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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 64, Number 2, June 1999 

COMMON KNOWLEDGE LOGIC AND GAME LOGIC 

MAMORU KANEKO 

Abstract. We show the faithful embedding of common knowledge logic CKL into game logic GL, 

that is, CKL is embedded into GL and GL is a conservative extension of the fragment obtained by this 

embedding. Then many results in GL are available in CKL, and vice versa. For example, an epistemic 

consideration of Nash equilibrium for a game with pure strategies in GL is carried over to CKL. Another 

important application is to obtain a Gentzen-style sequent calculus formulation of CKL and its cut- 

elimination. The faithful embedding theorem is proved for the KD4-type propositional CKL and GL, but 

it holds for some variants of them. 

?1. Introduction. Common knowledge logic CKL is an epistemic propositional 
logic with one knowledge (belief) operator for each player and a common knowl- 
edge operator. Syntactical axiomatizations of various types of CKL are provided 
(Halpern-Moses [2] and Lismont-Mongin [11]). Common knowledge logic has 
been developed from the model theoretic side, particularly, soundness and com- 
pleteness have been proved to show that the intended notion of common knowledge 
is well captured in these axiomatizations. There is another approach to similar 
problems, which Kaneko-Nagashima [7], [9] call game logic GL (GL(H) in the 
Hilbert style and GL(G) in the Gentzen style). In GL, a richer, first-order lan- 
guage in which infinitary conjunctions and disjunctions are allowed is adopted 
to formulate common knowledge directly as a conjunctive formula. Game logic 
has been developed from the proof theoretic side together with game theoretic ap- 
plications. Although these approaches can treat similar problems, their explicit 
relationship has not yet been investigated. We carry out such investigations in this 
paper. 

Since game logic GL has a richer language, it may be expected that GL is actually 
stronger than common knowledge logic CKL. It is, however, more essential to ask 
whether GL is, in a sense, a conservative extension of CKL. In this paper, we prove 
that CKL is faithfully embedded into (the propositional fragment of) GL, that is, 
CKL is embedded into GL and GL is a conservative extension of the fragment 
obtained by this embedding. 
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The faithful embedding result enables us not only to see the relationship between 
CKL and GL, but also to convert many results from one side to the other. For 
example, the epistemic consideration of Nash equilibrium, object theorems as well 
as metatheorems, in a finite game with pure strategies in Kaneko [5] can be converted 
to CKL. Also, our analysis provides a Gentzen style sequent calculus of CKL and 
its cut-elimination theorem. In the other direction, we obtain model theory for the 
fragment of GL obtained by the embedding, and its decidability. 

There are several variants of CKL as well as GL depending upon choices of 
various epistemic axioms. We present the faithful embedding result for common 
knowledge and game logics based on KD4. We will give comments on other variants 
in Section 7. 

In GL common knowledge is described as an infinitary conjunctive formula 
C (A), while in CKL it is described as Co (A) with a certain additional axiom and 
an inference rule for Co, where Co is a common knowledge operator symbol. In the 
literature of epistemic logic, the definition of common knowledge in GL is called 
the iterative definition, and the one in CKL is called the fixed-point definition (cf., 
Barwise [1]). Our faithful embedding theorem implies that these definitions are 
equivalent in CKL and GL. 

Game logic GL is an infinitary extension, KD4W, of finitary multi-modal KD4 
together with an additional axiom called the C-Barcan: 

GL = KD4W + C-Barcan. 

Axiom C-Barcan is introduced to allow the fixed point property C (A) D Ki C (A) 
to be provable for all i = 1, . . ., n, where Ki is the knowledge operator of player i. 
The additional C-Barcan axiom is needed to have the faithful embedding theorem 
of CKL into GL. In KD4W without the C-Barcan axiom, the iterative definition of 
common knowledge still makes sense, but would lose the fixed point property. The 
fixed point property is indispensable for the full epistemic consideration of Nash 
equilibrium. 

We prove our faithful embedding result for the propositional part. The proof relies 
upon the cut-elimination theorem for GL(G) obtained in Kaneko-Nagashima [9] 
as well as upon the soundness-completeness theorem for CKL proved in Halpern- 
Moses [2] and Lismont-Mongin [11]. We prove one lemma - Lemma 4.4 - using 
the soundness-completeness theorem for CKL. So far, completeness is available 
only for propositional CKL. If Lemma 4.4 could be proved for predicate common 
knowledge logic, the faithful embedding theorem would be obtained for predicate 
CKL and GL. This remains open. 

The structure of this paper is as follows: Section 2 formulates finitary and in- 
finitary epistemic logics KD4 and KD4W in the Hilbert style. In Section 3, we 
define common knowledge logic CKL as well as game logic GL in the Hilbert style. 
Then we state the faithful embedding theorem. The embedding part is immediately 
proved, but the faithfulness part needs game logic GL in the Gentzen style sequent 
calculus and its cut-elimination, which is the subject of Section 4. Section 5 formu- 
lates CKL directly as a sequent calculus, whose cut-elimination is proved from the 
results of Section 4. Section 6 discusses game theoretical applications. Section 7 
gives some remarks. 
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?2. Epistemic logic KD4 and its infinitary extension KD4W. We use the two sets, 
3~ and Son, of formulae for common knowledge and game logics. The follow- 
ing is the list of primitive symbols: Propositional variables: Po, P1 . . .; Knowl- 
edge operators: K1,... , Kn; Common knowledge operator: CO; Logical connective: 

(not), D (implies), A (and), V (or) (where A and V may be applied to infinitely 
many formulae); Parentheses: (,). The indices 1, . . . , n of K1, . . . , K, are the names 
of players. 

