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Volume 68, Number 1, March 2003 

EPISTEMIC MODELS OF SHALLOW DEPTHS AND DECISION 
MAKING IN GAMES: HORTICULTURE 

MAMORU KANEKO AND NOBU-YUKI SUZUKI 

Abstract. Kaneko-Suzuki developed epistemic logics of shallow depths with multiple players for in- 

vestigations of game theoretical problems. By shallow depth, we mean that nested occurrences of belief 

operators of players in formulae are restricted, typically to be of finite depths, by a given epistemic structure. 
In this paper, we develop various methods of surgical operations (cut and paste) of epistemic world models. 
An example is a bouquet-making, i.e., tying several models into a bouquet. Another example is to engraft 
a model to some branches of another model. By these methods, we obtain various meta-theorems on 
semantics and syntax on epistemic logics. To illustrate possible uses of our meta-theorems, we present one 

game theoretical theorem, which is also a meta-theorem in the sense of logic. 

?1. Introduction. To study decision making in games, common knowledge has 
been regarded as important, and various common knowledge extensions of multi- 
agent epistemic logics have been discussed.1 Nevertheless, common knowledge 
is an idealized limit concept and does not help us to consider less ideal game 
theoretical situations. Kaneko-Suzuki [9], [10] and [11] have changed the direction 
of research into finite and bounded problems, and have developed epistemic logics 
of shallow depths, where shallow depths mean that nested occurrences of belief 
operators B1, B2, .... B, are bounded. Their developments include both proof 
theory and model theory as well as applications to game theory. In [9], definitions 
and general theorems such as completeness are provided. In [10], proof theoretical 
considerations are given, and in [11], game theoretical problems are discussed. 

In this paper, we develop various methods of surgical operations, "cut and paste", 
of (semantical) models. These methods enable us to construct more complex models 
from simpler ones and vice versa. Thus, we develop a horticulture of models. By 
these operations, we obtain various semantical results. Such semantical results are 
translated into syntactical meta-theorems by the completeness theorem given in 
Kaneko-Suzuki [9]. We illustrate the uses of these meta-theorems by proving one 
meta-theorem on decision making in a simple 2-person game. 
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Specifically, we develop the following methods of surgical operations: 
(1) bouquet making by tying various models at their roots; 
(2) cutting a part of a model; 
(3) cane extension of a model; 
(4) engrafting a model into another model. 

These are model-theoretic operations to combine various models, to cut some part 
of a model and/or change a model to another one. By these operations, the truth 
valuations of formulae in models are compared with those of the corresponding 
formulae in the constructed models.2 

Then we consider the corresponding proof-theoretic counterpart of truth valua- 
tions. These operations give meta-theorems in the syntactical sense. Examples of 

syntactical results obtained by our methods are the Epistemic Separation Theorem, 
Epistemic Disjunction Theorem and Depth Lemma, which are refinements of the 
results proved proof-theoretically in Kaneko-Nagashima [7] and [6]. Thus, we give 
a systematic way of proving these results as well as presenting more meta-theorems. 

As mentioned above, the development of our epistemic logics of shallow depths 
and their semantics are undertaken for game theoretical applications. The objec- 
tive of our horticulture is also the game theoretical uses of these operations and 
of meta-theorems. To illustrate the uses of the meta-theorems, we will give one 
theorem which is on game theoretical decision making and is also a meta-theorem 
in the sense of logic. Here, we will prove it, step by step by applications of our 
meta-theorems. though the game itself is kept simple. See Kaneko-Suzuki [11] for 
extensive discussions of applications to game theory. 

Throughout the paper, we refer to the following two games to illustrate various 
basic concepts as well as our meta-theorems. Consider the following 2-person 
games of Tables 1.1 (Prisoner's Dilemma) and Table 1.2. 

S21 S22 

sil (5,5) (1,6) 

S12 (6,1) (3, 3) 

TABLE 1.1. g' = (g1, g ). 

S21 S22 

sil (5,5) (1,2) 

s12 (6,1) (3,3) 

TABLE 1.2. g2 = (g• g2). I , 2 " 

In each game, player i = 1, 2 has two pure strategies sil, Si2, and chooses one 
simultaneously and independently of the other player. The entries of each matrix 
are vectors of payoffs to the players, e.g., if 1 and 2 choose sl2 and s21, they would 
receive 6 and 1, respectively. Table 1.2 is a modification of Table 1.1, where only 
player 2's payoff 6 for (sll, S22) is changed to 2. 

In Table 1.1, the second strategy, s12, for player 1 gives a better payoff whatever 

player 2 chooses, and the symmetric argument holds for the strategy S22 of player 2. 
In this sense, the second strategy of each player is called a dominant strategy. Here, 
it is sufficient to assume that each player believes that his own payoff function is 
described by the game of Table 1.1, to obtain the result that each player chooses a 

21n the literature of modal logic, surgical operations of models have been used in various manners. 
For example, some surgical operations comparable with some of ours are found in Chellas [2] and 

Hughes-Cresswell [4]. Different types of operations of models are found in Bull-Segerberg [1]. 
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dominant strategy. We use the notation B1 (g^) and B2(^), to mean to mean that each i 1, 
2 believes that his payoff function is gJ. Here gi is the set of formulae describing 
payoff function gj, which will be defined in Section 2.1. We need only formulae 
without nested occurrences of B1 (.) and B2(0), to describe the decision making by 
dominant strategies in the game g'. 

In Table 1.2, player 2 has no dominant strategy, while 1 still has the same dominant 

strategy s12 as in Table 1.1. Thus, 2 cannot choose a dominant strategy under the 

assumption B2(^2). One possible way to have a decision for player 2 is to predict 
what I would choose. For example, player 2 might choose his second strategy s22 
under the prediction that I would choose the dominant strategy s12. In this case, we 
need to add B2B1 (2) to B1 ( 2) and B2(^2). Thus, we have nested occurrences of 
belief operators only of the form B1B2(') to describe the process of decision making 
of players. 

The purpose of the above examples is to point out that it may suffice to consider 
bounded nested occurrences of belief operators. This boundedness will be captured 
by the concept of an epistemic structure, which will be defined in Section 2. Both 

proof- and model-theories are developed relative to a given epistemic structure, 
which will be provided in Section 2. The main contributions, i.e., the horticulture 
of models, will come after Section 2. 

In this paper, we adopt the KD-type epistemic logics of shallow depths and their 
semantics. We have various reasons for this choice. We treat logics of beliefs rather 
than those of knowledge, since we would like to allow false beliefs. Accordingly, 
we drop the Axiom of Truthfulness (Axiom T). We drop the Axiom of Positive 

Introspection, too, since it involves implicitly an infinite structure and deviates from 
our original motivation for epistemic logics of shallow depths. Nevertheless, it is 

possible to include the Axiom of Positive Introspection with appropriate modifica- 
tions, which will be discussed in Section 6. In the final section (Section 6), we will 

give some remarks on the choice of epistemic axioms, and on some other extensions 

(restrictions) of our structures. 

?2. Epistemic logics GLE and epistemic world semantics. In Sections 2.1 to 2.3, 
we give a brief survey of the development of epistemic logics of shallow depths and 
their semantics from Kaneko-Suzuki [9], [10] and [11]. In Section 2.4, we present 
one theorem on decision making in the game of Table 1.2. This theorem illustrates 
the uses of meta-theorems given in the subsequent sections. 

Since we adopt a KD-type epistemic logic of shallow depths, we refer to the 
standard multi-modal KDn in various places. The exact relationship of our logic to 

KD" is briefly discussed in Section 2.3. 

2.1. Epistemic structures and the epistemic depths of formulae. To define the epis- 
temic logic GLE, we start with the following list of primitive symbols: 

Propositional variables: po, 
p1.... 

; 

Logical connectives: - (not), D (implies), A (and), V (or); 

Unary Belief operators: B1 ..., Bn; and parentheses: (,), 

where the subscripts 1 ..., n of B1(-) ..., Bn(.) are the names of players. We 
denote the set of players {1,... n} by N. The set PV := {po, Pl,... } is assumed 
to be a nonempty countable set. 
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The entire set P of formulae is defined from P V inductively: (i) each p E P V is 
a formula, (ii) if A, B are formulae, so are (-7A), (A D B), B1(A),..., Bn(A), and 
(iii) if (F is a nonempty finite set of formulae, then (A (D), (V (D) are also formulae.3 
We write { Bi(A) : A C ( } as Bi((), and follow the standard way of abbreviating 
parentheses. We also abbreviate A{A, B}, V{A, B, C} as A A B, A V B V C, etc. 
We say that a formula A is nonepistemic if and only if no Bi occurs in A for any 
ie N. 

To give a restriction on the set 9 in terms of the depth of nesting occurrences of 
Bi (i E N), we, first, introduce the notion of an epistemic structure and, second, 
describe the epistemic depth of each formula. These concepts reflect interpersonal 
epistemic aspects as well as intrapersonal ones, that is, a player's thinking about 
other players, as well as a player's thinking about himself. 

