Game Theoretic Decidability and Undecidability*;†

Tai-Wei Hu‡ and Mamoru Kaneko§

07 October 2014

Abstract

We study the possibility of prediction/decision making in a finite 2-person game with pure strategies, following the Nash(-Johansen) noncooperative solution theory. We adopt the epistemic logic KD^2 as the base logic to capture individual decision making from the viewpoint of logical inference. Since some infinite regresses naturally arise in this theory, we use a fixed-point extension EIR^2 of KD^2 to express them. In the logic EIR^2, prediction/decision making is described by the belief set $\Delta_i(\mathbf{g})$ for player i, where \mathbf{g} specifies a game. Our results on prediction/decision making differ between solvable and unsolvable games. For the former, we have game theoretic decidability, i.e., player i can decide whether each of his strategies is a final decision or not. For the latter, we obtain undecidability, i.e., he can neither decide some strategy to be a possible decision nor disprove it. These results can also be written in terms of completeness/incompleteness: $(\text{EIR}^2; \Delta_i(\mathbf{g}))$ forms a complete theory (in a certain meaningful sense) if \mathbf{g} is solvable; and it does an incomplete theory if \mathbf{g} is unsolvable. The latter takes the form of Gödel’s incompleteness theorem, while ours is a much simpler propositional theory. Our undecidability is related to “self-referential” as is Gödel’s, but its main source is a discord generated by interdependence of payoffs and independent prediction/decision making.

Key words: Prediction/decision making, Infinite regress, Game theoretic decidability, Undecidability, Incompleteness, Nash solution, Subsolution

1 Introduction

Logical inference is an engine for decision making in games with two or more players. Although game theory has studied decision making extensively, logical inference is kept informal. To study such a decision making process, we adopt a formal system of epistemic logic, the \textit{epistemic infinite regress logic} EIR^2. It is a fixed-point extension of the (propositional) epistemic logic KD^2. We focus on the 2-person case for simplicity. Because of interdependence of players, prediction making is also required, and our logic allows us to model prediction making based on logical inference. At the same time, our approach emphasizes players’ independence in terms of subjective thinking, and this emphasis guides our formulation of EIR^2. Our approach is coherent

*The authors thank Nobu-Yuki Suzuki for valuable suggestions on this research.
†The authors are partially supported by Grant-in-Aids for Scientific Research No.26234567 and No.2312002, Ministry of Education, Science and Culture.
‡Northwestern University, Illinois, USA, t-hu@kellogg.northwestern.edu
§Faculty of Political Science and Economics, Waseda University, Tokyo, Japan, mkanekoepi@waseda.jp
with Nash [16] and Johansen [9], who gave the noncooperative theory of prediction/decision making in a non-formalized manner. We study this theory in the logic EIR[2].

We prove game theoretic decidability and undecidability, depending upon whether a game has the interchangeable set of Nash equilibria. The former result states that a player can reach a positive or a negative decision for each strategy, while the latter states that for some strategy, he cannot reach either a positive or a negative decision. Our approach takes various different perspectives from the standard literature of game theory as well as that of epistemic logic. Here, we explain those perspectives.

Fixed-point extension of KD[2]: Prediction/decision making naturally leads to an infinite regress of beliefs. This regress begins subjectively in the mind of player i in his prediction making, which requires him to simulate the other player’s mind, and in such simulation another layer of interpersonal thinking is required; the regress would go *ad infinitum* unless we stop it at an arbitrary layer. We adopt the fixed-point extension EIR[2] of KD[2], to capture such an infinite regress[1]. An infinite number of imaginary players are involved in this regress, and their scopes are distinguished in the logic EIR[2].

As the concept of infinite regress of beliefs is closely related to common knowledge, the logic EIR[2] is also related to the common knowledge logic CKL (cf., Fagin, et al. [4], and Meyer-van der Hoek [14])[2]. In fact, if we add Axiom T(truthfulness) to EIR[2], then infinite regress collapse to common knowledge, and the resulting logic EIR[2](T) becomes equivalent to CKL. Without Axiom T, EIR[2] can capture mutual subjectivity, which is not allowed in CKL. For this reason, even though some results in this paper are sharper in EIR[2](T) than in EIR[2], we take the latter as the basic system.

Proof theory and model theory: Because of our focus on prediction/decision making with logical inference, we use a proof-theoretic system, which allows us to formulate a player’s reasoning process explicitly. This approach is in sharp contrast with most models in epitemic game theory[3], which describe possible mental states in a single (semantic) model[4]. We also use model theory (here, Kripke semantics) as a technical support, which is connected to our formal system via the soundness/completeness theorem (see Hu-Kaneko [7]). By soundness/completeness for EIR[2], we can use Kripke models to evaluate provability via validity or finding a counter-model. In particular, the soundness part will be used to prove our game theoretic undecidability result.