Let g9f be the set of all formulae generated by the finitary inductive definition 
with respect to -, D, A, V, K1... . Kn, Co from the propositional variables, i.e., 
(i) each propositional variable is in _9f, (ii) if A, B are in _Pf, so are (-iA), (A D 
B), K1 (A), , Kn (A), Co(A), and (iii) if ID is a nonempty finite subset of 30f, then 
(A D), (V (D) are in _0,f. 

We define the set Son of infinitary formulae using induction twice. We denote 39f 
by 3?50. Suppose that 3?50, 31,. . ., gDk are already defined (k < co). Then we allow 
the expressions (A .1) and (V 't) for any nonempty countable subset (D of g9k. Now 
from the union gpk U { (A ID), (V (D) D is a countable subset Of we obtain the 
space gok+1 Of formulae by the standard finitary inductive definition with respect 
to --, A, V, K1, . . ., Kn and Co. We denote Uk<, gk by Se. An expression in 
Son is called simply formula. 1 We abbreviate A{A, B} and V{A, B} as A A B and 
A VB, etc. 

The primary reason to adopt the infinitary language for game logic is to express 
common knowledge explicitly as a conjunctive formula. The common knowledge of 
aformula A is defined as follows: For any m > 0, we denote the set {Kil Ki2 ...Ki 
each Kit is one of K1, . . . , Kn and it i i+ 1 for t = 1, .., m- } by K(m). For m = 0, 
Ki Ki2 ... Ks,*] is interpreted as the null symbol. We define the common knowledge 
formula of A by 

(1) A{K(A): K E Um<w0K(m)}, 

which we denote by C(A). Note that if A is in _92' the set {K(A) : K E 
Urn<w K(m)} is a countable subset of _a'm and its conjunction, C(A), is in 3?5m+1. 
Hence the space Sa is closed with respect to the operation C (.). 

The infinitary language S' permits to express common knowledge as a conjunc- 

tive formula C (A). This is often called the iterative definition of common knowledge. 

One remark is that unless some logical structure is given, the common knowledge 

formula C (A) would be meaningless. In the subsequent sections, we specify the 

logical structure. In the finitary language 9f, C (A) is not permitted. Therefore we 

prepare the common knowledge operator symbol Co to define common knowledge 

in terms of this symbol Co together with some axiom and inference rule, which will 

be called the fixed point definition. This will be discussed in Subsection 3.1. 

We give the following five axiom schemata and three inference rules: For any 

formulae A, B, C, and set (D of formulae, 

(L1): A D (B D A); 

(L2): (A D (B D C)) D ((A D B) D (A D C)); 

'Our language is a propositional (relatively small) fragment, including additional knowledge opera- 
tors, of the infinitary language Lo, I W of Karp [10]. Particularly, we note that A D and V ID may not be 
in 91' for some countable subset 1D of Sat . For our purpose of discussing common knowledge, however, 
the space Sa0 is large enough. 
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(L3): (--A D -B) D ((--A D B) D A); 
(L4): A4 DA, where A E A; 
(L5): ADV >,whereAezD; 

and 
AD)B A (MP) 

B 
{A D B: B E D} (A-Rule) fA D B: A E } (V-Rule). 

A DA(D V(DD B 
The above logical axioms and inference rules form classical (finitary and infinitary) 
logic (when we adopt 3?f and 394', respectively). 

The following are axioms and inference rule for operators Ki for i = 1,... , n 

(MP1): K (A D B) AKi(A) D Ki(B); 

(Ii): -Ki(--AAA); 

(PIt): Ki (A) D K1Ki (A); 

and 

(Necessitation): K (A). 

Axioms MPi, Ii and Pi are called K, D and 4 in the modal logic literature. Thus 
we call this logic KD4 when we restrict all formulae occurring in the above axioms 
and inferences to ones in gf. When we allow formulae in 96, this logic is denoted 
by KD4W.2 

A proof in KD4 is a finite tree with the following properties: (i) a formula in 3'f is 
associated with each node and the formula associated with each leaf is an instance of 
the above axioms; and (ii) adjoining nodes together with their associated formulae 
form an instance of the inference rules. A proof of A is one whose root A is associated 
with. If there is a proof of A, then A is said to be provable in KD4. 

Since KD4W is infinitary, the definition of a proof in KD4 should be slightly ex- 
tended in KD4W. A proof in KD4W is a countable tree with the following properties: 
(i) every path from the root is finite, (ii) a formula in _A4' is associated with each 
node and the formula associated with each leaf is an instance of the axioms; and 
(iii) adjoining nodes together with their associated formulae form an instance of 
the inference rules. 

Of course, if A is provable in KD4, then it is provable in KD4W. 

?3. Common Knowledge Logic CKL and Game Logic GL(H). 
3.1. Common Knowledge Logic CKL. Common knowledge logic CKL is defined 

by adding the following axiom CA and inference rule CI to KD4: 

(CA): Co(A) D AAKI Co(A)A ... AK,, Co(A); 

(CI): B A AAKI (B) A ..;. A&K (B) 
B D Co(A) 

2According to the literature of epistemic logic, our "knowledge" should be called "belief" since we 
do not assume assume (T): Ki (A) D A. On the other hand, since C (A) includes A as a conjunct, it is 
common "knowledge". In fact, all of our results remain true even when we use common "belief". 
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A proof in CKL allows CA and CI in addition to the axioms and inference rules 
for KD4. We denote F-c A if there is a proof P of A in CKL. 