Let N<" be the set of all finite sequences (il,...., im) consisting of players in 
N (m > 0). When m = 0, (il,... , im) is stipulated to be the null symbol e. 
We call each e = (il,... im) in N•" an epistemic status. Note that we allow 

repetitive occurrences, i.e., ik 1 ik+1, in e = (il,... im). By an epistemic status 
e = 

(il,...., im), we express the nested structure of the scopes, i.e., im is the player 
imagined by im-1, who is imaginary also in the mind of im-2, ... etc. For example, 
Bi, Bi2 ... Bim (A) means that player il believes that i2 believes that... that im believes 
A. We abbreviate Bi, Bi2 ... Bim (A) as Be(A). When e is the null symbol e, B,(A) is 

stipulated to be A itself. 
We use the standard concatenation: e * e' = (il,..., im, j1...-- jk) for any e-- 

(il, . .. im) and e' 
- 

(ji ..., jk) E N<w. We stipulate ee e e = e. When 

e' = (j), we write simply e *j for e * (j). Then Be,j(A) - BeBj(A). For any subset 
F of N<'", we write eF = { e e' : e' E F }. 

We say that a nonempty subset E of N•" is an epistemic structure if and only if 
for any (il,...-, im) E N<w with m > 1, 

(1) (i ... im) E implies (i ... im-) E. 

This implies e E E. The sets N<" and {J} are trivial examples for epistemic struc- 
tures. A less trivial example is E(2) = {e, (1), (2), (2, 1)} described as the tree of 

Figure 2.1, which is the epistemic structure required for the decision making of 

player 2 in the game of Table 1.2. That is, player 2 thinks about l's thinking, which 
is expressed by epistemic status (2, 1) and then, based on this, 2 thinks about his 
own decision making, which is expressed by (2). At the null symbol e, the inves- 

tigator's thinking is expressed. Thus, by an epistemic structure E, we express the 

interpersonal (as well as intrapersonal) structure of how the players think about 
others' thinking, 

For any set F of epistemic statuses in N<K, the minimal epistemic structure 

including F is uniquely defined, which we denote by F*. For example, for f = 

(il,..., ii) c N<w, {I} is singleton, but {}* ={ (il,..., ik) : k = 0,... 1 } has 
1 + 1 epistemic statuses, which is depicted by Figure 2.2. This will be used to define 
a cane extension in Section 4. 

The following are properties owned by epistemic structures. 

3This formulation slightly deviates from the standard one, but we adopt this to facilitate certain game 
theoretical considerations. 
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(2,1) 

(1) (2) 

8 

FIGURE 2.1. 

(i . i. . i) 

(ii) 
I 

FIGURE 2.2. 

LEMMA 2.1. 

(1) If E'1 and E2 are epistemic structures, then so are E' n E2 and E 1 U E2 
(2) IfE, El and E2 are epistemic structures satisfying E = E1U E2 andE' nE2 - 

{8}, then there is a partition (S', S2) of N such that 

Ek = 
{(il,.... 

im)E E: :ii Sk}U{W} 

for k = 1, 2. 

PROOF. We prove only (2). Let S1 = i E N : (i) E } and S2 = N - S1. We 
denote { (ii,...,M i) E : (il) E Sk } U {e} by Fk fork - 1, 2. Then Ek C Fk for 
k - 1, 2 and Fl U F2 =- E. Since F1 nF2 =-- {}, we have Fk = Ek for k = 1, 2. - 

The first assertion implies that the set of all epistemic substructures of an epistemic 
structure E is a lattice, which has also the minimum element {8} and maximum 
element E. Incidentally, it is a Brouwerian lattice, i.e., the dual of a Heyting algebra. 

For the purpose of giving a restriction on the set of formulae by E, we use the 
concept of the epstemic depth of each formula. Let A be a formula. We define the 
epistemic depth 6(A) of A by induction on the length of A: 
DO. 6(p) = {e} for all p E PV; 
D1. 6(-A) - 6(A); 
D2. 6(A 3 B) = (A) U(5(B); 
D3. a(A. ) = 

UAC, 6(A) and 6(V q) - UAE4, (A); 
D4. 6 (Bi(A)) = { (i, 

iI..... 
im) : 

(i,.... irm) 
E 5(A) }, 

where (i, e) is stipulated to be (i). For example, 6 (p A BI(p)) = {8, (1)} and 
6(B2B2B (p)) = {(2, 2, 1)}, where p E PV. For a set F of formulae, let 6(F) - 

UAGF6(A). Note that 6(A) may not satisfy condition (1), but that the smallest 
epistemic structure including 65(A) is uniquely determined, which we denote by 
6*(A). For example, 6* (B2B2BI (p)) = {8, (2), (2, 2), (2, 2, 1)}. 

Let E be an epistemic structure. Then we define 

(2) E = {A E :6(A) CE}. 

Thus 9E is the set of formulae whose epistemic depths are included in E. If A is 
nonepistemic, then 6(A) = {e} C E by DO-D3, which implies that 9aE contains 
all nonepistemic formulae. If E ? {e}, then 

•Y{ 
is the set of all nonepistemic 

formulae. When E - N<m, 39N< is the entire set 9. For E(2) = {e, (1), (2), (2, 1)} 
given above, 9E(2) is the set of formulae describing 2's thinking about the game and 
2's thinking about l's thinking about the game. 
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We denote the { e' : e * e' E E } by E(e). This is the subtree of E starting at e. 
and is also an epistemic structure. We denote AE(e) by aE (e), and attach it to each 

epistemic status e = 
(il,...., 

im), which will play a role in defining our logics as well 
as semantics. The set ?E (e) is also described as { A : Be (A) E 9E }. We say that a 
formula in 9E (e) is e-admissible in E. 

(2, 1) :•E (2)(2, 1) 

(1) : PE(2)(1) (2) : 
••E(2) 

(2) 

9 

••E 
(2) 

FIGURE 2.3. 

In Figure 2.3, 9E(2) (1) and E(2) (2, 1) coincide with the set of nonepistemic 
formulae •Y,j, since at these epistemic statuses, the players do not consider any 
players' thinking. At (2), the attached set YE(2) (2) is 

({•,(1)}0 
{ A : 6(A) C 

{e, (1)} }, that is, player 2 thinks about player l's thinking as well as nonepistemic 
matters. The entire YE(2) is attached to e. 

Finally, we give descriptions of the games of Section 1 in our formalized language. 
The idea is that each payoff function is expressed as a set of preferences. Specifically, 
we assume 

Strategy symbols: s1 , 12, S21l, S22; 

Preference symbols: P1 (-; ), P2 
("' 

). 
We write S1 = {Sll,sl2}, S2 - {S21,s22} and S = S1 x S2. Let AF := { Pi(s: s') 
s, s' E S and i = 1, 2 }, which has 24 x 2 = 32 atomic formulae. The expression 
Pi(s; s') is intended to mean that player i (weakly) prefers s = (sl, 2) to s' - 
(s', si). We adopt this set AF as P V and then we have the set of formulae YI 
and YE based on AF. In this language, we describe a given payoff (real-valued) 
function gi on S by the following set of preferences: 

(3) { Pi(s; s') : gi(s) > gi(s') } U { -Pi(s; s') : gi(s') > gi(s) }. 

We denote this set by the symbol ij. That is, payoff function gi is expressed by the 
set of preferences.4 

Then Bi (i) := { Bi(A) : A E gi } describes "player i believes that gi is his payoff 
function". The set of formulae BjBi(9i) := { BjBi(A) : A E 9i } describes "player 
j believes that i believes that i's payoff function is gi". We denote 1 U g92 by . 
Then Bi(9) describes "player i believes that the game is g = (g, g2)" 

We introduce two specific formulae for game theoretical considerations. The 
following formula expresses "sl is a dominant strategy": 

(4) { PA (sl, 
t2; 

tl, 
t2) : (tl, t2) ES }, 

4In the terminology of economics, the set, gi, captures only the ordinal property of gi. This suffices 
for the purposes of this paper. 
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which we denote by Doml (sl). It means that whatever t2 player 2 chooses, strategy 
sl maximizes l's payoff. We define Dom2(s2) in the parallel manner. In the nonfor- 
malized game theory, it is considered that Dom, (sl2) and Dom2(S22) hold in Table 
1.1, but that neither Dom2(s21) nor Dom2(s22) holds in Table 1.2. 

To describe the decision criterion of player 2 for the game of Table 1.2, the other 
formula to be used is 

(5) { P2(SIS2; SI,t2) : t2 e S2}, 
which is denoted by Best2(s2 I sl). This describes "s2 is a best response to sl" or "s2 
is a payoff maximizing strategy given the prediction that st would be played by 1". 
In Table 1.2, it is considered that Best2 (s22 I S12) holds. This could be a criterion of 
decision making, for which player 2 needs the prediction that player 1 would choose 

S12. 

2.2. Epistemic world semantics. Let E be an epistemic structure. In this section, 
we introduce an E-frame, which is a modification of a Kripke frame. The general 
idea of an E-frame is that the set of possible worlds is partitioned into subsets 
indexed by epistemic statuses in E. Each possible world of an epistemic status 
e = 

(il,...., 
im) is imagined by player im in the mind of i,, 1 ....., in the mind of il. 

