in Kaneko (1976a) we do not give the proofs in this paper.

If two sellers i; and i, in M have the same prefcrence orderings, ie., the
same utility functions and the same initial endowments, the sellers are called
the same type.

Theorem 9. If for each ie My, there is at least one seller i e M, (i +1') who is
the same type as i, then the kth indivisible good has a common price in each
allocation in the core, i.e., there is a p, such that

mi=1,+plw,—x) forall ieM,, (31)
mi=1,—p, forall ieN with x'=¢e" (32)

Theorem 10. If for each ie M, there is at least one seller i (i) who is the
same type as I, then the core coincides with the set of all competitive
allocations.

In Kaneko (1976a), the core is considered in the case where the
supposition of Theorem 10 is not true, i.e., a seller becomes a monopolist in
a certain sense. It says that the core permits price discrimination. This result
is also true in the generalized assignment market without the transferable
utility assumption, but as it can be gained in almost the same way, we give
an explanation in a diagram.

Let s=1. Then the supply curve and the demand curve are drawn as fig. 2.
Let us consider the case where the supposition of Theorem 9 1s not true. Let
ay=min{afg):ieM—{1},g=1,...,w} If a, is greater than the intersection
of the supply and demand curves, e¢.g., a,, in fig. 2, then the core permits
price discrimination in any allocation in the core, ie., seller 1 trades the good
at different prices not more than a,, with buyers. Seller 1 1s a monopolist in
this sense. If ay, is not greater than the intersection, the core coincides with
the sct of all competitive equilibria, because one seller becomes a competitor
with seller 1. Of course, the good is traded at a common price in the
intersection. This is precisely a more sufficient condition than Theorem 10 for
the equivalence of the core and the set of all competitive allocations, which is
corresponding to the supposition of Theorem II of Kaneko (1976a).
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Core

Fig. 2

When s=2, the similar price discrimination occurs in the case where the
supposition of Theorem 9 is not true. But since the indivisible goods are not
substantially different, any seller could regard the sellers owning the other
goods even beside the ones owning the same good as competitors with him.
This fact makes the price discrimination in the core narrow.

Clearly the sufficient condition for the equivalence given by Theorem 10 is
weak. Further even if the equivalence does not hold, the price discrimination
ih the core is not too wide. Then we get the conclusion that in most classes
of generalized assignment markets, the competitive equilibria could be
representatives of the corc.

Finally, we note that permissible coalitions can be constrained to a
subclass of that of all the coalitions in the generalized assignment market for
the equivalence of the core and the competitive equilibria similarly to
Corollary 7, which is shown in thc case with the transferable utility
assumption in Lemma 2 of Kaneko (1976a).

Appendix

Proof of Lemma 2. Suppose that there is an S-permutation matrix 44 such
that Dg(b)= As. Let {(i,j):as.;;=1, ieM and jeN}={(i},i,),...,(ij)}. Note
that i eS and jeS§ for all r=1,..,k by (7. Let MnS—{i,...i}
={i(1),...,i(g)} and NnS—{j;,...j}={i(1),...j(h)}. Of course S={i,,.. i,
i(1),.. 48 i i J(Us.. j(h)}. We define a m-partition ps={Ty,..., T}
(f=k+g+h) by



M. Kaneko, The central assignment game 229

T={i,j} for all t=1,..,k,
Tv={i(t)} forall r=1,...g,
Livgre={j(t)} forall t=1,.. h

Since dg;;(b)=as.;;, =1, ie MnS and j,e NS, we have be V({i,j}) by (8).
Since ag. ;= 1 for some ie M NS and ag. ;,(b)=1 for some je NN S by (7) and
the definition of i(¢) and j(t), we have ds:i(,)i(bJﬁl and dg.;,(b)=1, which
implies be V({i(1)}) and be V({j(t)}) by (8). Thus we havc shown that be V(T))
for all t=1,....f, i€, be(rep VIT).

Let be( )z, V(T) for some n-partition pg. Let

{TEPS:’T|:2}:{{i11j1}:'"’{ik’jk}};
{Tepg|T|=1 and TeM}={{i(1)}, ... {i(g)}},
{Teps|T|=1 and TeN}={{j(1)}..... {ih}}.

We assume g<h in the following, but we can prove the following similarly
if g>h We define an S-permutation matrix Ag=(as;) as follows — for
alli, t=1,..., k)

as. =1 1if j=j,
=0 otherwise,
for all i{t) (z=1,...,¢)
as.ip;=1 1 j=j1),
=0 otherwise,
for all ie M —S:
ag.;=0 forall jeMUN,
for all ie N:
as.y=as.; i ie{j,...jj(l),...Jg)} and jeM,
=1 if ie{jig+1)...jh)} and i=j
=0 otherwise.

It is easily verified that this A5 is an S-permutation matrix.
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Now we show that Dg¢b)=A4s. When ag.;;=0, it is always true that
ds.i{b) 2 as.;;- So, suppose ag.;;= L. If (i, ) =(i,.j,) for some =k, then b is in
V({{i,j}) because bcsﬂ,E V(T). This implies dg.;;(b)=1. Let (i,j)=(i(1),j(t))
for some t<g Then beV({ M Vinh) < V({ir).jt)}) by the supposition,
be ﬂ Teps ), and the superadditivity of V. This implies sg;(b)=1. When
i=j(1) and j=j(t) (g+1=Zt<h) it is also true by the same reason that
be V({j(1)}), which implies dg.;{b)=1. When ie NnS and jeSnM, we have
always dg.;{b)=1 by (8). We have shown Dy(b)= 4s. Q.E.D.