Axiom CA states that if A is common knowledge (in the sense of Co(A)), then 
A holds and each player knows the common knowledge of A. Inference Rule CI 
states that if any formula B has this property, it contains (deductively) the common 
knowledge of A. Thus these require Co(A) to be a fixed-point with respect to the 
property of CA. In this sense, this is called thefixed-point definition of common 
knowledge. 

To obtain the faithful embedding result of CKL into GL(H), we make some 
semantical consideration of CKL. Two types of semantics have been considered in 
literature: the Kripke and neighborhood semantics. For example, completeness 
(and soundness) theorem was given by Halpern-Moses [2] for various common 
knowledge logics with respect to Kripke semantics, and by Lismont-Mongin [11], 
[12] with respect to both neighborhood and Kripke semantics. Here we use the 
Kripke semantics for CKL. 

A Kripke frame is given as X= (W; R1, Rn), where W is an arbitrary set 
of worlds and Ri is a serial, transitive relation over W x W for i = 1,... , n. Let 
a be an assignment, i.e., a function from W x {po Pi, ... } to {T, I}. Given Xd, 
w E W and a, we define the valuation relation (Y',w) K in the standard manner 
with the following additional definitions: 

(K1): (X, w) K= Ki (A) X (X, v) K A for any world v with (w, v) E Ri; 
(K2): (X, w) K=a Co(A) X (X, w) K K(A) for all K E U11<cJ K(m). 

We write f }= A if (X, w) K= A for all w E W and all assignments a, and 
write 1= A iff X I= A for all (serial and transitive) frames X. Then the following 
theorem holds (cf., Halpern-Moses [2] and Lismont-Mongin [1 1],[12]).3 

THEOREM 3.1 (Completeness of CKL). For any A in 9f, F-C A if and only if F A. 
3.2. Game Logic GL(H) in Hilbert-style. We denote game logic in Hilbert-style 

by GL(H) to distinguish from game logic in Gentzen-style, which will be denoted 
by GL(G). 

We call a formula A in 3't a cc-formula iff (i) it contains no infinitary disjunction; 
(ii) if it contains an infinitary conjunction, the infinitary conjunctive formula is C (B) 
for some B; and (iii) it contains no Co. A finitary formula is a cc-formula, and any 
subformula of a cc-formula A is a cc-formula, too. Any cc-formula A contains only 
a finite number of common knowledge subformulae. 

We define GL(H) by adding the following axiom to KD4W): 
(C-Barcan): A{KiK(A): K E U11<(0 K(m)} D KiC(A), 

where A is a cc-formula and i = 1, . . ., n. The provability relation KG of GL(H) is 
defined from the provability in KD4'W by adding C-Barcan as a logical axiom. The 
converse of C-Barcan, Ki C (A) D A{KiK(A) : K E U..1<c, K(m)}, is provable in 
KD4'W for any formula A in So"'. The point of C-Barcan is that the outermost A 
and Ki are interchangeable if A is a cc-formula. 

3Halpern-Moses [2] proved soundness and completeness for various common knowledge logics based 
on such as K, K.D45, S4, S5, not including KD4, with respect to Kripke semantics. Lismont-Mongin 
[1 1] proved their results for those including some logics weaker than K as well as for KD4, with respect 
to neighborhood semantics. Nevertheless, Theorem 3.1 can be proved directly by modifying the proof 
of Theorem 4.3 of Halpern-Moses [2]. 
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Kaneko-Nagashima [7] adopted a stronger form of C-Barcan, i.e., for any count- 
able infinite subset D Of 30k for any k < co, 

A{Ki(B): B E (} D Ki(AD) 

Game logic GL(H) presented here is weaker than the corresponding logic of [7]. 
Nevertheless, the restricted one is sufficient for practical purposes, i.e., game theo- 
retical applications such as in Section 6. 

In GL(H), the properties corresponding to axiom CA and inference CI hold, 
where C-Barcan is used only to prove F-G C(A) D KiC(A) for all i = 1, ... , n. 

LEMMA 3.2. (1): FG C (A) D AAKIC(A)A AKn C (A) for any cc-formula 
A; 

(2): if -GB D AAKl(B)A ... AKl(B), then GB D C(A). 
Thus, logic GL(H) may be regarded as an extension of the common logic CKL by 

interpreting Co (A) in CKL as C (A) in GL(H). To make this interpretation explicit, 
we introduce a translator V/ from Of' to 39. Once this translator is given, we can 
talk about the converse of the above interpretation. 

The translator V/ is defined to be the mapping Of to 30 assigning to each A in 
IF' the formula q(A) in 3P which is obtained, by induction on the structure of 
A, by substituting C(qi(B)) for any subformula Co(B) in A. Then the following 
lemma holds for A/. 

LEMMA 3.3. q, is a bijection from -f' to the set of all cc-formulae. 

PROOF. By definition, V/ is a mapping from -f' to the set of all cc-formulae. We 
can prove by induction on the structures of formulae in Of' that V/ is infective. Next, 
we define a function - from the set of cc-formulae to 9' inductively by replacing 
C(B) by Co( (B)). By induction, we can verify that W is an invective mapping 
from the set of cc-formulae to O and also that y(q,(A)) = A for all A E 
i.e., - is the inverse mapping of A/. Thus, V/ is a bijection from O1Ff to the set of 
cc-formulae. - 

Now we can state our first result. The only-if part will be proved in the end of 
this section and the if part will be proved in Section 4. 