DEFINITION 2.2. An n + 2 tuple - = (W; w,:; R1,... Rn) of a nonempty set W, 
a distinguished element w, in W, and n binary relations Ri ..., Rn over W is said to 
be an E-frame if and only if the following F I and F2 hold: 

Fl. W is the disjoint union of a family { W, : e E }E of non-empty sets indexed by 
the elements of 'E with W,: {w, }. When w E We, we write XJ-(w) = e, which 
is called the epistemic status of w. 

F2. Each Ri satisfies thefJollowing conditions: 
F2.1. for all w, w' E W, ifw Ri w', then ,Y(w') = 0 y(w) * i; 
F2.2. Ri is E-serial, i.e., for each w E W, if )ur(w) * i E E, then w Ri w' for 

some w' E W. 

First, We - W(i ....,,) is the set of epistemic worlds of epistemic status e - 

(il,...., 
im). Each w E We is a possible epistemic state of the mind of player im in a 

possible state of the mind of im-1 of... of player ii. Condition F2.1 means that if 
two epistemic worlds are connected by Ri, then their epistemic statuses should be 

legitimate in the sense of 2q(w') = ?-(w) * i. This is equivalent to 

F2.1*. for all w, w' E W, if w Ri w' and w c We, then w' E Weti. 

Thus, { We : e E } and R1,..., Rn reflect the epistemic structure E. Condition 
F2.2 is specific to our choice of the KD-type semantics. If we choose a different 

type, these should be modified, which was discussed in Kaneko-Suzuki [9]. We take 
the unique distinguished element we, which is the investigator's epistemic world. 
The uniqueness of we would not be needed for the completeness theorem, but is 
assumed for convenience. 

Each we E We (e = (il,..., im) E E) describes a possible state of the mind of 

player im in the scope of Be (). Hence the formulae considered in We are ones in 

,E(e) - { A : Be(A) E YaE }. We will associate the set of e-admissible formulae 
9E (e) with each w E We, and will give truth valuations to formulae in YE(e) for 
any e E E. See Figure 2.3. 
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o 
W(2,1) o (2,1) 

o W() o (2) 

0 We 

FIGURE 2.4. 

EXAMPLE 2.3. For E(2) = {e, (1), (2), (2, 1)}, Figure 2.4 gives an example of an 

E(2)-frame. This frame is denoted by -(2). World w(l) represents the state of the 
mind of player 1 considered by the investigator, but w(2,1) and w'2,1) represent the 

possible states of the mind of player 1 imagined by player 2. These are unrelated 
to W(i). In this frame, the associated sets of formulae are as follows: "AE(2) with 

wE, 9E(2)(1) = Y{} with w(I), gE(2)(2) = { A : 5(A) C {e, (1)} } with W(2), and 

9E(2) (2, 1) - {,1} with w(2,1) and w'2,1). This is not a standard KD" Kripkeframe in 
that the arrows named 1 and 2 are missing at w(), w(2,1) and w'21). 

The following is another example of an E-frame, which will be used in Section 4. 

EXAMPLE 2.4 (Cane Frame). Let =- (il, ..., ii) C N<" and {f}* = {e, (ii), 
(i1, i2) ... (i 1..., i J)}. Then the following 9-7() - (W; e; R' ... 

R ) is an { }*- 
frame: 

(4-1) W = {}* and We = {e}foralle {}*; 
(4-2) R =- 

{((il,...., 
ik ), (i... ik+)) : ik+l -- i}for i E N. 

Then .(f) (e) - e. Frame 7-(f) is depicted in Figure 2.5. Here 
1{jI- (il ,.. 

. , ik ) 
{A : 6(B(i,,... ik)(A)) C {It}* } is associated with each (il,..., ik) E {e}*. We call 
this Y (? ) the cane frame generated by ?. 

o (i , ..., il) 

hi2 
o (il) 

oe 

FIGURE 2.5. 

Let 7 = ( W; w,; R1 
...., 

Rn) be an E-frame. An assignment a in 9- is a mapping 
from W x PV to {T, I}. For any assignment a in T, we define (-, a, we) - A or 

(,, a, we) )2 A for A CE (e), e E E and we E We by the following induction on 
the length of a formula: 

VO. for any p PV, (-, a, we) k p if and only if au(we, p) = T; 
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and for any C, D E E(e) and a nonempty finite subset 1 ofPE(e), 

V1. (9-, a, we) -'C if and only if (F, a, we) X C; 
V2. (5, a, we) C: D if and only if (, a, we) P C or (-, a, we) 

- D; 
V3. (5, a, we) A ( \ if and only if (-, a, we) W A for all A G(D; 
V4. (Y, a, we) V ( if and only if (9-, , we) > A for some A c D; 

and for any Bi(A) c 9E(e), 
V5. (O, a, we) k 

B/(A) 

if and only if (5v, a, 
w',i) 

A for all we'* E W with 
We Ri 

wlei? Since we Ri w'e, implies _j(wei) -- 2(we) * i - e * i by F2.1, the formula A in 
V5 belongs to AE j( (7Wei)) for any wi with we Ri we'*. Hence the latter part of 
V5 is well-defined. 

We say that a pair (Y, a) of an E-frame 9 and an assignment a in 9 is an 
E-model. Let F be a set of formulae in YE. We say that (57, a) is an E-model of F 
if and only if (F, a, w?') > A for all A E F. 

We mention a few basic results on an E-model. Let (5, a) = ((W; w,; R, . 

Rn),a ) be an E-model. Then, for any Be(A) cE E, 

(6) if (9-, a, we) k A for all we E We, then (-, a, wr) Be(A), 

which follows immediately from the definition of the valuation relation. 
The other important notion is a restriction of a model. Let E and E' be epistemic 

structures with E' C E, and let (7, a) - ((W; wE; R1..., Rn), a) be an E-model. 
Then we say that (7-', ') - ((W'; w.; R',.... R',), a') is the restriction of (-, a) 
to E' if and only if W' = UeCE' We and R ... R, a' are the restrictions of 

R1i ..., Rn, a to W', respectively. Then the following lemma is an immediate 
consequence. 

LEMMA 2.5. Let E, E' and E" be epistemic structures with E" C E' C E, and 

(J, a) an E-model. 

(1) If (-', a') is the restriction of (57, a) to E' and if 
(.-", 

a") is the restriction 
of (-', r') to E", then (-", a") is the restriction of(7, a) to E". 

(2) If (-', a') is the restriction of (7, a) to E' and if (-", a") is the restriction 
of (5-, a) to E", then ( a", a") is the restriction of (9', a') to E". 

The following lemma, proved in Kaneko-Suzuki [9], will be used later. 
LEMMA 2.6. Let E and E' be epistemic structures with E' C E. Let (5, a) be 

an E-model and ( a', a') the restriction of (5r, a) to E'. Then, for any e' E E', 
A C E', (e') and we, C 

We,, 

(7) (S-,a, we,) 
- A if and only if (-', a', w,l) 

• 
A. 

2.3. Formal system GLE and its provability. Let E be an epistemic structure. We 
introduce the formal system GLE relative to E. It is the general idea of the logic GLE 
that each imaginary player ik in the epistemic status e = (il . . . , im) is given the 
logical ability described by classical logic. To describe the thought of the imaginary 
player in the scope of e - (il ..., im), we introduce square brackets [, ] and new 
expressions Be[A] Bi, . B,[A] for e = (il,.... im) c E and A E E (e). Here 
we distinguish Be[A] as different from Be (A), i.e., the latter is a formula in 3, but 
the former is used to define a formal proof. By making use of Be[- - ], we express 
a logical calculus made by im in the scope of im-1 ... of il. We call an expression 
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Be[A] a thought formula, and say that it is admissible in E if and only if e E E and 
A E AE(e).5 

The following are axioms and inference rules: all thought formulae occurring in 
them are admissible in E: 

e-L1. Be[A D (B D A)]; 
e-L2. Be[(A D (B D C)) D ((A D B) D (A D C))]; 
e-L3. Be[(QA D --B) D ((--A D B) D A)]; 
e-L4. Be[A DD A], where A E D; 
e-L5. Be[A D V P], where A E (; 

Be[A D B] Be[A] 
e-MP, Be[B] 

{Be[A D B] : B E e-A-Rule, 
Be[A D -lD] 

{Be[A D B] : A E e- } -Rule 
Be[V (D B] 

and for i = 1,..., n, 

e-MPi. Be[Bi(A D C) D (Bi(A) D Bi(C))]; 
e-Di. Be[--,Bi(--,A A A)]; 

Bei [A] 
(e-Necessitation). B 

Be[B/(A)] A proof of Be [A] in GLE is a finite tree having the following properties: (1) a 
thought formula is associated with each node, and an instance of the logical axioms 
is associated with each leaf; (2) adjoint nodes with the associated thought formulae 
form an instance of the inference rules; and (3) Be[A] is associated with the root 
of the tree. We say that Be[A] is provable in GLE if and only if there is a proof of 
Be[A], in which case we write -E Be[A]. When FE B,4[A], we say that A is provable 
in GLE, denoted simply by FE A. 