Basic beliefs as non-logical axioms: As the formal Peano arithmetic is formulated by proper axioms in first-order classical logic, we postulate some basic beliefs as axioms for a player’s prediction/decision making in the logic EIR[2]. Those basic beliefs include his understanding of the game and prediction/decision criterion. The derivation from his beliefs to a decision is expressed as

\[B_i(\Gamma^a_i) \vdash B_i(I_i(s_i)). \] (1)

1 Alternatively, we can adopt an infinitary logic. Hu et al. [8] discusses relationships between the logic EIR[2] and its infinitary counterpart.

2 It is also related to “common belief” (cf., Heifetz [5]), but here, we compare only common knowledge with our concept of infinite regress.

3 Many aspects involved in playing a game are considered in van Benthem et al. [20] and van Benthem [19]. In particular, matrix games are formulated by means of logic in Chap.12 of [19]. Nevertheless, an individual thought process of prediction/decision making is only indirectly treated.

4 The model-theoretic standpoint has been taken almost exclusively in the literature of epistemic logic with applications to game theory; for example, see van Benthem et al. [20], the various papers in Brandenburger [3], and van Benthem [19]. Some exceptions are Kaneko-Nagashima [10], Kline [13], and Suzuki [18], where the proof-theoretic standpoint is taken.

2
That is, player i has basic beliefs Γ_i^γ in his mind, and derives $I_i(s_i)$; his beliefs recommend s_i as a possible final decision. The negative decision is expressed as $B_i(\neg I_i(s_i))$; his beliefs recommend him not to take s_i. Although (1) is expressed from the analyst’s viewpoint, we intend to model these derivations as occurring in player i’s mind. Indeed, in EIR^2, $B_i(\Gamma_i^\gamma) \vdash B_i(I_i(s_i))$ ($B_i(\Gamma_i^\gamma) \vdash B_i(\neg I_i(s_i))$ is equivalent to $\Gamma_i^\gamma \vdash I_i(s_i)$) ($\Gamma_i^\gamma \vdash \neg I_i(s_i)$); this equivalence is stated in Lemma 2.5, and hence the derivation can be interpreted as occurring in player i’s mind. The choice of the base logic KD^2 is essential for this equivalence.

Game theoretic concepts: We only consider finite 2-person strategic games with pure strategies. This simple setting is rich enough to obtain both decidability and undecidability results. In fact, the characterization of games with decidability/undecidability corresponds to the solvability requirement in Nash [16]. It captures players’ independence in ex ante prediction/decision making, though Nash did not make a formal distinction between prediction and decision. Johansen [9] discussed Nash’s theory in a more philosophical manner with a conceptual distinction between prediction and decision. As our axioms for prediction/decision making formalize his argument in the logic EIR^2, the resulting system is called the formalized Nash-Johansen theory (for short, the formalized Nash theory).

Axiomatic formulation of prediction/decision making: We postulate three axioms, $\text{N}0_i$, $\text{N}1_i$, and $\text{N}2_i$, to be given in Section 4, for prediction/decision making. They are in the scope of player i’s mind, expressed as $B_i(\text{N}012_i) := B_i(\text{N}0_i \land \text{N}1_i \land \text{N}2_i)$. To make his prediction about player j’s decision, player i uses the belief $B_iB_j(\text{N}012_j)$, where $\text{N}012_j$ is the same as $\text{N}012_i$ with the replacement of i with j. For the same reason, $B_iB_j(\text{N}012_j)$ requires $B_iB_j(\text{N}012_i)$, and so on. Thus, to complete prediction making, player i would meet an infinite regress of beliefs:

$$B_i(\text{N}012_i), \quad B_iB_j(\text{N}012_j), \quad B_iB_jB_l(\text{N}012_l), \ldots$$

(2)

This is captured by the fixed-point operator, $\text{Ir}_i(\text{N}012_i;\text{N}012_j)$, in the logic EIR^2.

The infinite sequence (2), a fortiori, $\text{Ir}_i(\text{N}012_i;\text{N}012_j)$, has a self-referential structure: The sequence itself occurs in the scope of $B_i(\cdot)$, the counterpart for player j is in the scope of $B_iB_j(\cdot)$, and (2) again occurs again in $B_iB_jB_l(\cdot)$, and so on. This self-referential structure is crucial for our undecidability result.

Conceptually, the infinite regress, $\text{Ir}_i(\text{N}012_i;\text{N}012_j)$, is our basic postulate for prediction/decision making. Mathematically, however, it only provides a necessary condition for possible decisions. We formulate another axiom (schema), $\text{Ir}_i(\text{WF})$, that gives the sufficiency of this postulate to determine a possible decision.