THEOREM 3.4 (Faithful Embedding I). For any A in -f, f-c A if and onlyif WFG 

V/(A). 
This theorem clarifies the relationship between CKL and GL(H), and has also 

the implication that the iterative and fixed-point definitions of common knowledge 
are equivalent. By this theorem, we would obtain some important results con- 
verted from CKL to the fragment q(<3Ff) of GL(H) and vice versa. One example 
is a soundness-completeness theorem for the fragment V,(30,f) of GL(H). Other 
applications will be discussed in Sections 5 and 6. 

PROOF OF THE ONLY-IF PART OF THEOREM 3.4. Suppose F-c A. Then there is a 
proof P of A in CKL. We translate every formula occurring in P by qA. The 
translation q (B) of an instance B of an axiom in CKL other than CA is an instance 
of the corresponding axiom in GL(H). Hence F-G v(B). The translated instance 
v(B) of CA is provable in GL(H) by Lemmas 3.2.(1) and Lemma 3.3. Every 
instance of MP, A-Rule, V-Rule and Necessitation remain legitimate with the 
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translation V/ in GL(H). Every instance, translated by A/, of the inference CI is also 
legitimate by Lemma 3.2. (2). A 

Since C-Barcan already deviates from cc-formulae, a proof of the latter Ig(A) of 
Theorem 3.4 in GL(H) would not be in (3') if C-Barcan occurs in the proof. We 
can, however, change C-Barcan into 

{B D KiK (A): K E Umw K(m)} (C-Barcan*), 
B D KjC(A) 

where A is a cc-formula and B is any formula. GL(H) is equivalent to KD4w+ 
C-Barcan*, in which a proof of A in IF' can be translated into a proof in (-F). 

?4. Game Logic GL(G) in sequent calculus and the proof of the Faithful Embed- 
ding Theorem. Game logic GL(G) is equivalent to GL(H) with respect to their 
deducibilities, but cut-elimination holds for GL(G). Cut-elimination has a lot of 
applications, and the faithful embedding theorem is also its application. 

To define GL(G), we prepare another symbol -*. Let F, 0 be finite subsets of 
30. The expression F -e 0 is called a sequent. We abbreviate the set-theoretic 
brackets, e.g., {A} U F -* e u {B} is denoted as A, F -* 0, B. The counterpart of 
F -* e in GL(H) is A F D V 0), where A F and V 0) are -'Po V Po and -Po A Po, 
respectively, if F and 0 are empty 

Game logic GL(G) is defined by one axiom schema and various inference rules. 
Initial Sequents: An initial sequent is of the form A -* A, where A is any formula. 
Inference Rules: We have three kinds of inference rules: structural, operational 

and K-inference rules. 
Structural Inferences: 

F-*0 
AF 0 (th) 

F-*OM iV )AA~A(M)(cut), 

F, A -*~0 OA 

where M is called the cut-formula. 
Operational Inferences: 

F - 0,A A F A,-* O_ 
A,F -0 e 0 -,A 

F -0,A B, F 0 AF-O, 3B 

AD B, F -0 (D ) -0ADB (D 

AX F -0 (A )(A E D) {F0,A: A cz} (D A) 

{A3F-0: A (} (V i) -*0, (A V) ( E ) 

K-Inferences: 
FKi (A) - 

(0 (K K) 
KZ (F ,A) -*~ Ki (0) 
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where 0 consists of at most one formula, Ki (F) denotes the set {Ki (A): A E F} 
and Ki (F, A) is Ki (F U A). The last inference rule is the CK-Barcan inference: 

{F - KiK(A): K E U,7,<09 K(m)} Ki C (A), F (CK-B), 

where A is a cc-formula. 
In an operational inference, the formula newly created in the lower sequent 

is called the principal formula. The principal formulae of (CK-B) are KiK(A), 
K E U71q< K (m), and Ki C (A). 

In a similar manner to in Section 3, a proof in GL(G) is defined to be a countable 
tree with the following properties: (i) every path from the root is finite; (ii) a sequent 
is associated with each node, and the sequent associated with each leaf is an initial 
sequent; and (iii) adjoining nodes together with the associated sequents form an 
instance of the above inference rules. A sequent F -* 0 is said to be provable in 
GL(G), denoted by F-G F-* 0, if there is a proof P such that F -* 0 is associated 
with the root of P. 

The relationship between GL(H) and GL(G) is as follows, which was stated in 
Kaneko-Nagashima [9]. 

THEOREM 4.1 (Equivalence of GL(H) and GL(G)). For any A in 9, 

(1): ifFG A, then F-G -* A; 
(2): if -G F -), then FG AF D VE 

SKETCH OF THE PROOF OF THEOREM 4.1. For (1), it suffices to show that every 
instance B of the axioms of GL(H) is provable in GL(G), i.e., F-G -* B, and 
that every instance of the inference rules of GL(H) is legitimate in GL(G). For 
(2), it suffices to prove F-G A D A and that every instance of the inference rules 
of GL(G) is legitimate in GL(H). E.g., for (CK-B), it suffices to show that if F-G 

AF D (V?0) VKiK(B) for all K E U71A< K(m) and FG KiC(A) A(AF) D VE, 
then FG AF D V?. -1 

To prove the faithful embedding theorem, we need the cut-elimination theorem 
for GL(G), which was proved in Kaneko-Nagashima [9]. 

THEOREM 4.2 (Cut-Elimination for GL(G)). If FG F -* 0, then there is a cut- 
free proof P ofF -* 0. 