When e is e, the above axioms as well as inference rules, except e-Necessitation, 
become the standard ones for the standard multi-modal KDn logic restricted to WEE. 
When E = {e}, the epistemic axioms and necessitation are not admissible. Hence 

GL{,} is classical propositional logic. 
In the game gl of Table 1.1, Bl(Ag,) D B,(Doml(sl2)) is provable in the 

logic GLE(m,, where E(M) = {e, (1), (2)}. Its proof is given in Diagram 2.1: the 
first thought formulae are instances of (1)-L4, the first inference is (1)-A-Rule, the 
second inference is (1)-Necessitation, the other initial thought formula is e-MP1, 
and the last inference is e-MP. 

Since we abbreviate the outer B [...], BI(A9 ) D B1(Doml(s12)) is provable in 

GLE(,). In fact, this proof is admissible even in GLf, (1)j. 

5By an epistemic structure E, we give restrictions on the admissible formulae, and by the same E, we 
restrict the admissible proofs. The latter is reflected by the outer Be[- - ]. If these are separated, we may 
give more precise arguments on the complexity of interpersonal inferences (proofs). This is discussed in 
Kaneko-Suzuki [10] and [ 11]. 
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{BI [A lf PI (S12, t2: ti, t2)] : (ti, t2) E S} 
BI [AgA D Domi (S12)] 

B1 [B1 (Ag, D Dom, (s12))] B,[B1 (A ~^ D Dom,(s12)) D (B1 (A A) D B1 (Dom, (s12))) 
B [BI(A h) D BI(DomI(s12))]. 

DIAGRAM 2.1. 

For game theoretical considerations, nonlogical axioms are important. Let F be 
a subset of YE and A in YE. We write F FE A if and only if F-E A D A for some 
nonempty finite subset (D of F. We say that F is inconsistent in GLE if and only if 
F F-E -A A A for some A E -YE, and that F is consistent in GLE if and only if it is 
not inconsistent in GLE. The following fact will be used: F U { A} is consistent in 
GLE if and only if F YE --A. 

For a finite nonempty set Bi(() C RYE, it holds that FE Bi(A (D) A i Bi((). 
Thus, Bi(A (D) FE A is equivalent to B1((D) FE A. Using this fact, the formula 
proved in Diagram 2.1 is written as 

(8) B l(4) -FE(1, B1(Dom (s12)). 

The parallel assertion holds for player 2 in the game g' However, this is not the 
case in the game g2 of Table 1.2. As mentioned in Section 1, one possible way of 
2's decision making is to predict I's decision making and then to choose a strategy 
to maximize his own payoff. The prediction part is written as B2B(2) I FE(2) 
B2B1(DomI(S12)), where E(2) 

- {c, (1), (2), (2, 1)}. Player 2's choice under this 
prediction is written as B2(22) tE2) B2(Best2(S22 2 Sl2)). In sum, 

(9) B2(2), B2B2B1 )E(2) - B2B(Dom (s12)) A B2(Best2(s22 I sl2)). 

The right-hand side of (9) is equivalent to B2(B1 (Doml (S12)) A Best2(S22 I S12)). 
We 

will discuss the decision making of player 2 in the game g2 throughout the paper in 
order to illustrate our meta-theorems. 

Before going further, we should mention the main result of Kaneko-Suzuki [9]. 

THEOREM 2.7 (Strong Completeness). Let E be an epistemic structure. Let F be a 
subset of IPE and Aa formula in 9E. Then 

(1) F F-E A if and only if (-, a, w ?) F A for all E-models (7, a) ofF ; 
(2) there is an E-model of F if and only if F is consistent in GLE. 
The following two theorems are relevant for the purpose of the present paper (see 

Kaneko-Suzuki [9] for their proofs). 
THEOREM 2.8 (Conservativity I). Let E and E' be epistemic structures with E' C 

E. Let F be a subset of PE' and A E 'EI. Then F E,' A if and only if F FE A. 

This theorem states that it suffices to use an epistemic structure large enough for 
F and A. Then we can always evaluate necessary epistemic structures in a more 
precise manner. Keeping this remark in mind, we can avoid making too precise 
choices of epistemic structures in stating subsequent theorems. 

The relationship of the epistemic logic GLE to the standard multi-modal KDn 
is as follows. For KDn, we adopt the entire , then delete all the outer Be[... ] 
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from e-L1-e-L5, e-MPi, e-Di, e-MP, e-A-Rule, e-V-Rule, and finally modify e- 
Necessitation to 

A 
(Necessitation). Bi(A) 

Then we have the following theorem. 

THEOREM 2.9 (Conservativity II). Let F be a subset of and A E 9. Let E be 
any epistemic structure with 8(F U {A}) C E. Then F [-E A if and only if A is 
provable from F in KDn. 

2.4. A theorem on decision making in the game g2. In this section, we mention 
one theorem on decision making in the game g2 of Table 1.2. We will prove this 
theorem, step-by-step, as we develop various meta-theorems in subsequent sections. 
In the following, F is intended to be the set of beliefs owned by player 1 in the mind 
of player 2.6 

THEOREM 2.10. Consider the game g2 (g, g2 ) of Table 1.2. Let F be a subset of 
9, and E an epistemic structure with {e, (1), (2), (2, 1)1} C E and S(B2B l(F)) C 

F,. Let E(2) { e : 
(2),*eE 

c }. 
(1) The following two statements are equivalent: 

(a) Bl(F^) -Et(2) B1(Doml(s,1)) or Bl(F-) [-E(2) BI(Doml(sl2)); 
(b) 2, Bl( 2), B2(92), B2B 1(F) 

•E• 
(Vs, Ii(si)) A (Vs2 12(S2)). 

Here I, (sl) and I2(s2) represent the formulae B1 (Doml (sl)) and 

V B2(B1(Doml(sl)) A Best2(s2 sl)), 

respectively, and g2 _ = U U2. 
(2) Let E(2, 1) { e : (2, 1) * e c E }. Then the consistency of F in GLE(2, 1) is 

equivalent to the consistency of the left-hand side of (b) in GLE. 

(3) The assertion (a) of (1) is equivalent to that F E 
k(2,1) Doml(sil) 

or F E tk(2,1) 
Doml (S12). 

The main game theoretical statement is (b) of (1), which states that each player 
i = 1, 2 has a decision with his decision criterion Ii (si). The left-hand side of (b) 
means that both players truly believe (know) their own payoff functions and that 
player 2 has a belief on player l's belief, B2B1 (F). The last component, F, is given 
arbitrarily. The right-hand side of (b) means that both players have their decisions 
under the presumption that the decision making criteria are given as I, (sl) and 
I2(s1) for players 1 and 2. 

Claim (1) states that a necessary and sufficient condition for these players to have 
decisions is (a), i.e., l's belief (in 2's mind) contains the information that sil or 

s12 is a dominant strategy. According to (8) and (9), 2 is an example of f' in 
(a) and (b). In this case, player 2 believes that 1 believes truly l's payoff function. 
Another example of F is {Doml(sl2)} (and {Dom (sll)} as well). Then, player 2 
does not derive B1 (Doml (s12)) from other beliefs; instead, 2 believes that 1 believes 

6We state Theorem 2.10 only on the game of Table 1.2. We can extend the theorem in many directions. 
One possibility is to confine ourselves to a similar game theoretical concept (dominance solvability or 
iterative elimination of dominated strategies, cf. Moulin [13]), and the other is to adopt Nash equilibrium. 
For more game theoretical considerations, see Kaneko [5]. 
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dogmatically that s12 is a dominant strategy. When F {Domil(s11)}, 2 believes 
that 1 has a dogmatic belief, which is false relative to 2's belief. 

Claim (2) states that the consistency of the left-hand side of (b) in GLE is 

equivalent to that of F in 
GLE(2,1). 

This will be proved in Section 4. Claim (3) 
states that we can delete the outer B1 (.) from (a), which is proved in Section 4. 

Since F is arbitrarily given in Theorem 2.10, it may not be a good strategy to 

prove directly, e.g., the derivation of (a) from (b) of (1). In this paper, we choose 
the way of proving the derivation of (a) from (b) using various meta-theorems given 
subsequently. The following directs the reader to where the main steps are shown: 

(b) ==- (a): Sections 3.2, 3.3, and 4; 

(2) the former implies the latter: Section 4. 

(3): Section 4. 

Particularly, (b) ==? (a) needs a few steps. 
Next, consider 

(a)= 
(b). Suppose (a). It follows from (a) that B2B1 (i) [t- 

B2B1(Doml(sl)) for si -S or s2. Also, since B2(2) 
• 

B2(Best2(s21 Sl)) and 

B2 (2) 2- B2(Best2(s22 s12)), we have B2 (^2), B2B1(3F) F B2(Bi(Doml(sI1)) A 

Best2(s21 Sll)) or B2 (^), B2B1(f) VPt B2(B1(Doml(s12)) A Best2(s22 I S12)). This 

implies B2(), B2B1(F) -B V, 12(S2). 
Since B1 (^2) -t BI (Doml(s12)), we have B1 (^2) - V., lIi(sl). This and the 

conclusion of the previous paragraph imply (b). 