Praof of Lemma 3. For any (x,m)e X there is a unique real number d by
assumptions (A) and (B) such that (x,m)Q40, d). We define U(x, m) by

Ui, m)=d. | (A1)

It can be easily verified that this U’ satisfies (x,n;)R(y,m,) iff
Ui(x, m;)= U'(y,m,). We show that U’ is a continuous function. Let {(x* m")}
be a sequence in X which converges to (x,m)eX. Since I°, has the discrete
topology, there is an integer k such that x*=x for all «Z k. Since {(x* m")} is
a converging sequence, there is a m; such that 0=m*<m, for all o, which
implies 0 U'(x,m) < U'(x,m,) for all a=k. Hence the sequence {Ui(x,m")}
has at least one limit point in R,. Let the sequence {U'(x,m™)} have a limit
point not equal to U’ (x m) and let {U'(x,m" } be a converging subsequcnce
such that llmU(x m* ) u#Ul(x,m). Let & be a sufficiently small positive
number. Let u> U(x, m). Then we have (0, U(x, m)+¢)P{(x, m) by assumptions
(A) and (A.1). By assumptions (A) and (B) there is a 0>0 such that
(0; Ui(x, m)+&)Q{x,m+3), ie, Ulx,m+e=U'(x,m+05). But it holds that
m?<m+d for all f= some f,, which implies U¥x, m*) S Ui(x, m+9)
=Uix,m)+¢<u. This is a contradiction. Next let u<U(x,m). Since
Ui(x, m*) = U¥(x, 0) by assumption (A), we have u=U'(x,0). Hence there is an
mg such that (0,u+e)Q{x,my), ie., ut+e=Ul(x,m). Since & is sufﬁciently
small, we have m,<m. But since there is a ﬁn such that U'(x,m" )<u+£
=Uix,my) for all fzf, by u—llmU(»c m?), we have my>m” by
assumption (A). This contradicts that lim m” " —m. Hence we have shown that
any limit point coincides with U'(x,m). Q.E.D.

Proof of Lemma 4. If Ziesli>ziesm", then § can improve upon
(MY mMeN) by the S-allocation (1, m3) such that y'=x' for all ieS and m}
=mi+(Y ;s —m))/|S| for all ieS. Lel Z,ESI =Y ;esm" Then therc is an f <s
such that Z,egt <Zzesaf, which implies that »cjon for some zoeSr\Mf By
assumption (CB) we have U™(e/,m®)>U™(x", m")=U"(0, m). If ¢ is a
sufficiently small positive number, then U'(e/,m°—z)> U‘°(xi0 m) by
Lemma 3. Hence it holds that U'(x',m'+e/(|S|—1)>Uix',m' for all ie
S—{i,}, which implies that S can improve upon (x°N,m*“").  Q.E.D.
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Proof of Lemma 5. If m'=0 for some ieN, then U'(x',m)<U¥d',I,) by
assumption (D), which contradicts that (x™“¥ m™“") is in the core. If mi=0
for some ie M, then U{0,m")<U'¢/,0)< U¥(e’,1)), which is a contradiction.
Hence we have m' >0 for all ie MUN.

Suppose that there is a buyer j with x/#0. Then by assumption (CB) there
is an f<s such that x>0 and Ui(e/, m")=U/(x’,m’). Then there is a seller
ieM, with x;=0. We show that m'+m/=I+1, x'=0 and x/=e¢/. If
mi+m!>1,+1, then the coalition (M —{i} U(N—{j}) can improve upon
(x"N,mMN), because Y, @2, xt and Y, L>Y Lom. I
m'+m/<I;+1, then the coalition {i,j} can improve upon (x*** m"“") by
the allocation (()', m))),; ; such that

y'=0, wmi=m+({I;+1,—m'—m’)2,
V=e, mi=m/+(;+1;—m —m))/2.

Hence it holds that m'+m/=1;+1, If x\ =1 for some f'#f or x’=¢’, then
the coalition (M —{i})U(N — {j}) can improve upon (x™“¥ m™“") by Lemma
4 because Y 4 ;0= s, x and Y., ;m'=Y ., ;1. Hence we have x'=0
and x/=e’.

Repeating this argument, we choose all such pairs and denote the set
of them by {(i,ji)....(lji)}. We put My=M-—{i,,...,i,} and Ny=
N—{ji,..., ji}. Clearly (18) holds for these {(iy,/,),..., (i, ji)}- Of course, no
buyer je N, has any indivisible good, i.e., x'=0 for all ie N,,. For, otherwise,
we can find another pair (i,,,,ji+,) for which (18) holds by the above
argument. Hence any sellers in M, do not trade indivisible goods with any
buyers in Ng. Further even when two sellers in M, trade indivisible goods
with each other, they have no profits, or decrease their utilities. So, all
sellers in M, do not trade at all. The similar argument is valid for buyers in
Ny. By this reason (19) holds for all sellers in M, and buyers in Ny,. Q.E.D.
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