The inference rule (CK-B) is a restriction of the A-Barcan inference used in 
Kaneko-Nagashima [9]: 

{ F-* ,Ki(B): B E (} KJ(A>),F 3 -* (A-B) 

where (D is a countable subset of -I/k for some k < co. The above (CK-B) is the 
restriction of this (A-B) to D having the form {K(A): K E U1nc< K(m)} with a cc- 
formula A. Cut-elimination is typically sensitive to changes in inference rules, but 
is not with the restriction on the principal formulae of the above Barcan inference. 

An important consequence of Theorem 4.2 is the subformula property. However, 
(CK-B) does not fully enjoy this property. Hence a cut-free proof having (CK-B), in 
fact, violates the full subformula property that any formula occurring in a cut-free 
proof is a subformula of some formula in the endsequent of the proof. Nevertheless, 
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since the principal formulae of (CK-B) are cc-formulae, it holds that if a non-cc- 
formula A occurs in a cut-free proof, it is also a subformula in the endsequent. This 
implies 

(2) if the endsequent of a cut-free proof P consists of cc-formulae only, 
all the formulae occurring in P are cc-formulae. 

Since the inverse images of those formulae by q' are in -f, we can consider this 
proof r-1 (P) from the viewpoint of deducibility F-c. Now we can state the main 
result, which will be proved in the end of this section. 

THEOREM 4.3 (Faithful Embedding II). For any A in 3f, F-c A if and only if 
F-G -) (A). 

When we restrict ,F to the space of finitary formulae, the above logic becomes 
sequent calculus KD4, since (CK-B) is not allowed. Sequent calculus KD4 admits 
cut-elimination and its cut-free proof satisfies the full subformula property. Since 
CKL is a conservative extension of KD4 by Theorem 3. 1, GL(G) is also a conserva- 
tive extension of KD4 by Theorem 4.3. A concrete application of this observation 
will be given in Section 6. 

The only-if part of Theorem 4.3 follows from the only-if part of Theorem 3.4 and 
Theorem 4.1.(1). Hence we prove the if part of Theorem 4.3. Once this is proved, 
the if part of Theorem 3.4 follows from this and Theorem 4.1. (1). 

To prove the if part of Theorem 4.3, first, we prepare the following lemma. 

LEMMA 4.4. For any A, B in 3f, 
(1): if Fc A D K(B) for all K E Urn,< K(m), then F-c A D Co(B); 
(2): if c A D KiK(B) for all K E Urn<w, K(m), then F-c A D KiCo(B). 

PROOF. We prove only (2). Suppose F-c A D KjK(B) for all K E U171<O K(m). 
For any frame X = (W;Rl,... ,Rn), world w E W and assignment a, by the 
soundness part of Theorem 3. 1, (Xd, w) k=, A D KiK(B) for all K E Urn<w K(m). 
Let (X', w) k=z A. Then (X', w) k=a Ki K(B) for all K E Uln<wO K(m). This implies 
that for any v with (w, v) E Ri, (A', v) k=, K(B) for all K E Un<w K(m). Thus 
for all v with (w, v) E Ri, (X', v) k=, Co(B) by K2. Thus (X, w) =, Ki Co(B) by 
K1. This implies that for all A', w E W and a, (A',w) k=, A D KiCo(B). Thus 
Fc A D KiCo(B) by the completeness part of Theorem 3.1. -A 

Since V/ is a bijection from 3ofF to the set of all cc-formulae by Lemma 3.3, we use 
the notational convention that for a formula B in -f and a finite subset F of of, 
the images v(B) and <(F) are denoted by B' and F'. 

Now suppose that F-G -) A' and A' is a cc-formula. Then there is a cut-free 
proof P' of -* A' by Theorem 4.2. Since this proof P' satisfies (2), we can 
translate each sequent F' -* O' in P' by C-I into F -.-- 0 in -f. Then we prove by 
induction on the tree structure of P' from its leaves that for every sequent F' -* 0' 
in P', Fc AF D V?, where F and ) are V-'(F') and V-I(0/). This inductive 
proof is essentially the same as the proof of Theorem 4.2. (2), except (A )) (-* A) 
with the infinitary principal formulae and (CK-B). We show that the translations 
of these inferences by al are legitimate in CKL. 
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In the case of (A -), 
K (B'), F' -*' 
C (B 1), F1 ,,where K E UnioK(m). 

The induction hypothesis is that -ct K(B) A(AF) D V 0. Since F-c C(B) D 
K(B),we have F-c C(B)A(AF) D V?. 

In the case of (-3 A), 
{F' -* ', K (B') : K E Un<w K (m) } 

F' -* ?', C(B') 

The induction hypothesis is that F-c A F D (V 0) V K(B) for all K E Un<w K(m). 
This implies F- c (A F) A (H, V ?) D K (B) for all K E U,"<w K (m). By Lemma 4.4. (1), 
we have F-c (A F) A(-' V ?) D Co (B), i.e., F-c A F D (V ?) V Co (B). 

In the case of (CK-B), 

{F' -3 0/',KiK(B'): K E Um<oK(m)} KiC(B'),F' -* 0' 

The inductive hypothesis is that Fc (A F) AG(- V 0) D KiK(B) for all K E 
Um < K(m) and Fc Ki Co(B) D (- A F) V(V ). By Lemma 4.4.(2), we have F-c 
(AF) A(- V) DKiCo(B). Hencewehave F-c (AF) A (-V) D (-AF) V(V 0), 
i.e., F-c (A F) D (V ') 

?5. Common Knowledge Logic CKL(G) in Sequent Calculus. As an application 
of the theorems of Section 4, we obtain common knowledge logic CKL(G) in 
sequent calculus admitting cut-elimination. 