?3. Bouquets and cuttings. In this section, we consider the method of bouquet- 
making which ties two or more models at their roots. The bouquet behaves almost 
as the direct sum of two models. In Section 3.1, we give a general definition 
of bouquet-making. In Section 3.2, we consider bouquet-making with no-merging 
and prove an epistemic separation theorem, which is a refinement of a result given in 

Kaneko-Nagashima [7]. In Section 3.3, we consider bouquet-making with merging, 
and obtain the disjunction property theorem of [7]. 

3.1. Definition of a bouquet. Throughout the following discussions up to Section 
5, we assume that two models have only the root in common, that is, for E- and E'- 
models (v, a) =((W; w; Ri ..., Rn), a) and (', a') =((W'; w'; R' ..., RI), 
6r 9, 

(10) W n W' = 
-{w= 

{w}. 
This assumption can be made by suitable relabelling of the worlds in W and W'. In 
this section, we assume also that their assignments coincide at their root w, - w': 

(11) a(w,, .) - ca'(w,, .). 

We say that (7*, a*) = ((W*; w*; R 
,...., 

Rn), r*) is the bouquet made by tying 
( a, a) and (7', a') at their roots, or, simply, ( a*, a*) is the bouquet of (3-, a) and 

( a', a'), if and only if the components of 
(,7*, a*) are defined as follows:7 

7This has some similarity to an amalgamation of models (cf. Hughes-Cresswell [4], p. 98), which is 
used to obtain the rule of disjunction. See Section 3.3 of this paper. 
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BQ1. W* W U W'; and { We*}eCEUE' 
is defined by 

W, u W' if e En E', 

We* = We if eE E- E', 

W' if e E' - E; 

BQ2. w* = w w"; 
BQ3. R" = Ri U R( for i = 1 

..., n; 

BQ4. 
a (w, ) if E W, 

Ba'(w, ) ifw E W'. 

First, let us see when (,9*,a*) is an E U E'-model. Since W n W' = f{w}, 
W* = W U W' is partitioned into { We*}eGEUE'. For the same reason, neither Ri 
nor R' goes across W - {w,} and W' - {w,}. The bouquet, -*, may not satisfy 
E U E'-seriality, which is shown by the following example. As far as 

(,*,a*) 
satisfies E U E'-seriality, ( a*, a*) is an E U E'-model. 

EXAMPLE 3.1. Consider the frames 9 and 7-' described by Figures 3.1 and 3.2. 

They are isomorphic to the caneframes (j i) and 3-(?2) with fl = (1) andf2 = (1,2), 
respectively, but it is assumed that the sets of worlds have e in common so that (10) 
holds. Let a' and a2 be any assignments in 9 and 5'. The bouquet (-*, a*) of 
(9(L I), a') and 

(3-(?2), 
a2) is described as Figure 3.3. 

OW1 

o1 ot' 

FIGURE 3.1: 9-. 

0 W/ 
o W1 12 

o0 08 

FIGURE 3.2: Y'. 

o w 
2 

o W1 oW 1 

of 

FIGURE 3.3: Y-*. 

This T* does not satisfy E U E'-seriality in that wI has no successor with respect to 
R*. Hence 

(•*,a*) 
is not an E U E'-model. 

The following lemma gives a condition for E-seriality. 
LEMMA 3.2. Let (T, a) and (3-',a') be E- and E'-models. Then the bouquet 

(*, a*) of (,T a) and (J',a') is an E U E'-model if and only ifE n E' = {e } or 
E -= E' 

PROOF. (If): It suffices to show that 9* satisfies E U E'-seriality. If En E' {e} 
or E - E', then E-seriality or E'-seriality is not affected by bouquet-making. 

(Only-If): Suppose neither E n E' = {e} nor E - E'. Then there is some 

(il...,im) E n E' with m > 1 and (i,..., im,im+1) E (E - E') U (E' - E) 
for some im+l. Suppose (il... im, im+l) E E - E'. Consider w' E W'(im) in 

(Y', a'). Then since w' c W' - W, this w' has no w" such that w' RiM , w". Hence 

(-*, a*) does not satisfy E U E'-seriality. The symmetric argument is applied to 
the case where (il,... , im, im+) E E' - E. - 

We will consider these two cases: E n E' {e} and E = E' in Sections 3.2 and 
3.3. 

The following lemma states that the bouquet is regarded as a direct sum of two 
models except at the root. 
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LEMMA 3.3. Let (-, a) = ((W; w,; Ri ...., Rn), a) and ( a', a') = ((W'; wl; R', 
... Rn), 

a') be E- and E'-models. Assume that the bouquet (9-*, a*) of (Y-, a) and 
(a', a') is an E U E'-model. Then, 

(1) for any w E W - {w, } andA E c 
E(,&-(w)), 

(-9*,a*, w) A if and only if 
(,9-, a, w) k A; 

(2) for any w' c W' - {wf } andA A 9E, (, (w')), (9-*,a*,w') A if and only 
if (V', 0', w') k A. 

PROOF. Consider only (1). Let w E W - {w,}. By BQ3, for any i e N and 
u c W, w Ri u if and only if w Ri u, and by BQ4, a* coincides with a over these 
accessible worlds. Hence (Y-*, a*, w) k A if and only if (a, a, w) > A. -1 

Let { (k, ik) : k = 
1,.... 

m } be Ek-models satisfying (10) and (11) for k = 1, 
m. When Ek - Ek' or Ekn Ek' = {e} for any k : k', bouquet-making 

satisfies associativity, i.e., the order of bouquet-making does not matter. Hence the 

bouquet of multiple models { (9-k, ak) : k = 
1,...., 

m } is well defined. 
3.2. Bouquets with no-merging and the epistemic separation theorem. In this sec- 

tion, we consider bouquet-making under the first condition of Lemma 3.2: 

(12) En E' {e}. 
We call (12) the no-merging condition. This means that two models are epistemically 
separated. 

Bouquet making may be regarded as the reverse of taking restrictions of a model, 
which was defined in Section 2.2. 

LEMMA 3.4. Let E, E',..., Em be epistemic structures with E = Uk Ek and 
Ek n Ek' = {e} for k k'. Let (7-, a) an E-model, and (9-k ak) the restriction of 
(Y-, a) to Ek for k = 1 ..., m. Then the bouquet of { (-k, ak) : k = 1,..., m } 
coincides with (-, a). 

PROOF. Let (9k, ak) = ((Wk; wk; R,..., R•k), ak) for k = 1,..., m. Since 
E = Uk Ek and Ek n Ek' = {e} for k - k', and since each (9k, ck) is the 
restriction of (-, a) to Ek, it holds that W = Uk Wk, Wk Wk' {w, for 
k $ k', and ak(w, 

.) 
- a(wE, .) for k = 1, .... m. Hence the bouquet (7*,a*) 

of { (-k k) : k = 1, ... ,m} is well defined. Then W* = Uk Wk - W and 

{We}eEUk Ek = {We}eE by BQ1. By BQ4, a*(w, ) = a(w, ) for all w E W 

W*. Also, R 
- 

= 
Uk 

R = Ri. 
We are interested in the restrictions of an E-model (Y, a) to epistemic sub- 

structures of specific forms. For a nonempty S C N U {0}, we denote the set 

{ 
(il ... , im) C E : ii S } U {e} by Es. We call the restriction of (5, a) to Es 

the cutting of (-, a) at S. The role of the additional 0 will be clear after Lemma 
3.5. 

LEMMA 3.5. Let SI,... , Sm be mutually disjoint nonempy subsets of N U {0}. Let 
(Y, a) be an E-model, and 

(k--,ac) 
the cutting of (5t,a) at Sk for k - 1,... m. 

Then the bouquet of { (5k, k) : k = 
1,...., 

m } is the cutting of (5w, a) at S 

Uk Sk 
PROOF. Consider the cutting (1', a') of (5v, a) at S = Uk Sk. By Lemma 

2.5.(2), each (9k, ak) is also the cutting of (57', a') at Sk. Here Esk C Es C E 
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and Esk n ESk' {e } if k : k'. Hence, by Lemma 3.4, the bouquet of { (?k, ak) 
k = 

1,...., 
m } is (', a'). - 

Now, we need some syntactical notion. Let S be a nonempty subset of N U {0}. 
We say that A is an S-formula if and only if (1) il E S for all 

(il,...., irm) 
cE (A) and 

(2) 0 V S implies e V 6(A). For example, p A Bl(p) is a {0, 1}-formula, but not a 

{1}-formula, where p E PV. Also, 12(S2) - V, B2(BI(Doml(t1) ABest2(s2 I tl)) of 
Theorem 2.10 is a {2}-formula, and (VS, Ii(sl)) A (V.,2 12(S2)) is a {1,2}-formula. 

The next lemma states that for any S-formula A, the truth value of A in (-7, a, w,) 
is determined within the cutting at S. 

LEMMA 3.6. Let (5v, a) be an E-model, (Ys, as) the cutting of (5, a) at S C NU 
{0}, andA an S-formula in 9E . Then (7-, a, w,) A if and only if (sF, a , ,w,) A. 