Formalized Nash theory: The set of beliefs $\text{Ir}_i(\text{N}012_i;\text{N}012_j)$, $\text{Ir}_i(\text{WF})$ describes prediction/decision making without concrete information about the game being played. We formulate the basic beliefs of a game, including strategies and payoffs, by $\text{Ir}_i(\text{g}) := \text{Ir}_i(g_i;g_j)$. This addition completes our postulates of player i’s basic beliefs: $\Delta_i(\text{g}) = \{\text{Ir}_i(\text{g}), \text{Ir}_i(\text{N}012_i;\text{N}012_j)\} \cup \text{Ir}_j(\text{WF})$, which plays the role of $B_i(\Gamma_i^\gamma)$ in (1). Note that the set of beliefs $\Delta_i(\text{g})$ depends upon the game $\text{g} = (g_i;g_j)$. The pair $(\text{EIR}^2;\Delta_i(\text{g}))$ of the logic EIR^2 and player i’s basic beliefs forms the formalized Nash theory for the game g.

The literature of game theory tends to focus on the resulting outcome(s) from a solution/equilibrium theory. In our context, this focus can be stated as the following question:

(i): What decisions and predictions does $(\text{EIR}^2;\Delta_i(\text{g}))$ recommend?

This question presumes that the theory $(\text{EIR}^2;\Delta_i(\text{g}))$ has recommendations. However, we should
ask the following question in the first place.

(ii): Does (EIR\(\Delta_i(g)\)) recommend any decision?

In fact, the answer to the second question is related to Nash’s [16] solvability condition.

We say that a game is solvable when the set of Nash equilibria is interchangeable, i.e., the set has a product structure. Here, we give three examples of games; two are solvable and one is not. In Table 1.1, each player has three strategies, and his payoff is given in the matrix (the first and second entries are players 1’s and 2’s payoffs). The superscript NE stands for Nash equilibrium, explained in Section 3. Table 1.1 has a unique Nash equilibrium. Table 1.2, called the battle of the sexes, has two Nash equilibria; this is not solvable because the set is not a product set. Table 1.3, called the matching pennies, has the empty set of Nash equilibria. Tables 1.1 and 1.3 are solvable games.

<table>
<thead>
<tr>
<th>(s_{11})</th>
<th>(s_{21})</th>
<th>(s_{22})</th>
<th>(s_{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4</td>
<td>2, 2</td>
<td>4, 0</td>
<td></td>
</tr>
<tr>
<td>3, 3(^{NE})</td>
<td>4, 2</td>
<td>3, 0</td>
<td></td>
</tr>
<tr>
<td>0, 0</td>
<td>5, 5</td>
<td>2, 6</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2

<table>
<thead>
<tr>
<th>(s_{11})</th>
<th>(s_{21})</th>
<th>(s_{22})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 1(^{NE})</td>
<td>0, 0</td>
<td></td>
</tr>
<tr>
<td>0, 0</td>
<td>1, 2(^{NE})</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.3

<table>
<thead>
<tr>
<th>(s_{11})</th>
<th>(s_{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
<tr>
<td>-1, 1</td>
<td>-1, 1</td>
</tr>
</tbody>
</table>

Positive, negative decisions, and undecidable: Our main results give a complete answer to the question (ii) above. When a game is solvable, we have the decidability result: for any strategy \(s_i\) for player \(i\),

\[
\text{either } \Delta_i(g) \vdash B_i(I_i(s_i)) \text{ or } \Delta_i(g) \vdash B_i(-I_i(s_i)).
\] (3)

For Table 1.1, the set of beliefs \(\Delta_1(g)\) recommends player 1 to take \(s_{12}\) as a positive decision but not to take either \(s_{11}\) or \(s_{13}\). In Table 1.3, \(\Delta_1(g)\) recommends all strategies as negative decisions.

We show that when a game \(g\) is not solvable as in Table 1.2, there is some strategy \(s_i\) for each player \(i\) such that

\[
\text{neither } \Delta_i(g) \vdash B_i(I_i(s_i)) \text{ nor } \Delta_i(g) \vdash B_i(-I_i(s_i)).
\] (4)

That is, player \(i\) cannot decide with the belief set \(\Delta_i(g)\) whether \(s_i\) is a positive or negative decision. In Table 1.2, this holds for both strategies. This situation differs entirely from the case where \(\Delta_i(g)\) gives negative recommendations for all strategies such as in Table 1.3; in the latter case, he may look for a different way for decision making, but in the former, i.e., (4), he may not be able to notice this undecidability itself, and get stuck in his decision making.