Sequent calculus CKL(G) is obtained from GL(G) by restricting the language 
to if, replacing (CK-B) by 

{F-* ?,KjK(A): K E Um<wK(m)} KjCo(A),F-*? (COK-B) 

and adding two other inference rules: 

Co(A), 
F 

-* (C0 -*) (K E Um<wK(m)) 

{F -* 0, K(A) : K E Um<wK(m)} (-_ CO) 
F -e ?, Co (A) , 

Since the principal formulae of (-* A) and (V -*) are finitary, they have only 
finite numbers of upper sequents. Only (CoK-B) and (- Co) have infinite numbers 
of upper sequents. The rules (C0 -*) and (- Co) correspond to special cases of 
(A -3) and (-* A) in GL(G). 

We use the same symbol F-c to denote provability relation in CKL(G), which is 
defined in the same way as in Section 4 (as having a countable proof). We present 
two theorems as applications of Theorems 4.1, 4.2 and 4.3. Before it, we state one 
lemma. 

LEMMA 5.1. (1): If P is a proof of F - ) 0 in CKL(G), then y,(P) is a proof of 
v(r) -* vy(e) in GL(G). 

(2): If P' is a cut-free proof of F' -* O' in GL(G) and F', 0' consist of cc-formulae, 
then r- 1 (P') is a cut-free proof of r-1 (F') - -1 (0') in CKL(G). 
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PROOF. (1) For this, we have to verify only that the translations of (C0 o), (- CO) 
and (CoK-B) by q' are legitimate in GL(G). Indeed, these translations are instances 
of (A -), (- A) and (CK-B). For example, (-*C0) is translated into 

{yi(A) - y(A), K(y(A)): K E Um<K,,K(m)} ( A) 
(A) y(A), C (q(A)) 

Thus y(P) is a proof of q(F) * q(<) in GL(G). 
(2) Let P' be a cut-free proof of F' -* O in GL(G). Since F' and 0' consist of 

cc-formulae, all formulae occurring in P' are cc-formulae by (2). Hence the inverse 
image qr (P') of P' is well defined by Lemma 3.3. Since P' may have infinitary 
(A ), ( A) and (CK-B), the translations of them by q-r are instances of 
(C0 o), (C0) and (CoK-B), respectively. Hence -I (P') is a proof of qC (F') 
-/1 (e)/) and has no (cut). - 

This lemma states that CKL(G) is essentially equivalent to the fragment of 
GL(G) defined by the translator A/. Hence it follows from Theorems 4.1 and 4.3 
that CKL(G) is deductively equivalent to CKL. 

THEOREM 5.2 (Equivalence between CKL and CKL(G)). (1) If F-c A, then h-c 
A; 
(2) if Fc f -0, then Fc AF D V? 
Cut-elimination for CKL(G) follows from Lemma 4.4.(1), (2) and Theorem 4.2. 
THEOREM 5.3 (Cut-Elimination for CKL(G)). IfF-c F -* 0, then there is a cut- 

free proof P ofF - 0 in CKL(G). 

?6. Game theoretical applications. Here we briefly look at the epistemic axiom- 
atization of Nash equilibrium in Kaneko [5] in game logic GL, while considering 
conversions of this axiomatization to CKL and some merits obtained from the 
faithful embedding theorems. 

Consider individual ex ante decision making in a finite game g = (g1 -gn) 
with pure strategies, where each player i has his strategy set i= {si , . . . , sit } and 
his payofffunction gi is a real-valued function on E = x ... x In for i = 1... , n. 
Tables 6.1 and 6.2 are 2-person games with fl 2, ?2 = 3 and with fl = ?2 = 2, 
respectively. 

S2l S22 S23 S21 S22 

s11 5,5 0,0 5,3 s11 5,5 1,6 

s12 6,0 2,2 1,1 Sl2 6,1 3,3 

Table 6.1 Table 6.2 
Prisoner's Dilemma 

We prepare 2n-ary predicate symbol Ri ( :) and n-ary predicate symbol Di (.) 
for each i = 1,... , n. We define Ri (a,,... , an : bl',... , bn) and Di (a,,... , an) to 
be atomic formulae, where i = 1,... n and (a,1... . an), (b,.1.. ,bn) E S. The 
spaces 3F and -f of formulae are defined based on these atomic formulae as 
propositional variables. The game theoretical intents of Ri (al, . . . , an bl,... , b,) 
and Di (a1,... bag) are, respectively, that player i weakly prefers strategy profile 
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(al,...,an) to another (bl,...b,,), and that player i predicts (al,...,an) to be 
chosen by the players as their decisions. We determine the predictions Di (.) by 
certain axioms, while Ri (a1, . . .b, an: b, . . . , b)'s are given primitives. 

Each payoff function gi is described in our formal language as the formula: 

(A{Ri (x: y) : gi (x) > gi (y) and x, y E Y}) 

A(Af-,Ri (x y): gi (x) < gi (y) and x, y E 1}), 

which we denote by Gi. For example, the common knowledge of the payoff func- 
tions is described by c(AiGi), where i varies over the players. 

Nash equilibrium is described as the formula Ai y, Ri(a: yi, a-i), which is 
denoted by Nash(a). Here 

a-i = (a,,... , aw-, ai+I... . an), (yi, aji) = (al,... , ailI, yi, ai+l,.* , an), 

and ys varies over Ei. It means that each player i maximizes his payoff under 
predicted strategies a-i = (al,.. , ai-1, ai+l,.. , an). In both games of Tables 6.1 
and 6.2, only (s12, S22) is a Nash equilibrium. 