PROOF. Since A is an S-formula, we have il E S for all 
(il,...., im) E 6(A). Hence 

3(A) C Es, i.e., A E 3Es, where Es { (il,... im) EE : ii E S} U {e}. Hence 
the assertion follows from Lemma 2.6. -A 

The following lemma states that when S does not contain 0, the truth valuation 
of an S-formula is determined by an assignment over W - { w, }. 

LEMMA 3.7. Suppose S C N. Let - be an E-frame and a, a' two assignments 
in 5- with a (w, ) = a'(w, .) for all w w,. Then for any S-formula A in ,PE, 
(7, a, w,:) 

- A if and only iJf (, a', w,) > A. 

PROOF. We say that a subformula C of A is a direct subformula of A if and only if 
C does not occur in the scope of any B i (.). Consider a minimal direct subformula 
C of A. Since 0 V S. C is written as Bi (D) for some j e S and some D. We have 
the assertion of the lemma for this C, since a(w, -) - a'(w, .) for all w 

-= 
w,:. Then. 

by induction, we have the assertion for any S-formula. -A 

Now, we obtain a model-theoretic result by bouquet-tying. 
THEOREM 3.8 (Bouquet-Tying). Let E be an epistemic structure, and S' .... Sm 

mutually disjoint nonempty subsets of N U {0}. Let F1k be a set of Sk-formulae in 

Y@E, 
and Ek (i ... im) EE : i E Sk } U {e} for k = 1,..., m. Then Fk has 

an Ek-model for each k - 1,..., m if and only if Uk Fk has an E-model. 
PROOF. The if part can be proved by considering the cutting of an E-model of 

Uk Fk at each Sk. Here we prove the only-if part. Let 
(9-k, 

ak) be an Ek -model 
of Fk for k 1, 

.... 
m. Note that 0 belongs to at most one Sk. We consider 

only the case where 0 E Sko. By Lemma 3.7, we can modify the values of ak, 
k $ k0, into Tk only at the root w, so that the modified rk coincides with ako at 

w,:. Then each (7-k, rk) is an Ek-model of Fk for each k 74 ko by Lemma 3.7. 
We write (5ko, ako) also as (,-ko Tko). Then we make the bouquet (5, r) by tying 
{ (k,_ rk) : k 

1i,...., m }. It follows from Lemma 3.4 that each 
(,-k rk) is the 

cutting of (v, a) at Sk. By Lemma 3.6, for any Sk-formula A, (7-, a, w,) A 
if and only if (9-k, rk, we) A. Hence (Y, a) is a Uk Ek-model of Uk 

.k 
By 

Theorem 2.7, Uk pk is consistent in GLUk Ek . By Theorem 2.8, Uk 
•k 

is consistent 

in GLE . Hence, again by Theorem 2.7, Uk Uk has an E-model in GLE. - 

The following is the syntactical counterpart of the above theorem. 

THEOREM 3.9 (Epistemic Separation). Let E be an epistemic structure, S' ,... 
Sm mutually disjoint nonempty subsets ofN U {0}, and Ek { 

(i ...., im) E 
F 
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il E Sk } U {e} for k 1,..., m. Let Fk be a set of Sk-formulae in YE and Ak an 
Sk-formula in ?E for k = 1 ..., m. 

(1) Uk Fk FE Vk Ak if and only if 
Fk -Ek 

Ak for some k = 1... m. 

(2) Suppose that each Fk is consistent in GLE. Then Uk Fk -E Ak Ak if and only 
if Fk -Ek Ak for all k 1 

..., 
m. 

PROOF. (1): The only-ifpart is essential. Suppose that Fk YEk Ak for all k = 1, 
..., m. Then it follows from Theorem 2.7 that for each k = 1,..., m, there is an 
Ek-model (-k, Uk) of Fk U {f-Ak}. By Theorem 3.8, we have an E-model (5v, a) 
of Uk(Fk U 

{--Ak}). 
Hence Uk Jk FE Vk Ak does not hold by Theorem 2.7. 

(2): Again, the only-if part is essential. Suppose Uk Fk FE Ak Ak Then 

Uk Fk FE Ak for all k = 1 ..., m. Take an arbitrary k from 1 ..., 
m. Let 

I' be a contradictory St-formula for t $ k. Then 

UFk FE 
I_ 

V .. V 
_Lk-l 

V Ak V Ik+lV . 
V 

_m. k 

By (1) of this theorem, we have 1k -Ek Ak or t 
F--Et 

it for some t Z k. Since 
each Ft is consistent in GLE, it is also consistent in GLE, by Theorem 2.8. Hence 
Ft' E' it for all t z k. Thus Fk -Ek 

Ak. -d 

Let us apply Theorem 3.9 to (b) of Theorem 2.10.(1). First, let T be -p v p 
(p is an atomic formula). Then (b) is equivalent to 

2, Bl(g2), B2(g2), B2Bl(F) 
? T A (V II(s)) A (V12(S2)) 

sI ,2 

Putting SO - {0}, S' = {1} and S2 = {2}, we have ?0 E}, El - 

{ (ill... irm) E E: il= 1], }U{e} andlE2- { (il... 
m) EF: 

il- 
2}U{e}. By 

Theorem 3.9.(2), we have 

(13) 
,2 

F{} T" 
(14) B((g2) FEt V I(sI)" s(1)1 

(15) B2(92), 
B2Bs(1f) t-2 

V 12(s2). 
s2 

Statement (13) is a trivial one, and (14) is derived from BI((2) F , B1(Doml (s12)), 
which follows from ^2 

F-{e} Dom1(s12). On the other hand, to evaluate (15), we 
need more meta-theorems. In Section 3.3, we give another meta-theorem, which 
enables us to evaluate (15). 

3.3. Bouquets with merging and the epistemic disjunction property. In this section, 
we extract some consequences from bouquet-making with E = E'. Recall that 
Lemma 3.2 guarantees that when ( -1, ), . . . , (m, am) are E-models with iden- 
tical E and each pair of them satisfies (10) and (11), the bouquet of (7'-, ua), .. 
(mM, am) is also an E-model. 

THEOREM 3.10. Let (-1, a') ..., (-7m, am) be E-models so that eachpair of them 

satisfies (10) and (11). Let (7*, a*) be the bouquet of them. Assume (i) E E. Then 

for anyformula Bi(A) E 9aE , 

(1) 
(*,*,*, 

w*) F Bi(A) ifandonly if (gk k, wE) F Bi(A)forall k = 1,.... 
m; 
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(2) (3-*,a*, w;) --Bi(A) if and only if (9-k,ak,wE) 
- -Bi(A) for some k = 

1i... , m. 

PROOF. (2) is the dual of (1). Consider (1). Let S?-k - (Wk; w; R: ..., R ) 
for k = 1,..., m. Suppose (3-*, a*, w*) F Bi(A). Then 

(-*, a*, w*) - A for all 

w* with w* R7 w*. By Lemma 3.3, this is equivalent to that for all k = 1, ..., m, 

(-k, 
k k, w) k A for all w with w, Rk w, which is equivalent to ('k, aU, w,) ? Bi(A) 

for k = 1,..., m. We obtain the proof of the converse by tracing this argument 
back. -1 

We can give one application of this theorem. 

THEOREM 3.11 (Epistemic Disjunction Property). Let E be an epistemic structure, 
Bi(F) a set of formulae in 

•AE, 
and Bi (0) a nonempty finite set of formulae in aE E. 

Then Bi (F) F-E V Bi (0) if and only if Bi (F) -E Bi (A) for some A E (. 

PROOF. The only-if part is essential. Suppose that Bi(F) YE Bi(A) for any A E D. 
For each Ak E D := {A1,...,Am}, there is an E-model ('9kuk) of Bi(F) U 

{ -Bi (Ak)}. We can assume that each pair of these models satisfies conditions (10) 
and (11). Consider the bouquet (3v-*,a*) 

of { (k,ak) : k - 1..., m }. By 
Theorem 3.10.(1), (Or-*,w*,) f Bi(A) for any A E F, i.e., it is an E-model of 

Bi(F). Also, (-*, a*, wE) ? --Bi(Ak) for all k 1, .,..., m by Theorem 3.10.(2). 
Thus (5*,a*) is a model of Bi(F) U { •V 

Bi (()}. Hence Bi(F) YE V 
B/(() 

by 
Theorem 2.7. - 

Theorem 3.11 was first proved in Kaneko-Nagashima [7] for their game logic 
GLm using the cut-elimination theorem for it. Without the assumption set Bi (F), 
the assertion is often called simply the disjunction property or the rule of disjunction, 
which many logical systems are known to satisfy. For a model theoretic proof of 
the rule of disjunction for a uni-modal logic, see Hughes-Cresswell [4], p. 99. 

Let us apply Theorem 3.11 to (15). We have, from (15), that 

B2( 2), B2B (F) -2 B2(B1(Doml(sl)) A Best2(s2 SI l) 

for some s, E S1 and s2 E S2. This implies that for some sC E SI, 

(16) B2( 2), B2B(F) -E2 B2B1(Doml(sl)). 

To study (16), we need another meta-theorem given in the next section. 

?4. Cane extensions and epistemic reductions. In this section, we consider a 
method of extending a model (7, a) by connecting a cane frame of Example 2.4 
with the root of (F, a). This method enables us to study properties of formulae of 
the form Be(A) = Bi, ... Bi, (A). 

Let 
(-7,a) 

be an E-model, and let Y(f) ({}*; e; R 
... R) be the cane 

frame generated by ? = (i1 ..., 
il). 

Recall that (f * E)* is the epistemic structure 

generated by * E = { * e : e E E }. 
We say that an (f * E)*-model (9-*, *) - (( W*; w ; R*, ... , R*), a*) is a cane 

extension of (7, a) with ? if and only if 7* is defined by CE1-CE3 and a * satisfies 
CE4: 
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CE1. W* = {e}*U { (, w) : w E W }, where (t, w,) ande are regarded as identical; 
and { We* eC(eE)* is defined as follows: 

- f{e} if e E {e}*, e (, w) : wc We,} if e = *e'ande' EE. 

CE2. w, = e; 
CE3. R 

-7 
= RU { ((f, w), (e, w')) : (w, w') E Ri } for i = 1,..., n; 

CE4. a*((e, w), p) = a(w, p) for all p PV and w E W.8 
The frame -* is uniquely determined by CE1-CE3, but the assignment a* is only 
required to coincide with a over { (?, w) : w E W }. Hence a cane extension is not 

uniquely determined. Since e and (f, w.) are regarded as identical, the connecting 
part of (5, a) and 

-(f) 
consists only ofe = (e,wE), i.e., W,* = {} = {({,w})}. 

Figure 4.1 illustrates a cane extension with ? = (il, i2). 

o (i, i2) 

t(il) 

FIGURE 4.1. 

Here 
(-, a)\w, means that wE is removed from (3, a). 

LEMMA 4.1. Let (., a) be an E-model, and (y*, a*) a cane extension of (Y, a) 
with f = (il,... ii). For any A c YE, (, , w) k A is equivalent to 

(-*, a*,e) 
A. 

PROOF. First, it follows from CE1-CE3 that for any w, w' E W and i E N, 
w Ri w' if and only if (f, w) R7 (f, w'). Also, 

9(e.E)* (Xk. 
(f, w)) = ) E (k(W)) 

and a*((w, e), -) = a(w, ) for all w E W. Hence the structure of 
(-*, a*) above i 

is regarded as equivalent to (Y, a). Thus we have the assertion. -1 
LEMMA 4.2. Let (7, a) be an E-model, and ( o*, a*) a cane extension of (,F, a) 

withe = (il,..., ii). LetA E ~ E. Then (, a, w) > A if and only if (Y-*,a*,e) 
Be (A). 

PROOF. (Only-If): Let (5,a, w) w A. Then (v*, a*,e ) [ A by Lemma 4.1. 
Since W,* = {I}, we have 

(,*, a*, e) Be(A) by (6). 
(If): Let (, a, wE) --A. By Lemma 4.1, (,*, a*, e) ?A. Thus, (*, a*, (il, 

..., il-1)) = Bi,(A). In the same manner, we have 
(-*, a*, (il,... it)) 

-Bi,+, 
... Bi, (A) for all t = 

0,..... 
1. Hence (F-*, a*, e) Be (A). 

We have the following reduction theorem.9 

8A similar concept which is known as a safe extension of a Kripke model in the literature of modal 

logic (cf. Chellas [2], p. 98). 
9When the assumption part F is empty, the assertion of the following theorem is found in Chellas [2], 

p. 99, p. 181. 
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THEOREM 4.3 (Epistemic Reduction). Let E be an epistemic structure and ? 

(il ... , ii) c N<w'. Let F be a set offormulae with F 
C_ 

E and Aa formula with 
A E 9E. Then F -E A if and only if Be (F) 

-(e*E), 
Be(A). 

PROOF. The if part is essential. Suppose F YE A. By Theorem 2.7, there is an 
E-model (Y,a) for FU { A}. Let (S-*,a*) be a cane extension of (7t,a) with ?. 
It suffices to show that this is an (? * E)*-model of Be (F) U {-Be (A)}. Let C be any 
formula in F. Since (7-, a, w,) H C, we have 

(J*,u*,, ) C. By Lemma 4.2, we 
have 

(7a* 
a*,e) H Be(C). Also, since (7-, a, w,) H --A, we have (*, a*, ?) H ?A. 

By Lemma 4.2.(2), we have (*,*,a*,e) H -BBe(A). Hence (-*, a*) is an (? 
? 

E)*- 
model of Be(F) U {fBe(A)}, which implies Be(F) Y(e*E)* Be(A). -1 

We now complete the proof of (b) ==> (a) of Theorem 2.10.(1). Recall that we 
have reached (16), i.e., B2(92), B2Bl(f) t-2 B2B1(Doml(sl)). Since E(2) { e 

(2) * ec E } and E2 (il... im) E : il = 2}, we have E(2) { e : (2) e E 
E2 }. By Theorem 4.3, we have that 

(17) 
g2, BI(1-) HE(2) B1(Doml(sl)). 

Then we apply the Epistemic Separation Theorem (Theorem 3.8) to (17), and then 
we have 

(18) BI(I) 
F 

(2)BI(Doml(s)). 
Since this holds for 

s- 
= s, I or sl2, we have (a) of Theorem 2.10.(1). 

By applying Theorem 4.3 to (a) of Theorem 2.10, we 
have1 -F 

(2,1) Doml (sll) or 

F 
HkE(2.1) Doml (s12). 

The converse is straightforward. We have Theorem 2.10.(3). 
Now, let us prove Theorem 2.10.(2) that F is consistent in GLE(2,1) if and only if 

g', B1l(92), B2(92), B2B1 (3 ) is consistent in GLE. The if part is straightforward. 
Consider the only-if part. Suppose that g1, B1 

(a2), B2(92), B2B1 (F) is inconsistent 

in GLk. Then g^1, B1(92), B22 B2BI(F) 
-/ 

I V Bi(1) V 

B2B1(-), 

where I is 
-p A p (p is an atomic formula). Then by Theorem 3.9, we have (i) 9' 

F_ 
I; (ii) 

Bl (2) -k B1 (1); or (iii) B2(g2), B2B1i(F) g- B2B1 (1). The first two are not the 
case since g' and B1 (92) are consistent. Consider (iii). By Theorem 4.3, we have 

^2, B1 (i) 
F-(2) 

B1(1). Hence, again by Theorem 3.9, B1(F) 
-L(2) 

B1(1). By 
Theorem 4.3 again, we have F 

F-E(2,) I. 

?5. Engrafting and epistemic joint-consistency. In this section, we consider the 
method of engrafting. It connects a model to another model at its epistemic worlds 
of a given epistemic status. We give the definition of engrafting under a condition 

corresponding to the no-merging condition (12). Except for the choice of an 

assignment at the connecting part, a bouquet is a special case of an engrafted 
model, and so is a cane extension. We obtain certain useful meta-theorems by 
engrafting. 

5.1. Definition ofengrafting. Let (5-, a) - (( W; w,; R1 ..., Rn), a) and (-', a') 
= (( ; w; R ... R), ') be E- and E'-models. Let - (il . ., i) E E. Here, 

( a, a) is the base model, and (5Y', a') is engrafted to (9, a). Specifically, we 
connect a copy of (-',' a) to every world we E We in (7, a). Since they are 
connected to each we E We, we should choose either a(we, -) or a'(w', -) for the 
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well-definedness of the resulting engrafted model. Here, we choose a (we, -) so that 
the entire structure of the base model (5, a) is preserved. 

We impose the following condition on E, E' and ? = (il, .. il): 

(19) E n ( * E') = {}. 
This excludes cases such as Figure 5.1, and is the same as the no-merging condition 
(12) when f = e. Without (19), engrafting would not define a frame. 

o Ie + o i 

$ it •- •-, 

FIGURE 5.1. 

We say that -* = (W*" w,; RT..., R*) defined by EG1-EG3 is made by en- 

grafting 'z = (W'; w0; R'1... R~) into =- (W; w,; RI,... Rn) at We: 
EG1. E* EU ( E') and W* - WU (U,,w{ (we, w') : w' E W' - {w,') }) 
EG2. W* is partitioned into { W* : e E E* } which is defined by 

f We if 
eE E, 

We* u 
[,,)Cw,{ (we,w',) :WI, E We, } ife = * e' E * (E' - e e, , 

EG3. for any i E N, 

R7 = Ri U { (we, (we, w')) : we E We and (w, w') E R } 
U { ((we, w'), (we, w")) we E We, w' $ w, and (w', w") R }. 

Since i = (il,...., ii) E E, E* = E U (f * E') is an epistemic structure. In EGI, 
each w' E W' - {Iw'} is relabelled as (we, w'), and { (we, w') : w' E 

W' - 
{w,} } 

will be connected to we. EG2 defines the partition { W* : e E E* } of W*. The first 
and second cases of EG2 are the base frame and newly engrafted parts. Condition 
(19) guarantees that WT;is the union of { (we, w',) : w, C 

Wp, } over we C We for 
e = * e' E ? * (E' - {e}). In EG3, the accessibility relation R7 is defined to be 
the union of Ri and the parallel transformations of R to the copies of W' - { w,' }. 