The following are base axioms for DI (.), . . . ), Dn (: for each i = 1, . . ., n, 

Axiom D1? A (D (x) D A, R1(x : yi, x-i)); 

Axiom D27: AX Aj (Di (x) D Dj (x)); 

Axiom D3?: Ax (Di (x) D Ki (Di (x))); 

AxiomD4: AxAyAj (Di(x)ADi(y) Di (xjy-j)), 

where x and y vary over the strategy profiles S. Each axiom is described as follows. 
D 19: (Best Response to Predicted Decisions): When player i predicts final deci- 

sions xl,.. x, n for the players, his own decision xi maximizes his payoff against 
his prediction x-i, that is, xi is a best response to x-j. 

D27: (Identical Predictions): The other players reach the same predictions as 
player i's. 

D39: (Knowledge of Predictions): Player i knows his own predictions. 
D47: (Interchangeability): Player i's predictions are interchangeable, which is a 

requirement for independent decision making. 
We assume that player i himself knows these axioms as his behavioral postulate. 

Thus, the axiom for him is (D 1 A.. AD4?) A Ki (D 1 A... AD4?), which we 
denote by Di (1-4). We denote AiDi (1-4) by D(1-4). 

Since D(1-4) is a nonlogical axiom, we do not allow it to be an initial formula 
in a proof, for our logics do not satisfy the deduction theorem. We treat nonlogical 
axioms as follows: For a set F of formulae and a formula A, we write F-G A if 
F-G AD D A for some finite subset D of F. Similarly, F F-c A is defined. 

Axiom D(1-4) is far from being sufficient to determine DI(.), . Dn(.). Di(1- 
4) requires player i to know the axioms, A1j#iDj (1-4), for the other players. Thus, 
we assume that all the players know D(1-4), i.e., Ai Ki(D(1-4)). However, this 
addition does not solve the problem: under this addition, we have 

(3) D(1-4), AiKi(D(1- 4)) KG Di(a) D KjKk(D (a)). 
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This requires the imaginary player k of the mind of player j to know the behavioral 
postulate, Di (1-4), for player i, for otherwise, consequence (3) would not make 
sense for k. This suggests to add another formulaA Ai KjKi (D(1-4)). Under 
this addition, however, we meet the same difficulty as that in (3) of the depth of one 
more degree, and need to go to the next step. This process is an infinite regress of 
adding the knowledge of D(1-4) of any finite depth. Thus the infinite regress leads 
to the set: 

(4) {K(D(1-4)) : K E Um<!wK(m)}. 

The conjunction of this set is the common knowledge, C(D(1-4)), of D(1-4). We 
adopt this common knowledge as an axiom for Di (.), i = 1,. n. Then: 

LEMMA 6.1. C(D(1-4)) K, Ax(Di(x) D C(Nash(x)). 
For the converse, we need the condition of interchangeability on game g 

(5) if a and b are Nash equilibria, then so is (by, a_ ) for all i = 1, . . ., n. 

Both games of Tables 6.1 and 6.2 satisfy (5), since each has a unique Nash equi- 
librium. Then {C(Nash(x)) : x E 7} satisfies C(D(1-4)) under the common 
knowledgeof AiGi. That is, if every occurrence of Di (a) in C(D(1-4)) is replaced 
by C(Nash(a)) for any a E E and i = 1,... ,n, which is denoted by C(D(1- 
4))[C (Nash)], then: 

LEMMA 6.2. If game g satisfies (5), then C(AiGi) KG C(D(1-4))[C(Nash)]. 
Thus, C(Nash(.)) is a solution of C(D(1-4)), and Lemma 6.1 states that it 

is the deductively weakest. Hence C(Nash(.)) can be regarded as what C(D(1- 
4)) determines. To formulate this claim explicitly, we introduce one more axiom 
schema: 

WD: C(1)(1-4))[0?] D Ai Ax(Ai(x) D Di(x)), 
where W is a family {Ai(x) : x E I and i = 1, . . ., n} of formulae, and C(D(1- 
4)) [s0] is obtained from C (D ( 1- 4)) by replacing all occurrences of Di (a) by A i (a) 
for all a E I and i = 1, . n. Lemmas 6.1 and 6.2 together with WD imply the 
following theorem. 

THEOREM 6.3. Letg bea game satisfying (5). Then C(D(1-4)), C(AiGi),WD KG 

A- (D i (x) =_ C (Nash (x))). 
For a game g not satisfying (5), we need further assumptions in order to have 

a result parallel to Theorem 6.3 (see Kaneko [5]). Also for the game of Table 6.2, 
the above axiomatization requiring the common knowledge of various formulae 
may be regarded as too stringent. In this game, each player can make a decision 
to maximize his payoff by using only the knowledge of his own payoff function. In 
fact, we can weaken the above axiomatization for such games. However, for the 
game of Table 6.1, the above axiomatization is unavoidable. See Kaneko [3]. 

By the faithful embedding theorems, the above axiomatization can be converted 
to CKL. We note that WD is a schema and has more formulae in GL than in CKL 
but only {C(Nash(x)) : x E E} is used as s? in Theorem 6.3. Since these are 
cc-formulae, no difficulty arises with the conversion of Theorem 6.3 to CKL. 