LEMMA 5.1. The n + 2 tuple -* = (W*; w;" RT ..., R*) defined by EG1-EG3 
is an E*-frame. 

We define an assignment a*: W* x PV -* {T, 1} as follows: 

EG4. For any w* E W* and p E PV, 

*((w *, p) if w* E W, 

a(W a'(w', p) if w* = (we, w') for we E We and w' E W' 
-{wI}. 

In EG4, the new assignment a* inherits a entirely and a' in the newly engrafted 
parts. We say that 

(-*, a*) is made by engrafting (Y', a') into (v, a) at We, or 
that (,F-*, a*) is the engrafted model of (F, a) and (F', a') at We. 

Let a(we, -) 
- 

a'(w, .) for all we E We. Then, a cane extension is a special case. 
When ? = e and (12) holds, a bouquet is a special case of an engrafted model. In 
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a cane extension, the base is the cane frame Y-(f). In bouquet-making of models, 
either model can be regarded as a base model. 

The following lemma states that the truth values in (7, ia) and (7', a') are 
preserved in the engrafted model (-*, a*) except for the formulae A E ,PE' with 
E c 6(A). The choice of a(we, .) for a*(we, -) rather than a'(w', -) requires the 
additional condition e V 6(A) for Lemma 5.2.(3). 

LEMMA 5.2. Let (Y, a) and (Y', a') be E- and E'-models. Suppose (19)for E, 
E' and e. Let (7 *, a*) be made by engrafting (Y-', a') into (Y, a) at We. Then 

(1) for any w E W andA E AE(y- (w)), (-, a, w) A if and only if (-*, a*, w) 
- A. 

(2) for any w' E W' - {w'}, we E We and A E YE' (/,' (w')), (-'Fa, w') > A 

if and only if (Y*,a*, (we, w')) k A. 
(3) for anyformula A E E', with e 6(A) and w* E We, (5', a', w') > A if and 

only if (-*, a*, wE ) - A. 

PROOF. (1) Observe that by EG4, a* coincides with a over W. Moreover, (19) 
guarantees that the truth value of A c 9E (iE& (w)) is not affected by the engrafted 
part. 

(2) Let we be any world in We. We can prove by induction on the length of a 
formula that for any e' E E' - {e}, w', E 

We, 
and A E E' (e'), (Y', a', w'I) A 

if and only if (-*, a*, (we, w')) k A. 

(3) This follows from (2). - 
5.2. Epistemic joint-consistency and the depth lemma. Here, we provide three 

results: the first two theorems are called the epistemic joint-consistency theorems, 
and the third the depth lemma. To illustrate merits of those theorems, we will 
consider the necessity of the assumption set B2B1 (F) of Theorem 2.10.(1).(b). 

For the following two theorems, we let F and F' be subsets of YE and 9E', 
respectively, and ? = 

(il,...., ii). 
THEOREM 5.3 (Epistemic Joint-Consistency I). Assume ? B E. Let (s-, a) and 

(7-', a') be E- and E'-models of F and F'. Then there is an E0-model of FU Be (F'), 
where E" =- E U (? * E')*. 

PROOF. We define t' = (il,... , ik) and ?" = (ik+l 
. 
. i ) by 

(20) ?' C E but (e', ik+l) 4 E. 

Since f? E, we have k < 1. Let ( a", a") be a cane extension of (57', a') with ?" = 
(ik+l ... il). The epistemic structure of the cane extension (Y", a") is (f" * E')*. 
Then let ( a*, a*) be obtained by engrafting (Y", a") into ( a, a) at We,. For this 
engrafting, (19) also holds by (20), i.e., E n (' * (?" * E')*) = {?'}. The epistemic 
structure of (5- *, a*) is E U (f' * (" * E')*) = EU ( * E')* = EO. Hence (9-*, a*) 
is an Eo-model by Lemma 5.1. Then we should show that (O-*, a*, w*) > A for all 
A FU Be(F'). 

By Lemma 5.2.(1), (Y*, a*", w*) A for all A EF. 
Let A be any formula in F'. Then (57', a', w') k A. Recalling '" 4 e, we have 

( o7", a", w") 1 Bet, (A) by Lemma 4.2. By Lemma 5.2.(3), (~-*,*, w,) 
k Be", (A) 

for all w,* E Wit. Finally, by (6), (7"*, a*, w*) BeBe, (A), i.e., (7*, a*, w) 
Be(A). - 

The following is the proof-theoretic counterpart of Theorem 5.3. 
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THEOREM 5.4 (Epistemic Joint-Consistency II). Assume ? V E. Suppose that F 
and F' are consistent in GLE and GLE,, respectively. Then F U Be(F') is also 
consistent in GLEo, where E0 = E U (? * E')*. 

PROOF. By Theorem 2.7, there is an E-model (, ,a) of F and an E'-model 

(Y',a') of F'. By Theorem 5.3, there is an Eo-model of F U Be(F'). Hence, by 
Theorem 2.7, F U B (F') is also consistent in GLEo. -1 

The next theorem is a refinement of the depth lemma proved for S4n by Kaneko- 

Nagashima [6], which was used to show the axiomatic indefinability of common 

knowledge in finitary epistemic logic S4n without adding an inference rule on the 
common knowledge operator. 

THEOREM 5.5 (Depth Lemma). Let F be a set offormulae, A a formula and ? an 

epistemic status. Let E = 6*(F U {Be(A) }). IfF t-FE B(A) and ? V 6*(F), then F 
is inconsistent in GLE or -6* (A) A. 

PROOF. Suppose that F is consistent in GLE and y6, (A) A. Then F is consistent 
in GLa.(r) by Theorem 2.8. By Theorem 2.7, there is an 6*(F)-model (-, a) of F 
and a 6* (A)-model ( a', a') of -A. Since ? V (*(F), we can apply Theorem 5.3 to 

(Y, a) and ( a', c') with respect to ?. Hence we have a 6* (F) U (? 6* *(A))*-model 
(.*, a*) of FU {Bi, ... Bi,_,Bi, (-A))}. This is also an 6*(F) U (? * 6*(A))*-model 
of F U {-Bi,...Bi,_,Bi,(A)}. Since (5*(1) U (? * *(A))* = j*(F U {Be(A)} = E, 
we have F YE Bf(A) by Theorem 2.7. 

ConsiderTheorem2.10.(1).(b), i.e.. g2, 
BI(2), 2) , B2( 

B2B1(1) '- (V,, 
i(s,)) A (Vs5 I2(S2)). Theorem 5.5 can be used to show that the nested occurrences of B2 

and BI for additional B2B1 (F) is unavoidable to have (b). Indeed, we have obtained 

already (16) from (b), i.e., B2(92), B2BI(F) 
--p2 

B2B1(Dom1,(si)). Theorem 5.5 
states that if B2B1 (F) is missing, this would not hold. Thus, we could not have 

Vs, I2(S2) 
without B2B1 (F). 

?6. Concluding remarks. We have developed methods of surgical operations, and 
obtained various meta-theorems, while applying them to game theoretical decision 

making. The game theoretical problem we have considered is simple, but problems 
for general n-person games can be investigated by our methods. Some are found in 
Kaneko-Suzuki [11]. 

Here, we give two remarks on the treatment of the Axiom of Positive Introspection 
(Axiom 4), and on an extension of GLE given in Kaneko-Suzuki [10] and [11 ]. 

(1) The Axiom of Positive Introspection, i.e., B, [Bi (A) D BiBi (A)], was adopted 
in Kaneko-Suzuki [9]. For this, we need some changes in various definitions for 
GLE and its semantics. For example, an epistemic status (il ..., im,) is assumed to 
have no repetitive occurrences, i.e., ik # ik+l, and accordingly, concatenation e * e' 
of epistemic statuses e and e' should be modified. Nevertheless, the essential part 
of the present paper remains, but we need more complicated proofs. 

Although some arguments in game theoretical applications (e.g., see Kaneko [5]) 
rely upon the Axiom of Positive Introspection, the elimination of the axiom enables 
us to study positive introspection more precisely. In the Appendix of Kaneko- 
Suzuki [11], the relationship between the logic GLE and that including the Axiom 
of Positive Introspection is considered from the proof-theoretical point of view. 
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(2) An epistemic structure E is used to restrict the admissible formulae. Kaneko- 
Suzuki [10] and [11] impose another constraint on GLE so that an epistemic struc- 
ture required for proofs is distinguished from E. The required epistemic structure 
is denoted by F, and the resulting epistemic logic is GLEF, where F C E. In 
semantics, F is a restriction on a frame. Then, we have the completeness theorem 
for the systems with those modifications. 

In this paper, we did not consider the additional constraint F for our horticulture. 
Nevertheless, we can incorporate the constraint F into our considerations. The 

required modification is straightforward for bouquet-making and a cane extension. 

Engrafting needs slightly more careful considerations. 
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