Now we consider some metatheorems related to the above axiomatization. The 
infinite regress heuristically discussed above D(1-4) can be evaluated by the depth 
lemma given by Kaneko-Nagashima [8]. They proved the following lemma, using 
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the concept of K-depth. The K-depth 8i (A) (i = 1,... , nA E -IFf) is the maximum 
number of nesting occurrences of Ki's in A, ignoring the occurrences of the same 
Ki in the immediate scope of Ki, i.e., it is defined inductively as follows: 6i (A) = 
o if A is atomic, si (-,A) = 6i (A), 6i (A D B) -max(i (A),86i (B)), 6i (A 0) = 
bi (v () = 

maXAE16i (A), 6i(Co(A)) = O. 6i (Kj (A)) = 0 if i 78 j and 8i (Kj (A)) = 
max(i (A), maXk#dE 1k(A) + 1) if j = i. Let 8(A) = maxi 6i (A). Then: 

LEMMA 6.4 (Depth Lemma). Let K E K(m), and A, B formulae in of. If F-KD4 

B D K(A)and8(B) <in, then FKD4 -iB or F-KD4A. 

In [8], this lemma is proved using the cut-elimination theorem for S4 in sequent 
calculus, which can be modified into a proof in KD4. In GL(G), (CK-B) is an 
obstacle to prove directly this lemma, since it violates the subformula property. 
However, as was stated after Theorem 4.3, GL(G) is a conservative extension of 
KD4. Hence the depth lemma holds for GL(G), GL(H) as well as CKL. 

It follows from Lemma 6.4 that the common knowledge of D(1-4) is needed for 
Lemma 6.1, i.e., if the K-depth of the antecedent of Lemma 6.1 is finite, we could 
not derive C(Nash(.)). Also, Lemma 6.4 justifies that (3) requires KjKk(D(1- 
4)). Indeed, it follows from Lemma 6.4 that KjKk (D( 1-4)) is not derived from 
D(1-4), Ai Ki(D(1-4)). See Kaneko [5] for further applications. 

The last comment is on the undecidability result obtained in Kaneko-Nagashima 
[7] for a game with mixed strategies. Even when mixed strategies are allowed, we 
could obtain the above axiomatization with no essential changes, though a predicate 
extension of GL as well as the language of an ordered field theory are required. 
For a game with pure strategies, we cannot guarantee a game to have a Nash 
equilibrium, but it is the basic theorem by Nash [13] that every finite game has a Nash 
equilibrium in mixed strategies. It follows from this existence result and Tarski's 
completeness theorem on the real closed field theory that C (Frcf), C (AiG) Kcw 
C ( YNash(t)), where Orcf is the set of real closed field axioms in the ordered field 
language based on the constants 0, 1, function symbols +, -, *, /, and predicates 
>, =. Note that the equality axioms are included in Orcf. However, the playability 
of a game is formulated, based on the counterpart of Theorem 6.3, as whether 
C(O~rcf), C(AiG) FO- Z7.C(Nash(7)) or not. That is, the pure knowledge of the 
existence is not sufficient, but the specific knowledge is required. In fact, Kaneko- 
Nagashima [7] prove that there is a 3-person game with two pure strategies for each 
player such that it has a unique Nash equilibrium but 

(6) neither 
C(Frcf), C(Ai Gi) W,, ZT5C(Nash(7V)) 

nor C(Drcf), C(Ai Gi) KG-,3 C(Nash(V)). 

This means that any player can neither reach a decision nor he can tell he cannot 
reach a decision. Hence he cannot play a game. See Kaneko [6] for more detailed 
discussions on this subject. 

The above undecidability result itself can be obtained in predicate CKL by the 
embedding theorem of predicate CKL to predicate GL. However, the undecidability 
is based on a term-existence theorem proved in [9], and this would not be converted 
to predicate CKL without proving faithfulness. So far, the faithful embedding 
result is available only for the propositional CKL and GL, since completeness for 
the predicate CKL is not yet proved. If the completeness theorem for predicate 
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CKL is proved, the results of this paper could be extended to predicate CKL and 
GL without difficulty. 

The propositional counterpart of the term-existence theorem is the disjunctive 
property: 

if F, e do not include Ki, i = 1, . . ., n, and if C (F) V C (e), 
then C (F) K , C (A) for some A E 0, 

which can be converted to CKL. Using this disjunctive property, we can evaluate 
some playability of a game with pure strategies. See Kaneko [5]. 

?7. Concluding remarks. (1) The iterative definition, C (A), of common knowl- 
edge makes sense in KD4W, though it loses the fixed point property C (A) D Ki C (A) 
for i = 1,... , n. However, KD4W is not sufficient from the game theoretical as well 
as semantical points of view. Lemma 6.2, afortiori, Theorem 6.3, cannot be obtained 
in KD4W, and also, it is proved in [4] that KD4W is Kripke-incomplete. 

(2) Halpern-Moses [2] and Lismont-Mongin [11] gave sound-completeness re- 
sults for various common knowledge logics, including the K-, K4-, KD45-, S4-, 
S5-types as well as logics weaker than the K-type. Our faithful embedding theorems 
could be available (with appropriate modifications) as far as the cut-elimination for 
game logic in question and the completeness theorem for the corresponding com- 
mon knowledge logic are available. So far, cut-elimination holds for the K-, K4-, 
KD- as well as S4-type game logics, but fails for the sequent calculus KD45, S5 (cf., 
Ohnishi-Matsumoto [14])4 and is unknown for logics weaker than K. Therefore we 
could obtain the parallel results from the K-type to S4-type game and common 
knowledge logics. 

(3) We have proved the faithful embedding of CKL into the propositional frag- 
ment of GL. Predicate GL without the V-Barcan axiom, VxKi (A (x)) D Ki (VxA (x)), 
is a conservative extension of the propositional GL under the choice of an appro- 
priate language. Hence propositional CKL is faithfully embedded into predicate 
GL. 
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