Relations to Gödel’s incompleteness theorem and the source for our undecidability: The result (4) has the same form as Gödel’s incompleteness theorem (cf., Boolos [2], Mendelson [15]), but both interpretation and source for incompleteness differ. Gödel’s theorem is about the Peano Arithmetic and based on the self-referential structure. Although the self-referential structure involved in the infinite regress of beliefs is crucial to our undecidability result, it is not the only source. Our answer to the above question (ii) reveals that the basic belief \(\text{Ir}_i(g)\) plays an indispensable role. Among the three components of \(\Delta_i(g)\), the second and third, \(\text{Ir}_i(N012;N012)\) and \(\text{Ir}_i(WF)\), are symmetric between the two players, but discords in the first, \(\text{Ir}_i(g)\), may bring about undecidability. A detailed comparison with Gödel’s theorem will be given in Section 6.
The paper proceeds as follows: Section 2 formulates the logic EIR². Section 3 gives various game theoretic concepts. Section 4 gives three axioms for prediction/decision making, and the game theoretic decidability result for a solvable game. Section 5 presents the undecidability result for an unsolvable game. Section 6 gives concluding remarks.

2 The Epistemic Infinite Regress Logic EIR²

We formulate the logic EIR² with the language for 2-person strategic games in Sections 2.1, 2.2, and give its semantics in Section 2.3. The language presumes the sets of strategies but this restriction is not essential for our argument.

2.1 Language

Let Sᵢ be a nonempty finite strategy set for player i = 1, 2. We adopt the atomic formulae:

- atomic preference formulae: Prᵢ(s; t) for i = 1, 2 and s, t ∈ S = S₁ × S₂;
- atomic decision formulae: Iᵢ(sᵢ) for sᵢ ∈ Sᵢ, i = 1, 2.

The atomic formula Prᵢ(·; ·) expresses the preference relation of player i; Prᵢ(s; t) means that player i weakly prefers the strategy pair s = (s₁, s₂) to the pair t = (t₁, t₂). The atomic formula Iᵢ(sᵢ) expresses the idea that, from player i’s perspective, sᵢ is a possible final decision for him.

Now we proceed to have logical connectives and epistemic operators:
- logical connective symbols: ¬ (not), ⊃ (implies), ∧ (and), ∨ (or);
- unary belief operators: B₁(·), B₂(·); binary infinite regress operators: Ir₁(·, ·), Ir₂(·, ·);
- parentheses: (,).

We stipulate that j refers to the other player than i. Player i’s prediction about j’s decision is expressed as Bⱼ(Iⱼ(sⱼ)), but this should occur in the scope of Bⱼ(·). We use a pair of formulae, (A₁, A₂), as arguments of the binary operators Ir₁(·, ·) and Ir₂(·, ·), and the intended meaning of the formula Ir₁(A₁, A₂) is player i’s subjective belief of the infinite regress of beliefs about Aᵢ and Aⱼ. We write Irᵢ(A₁, A₂) also as Irᵢ(Aᵢ; Aⱼ) and sometimes Irᵢ[Aᵢ; Aⱼ].

We define the sets of formulae, denoted by ℙ, by induction: (o) all atomic formulae are formulae; (i) if A, B are formulae, then so are (A ⊃ B), (¬A), Bᵢ(A) for i = 1, 2; (ii) if A = (A₁, A₂) is a pair of formulae, then Irᵢ(A) is also a formula; and (iii) if Φ is a finite (nonempty) set of formulae, then (∧Φ) and (∨Φ) are formulae. We write ∧{A, B}, ∧{A, B, C} as A ∧ B, A ∧ B ∧ C, etc., and (A ⊃ B) ∧ (B ⊃ A) as A ≡ B. We abbreviate parentheses or use different ones such as [·] when no confusions are expected. We also write ∧Bᵢ(Φ) for ∧{Bᵢ(A) : A ∈ Φ}, and etc.

We say that a formula A is non-epistemic iff Bᵢ(·) or Irᵢ(·, ·) does not occur in A for i = 1, 2. The set of non-epistemic formulae is denoted by ℙ_N. We say that A is a game formula iff the atomic formulae occurring in A are of the form Pr₁(·; ·) or Pr₂(·, ·). If A contains only atomic

²Since we adopt classical logic as the base logic, we can abbreviate some of those connectives. Since, however, our aim is to study logical inference for decision making rather than semantic contents, we use a full system.

³We presume the identity of finite sets in our language.
formulæ of the form $Pr_i(\cdot;\cdot)$, we call it a *game formula for player* i. A game formula expresses a reality of the target situation together with, potentially, beliefs about them, while the atomic decision formulæ $I_i(s_i)$’s are used to describe a player’s thinking about prediction/decision making.

2.2 Proof theory of EIR2

We start with an explicit formulation of classical logic, which consists of five axiom (schemata) and three inference rules: for all formulæ A, B, C, and finite nonempty sets Φ of formulæ,

L_1 $A \supset (B \supset A)$;
L_2 $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$;
L_3 $\neg A \supset (\neg A \supset B) \supset A$;
L_4 $\land \Phi \supset A$, where $A \in \Phi$;
L_5 $A \supset \lor \Phi$, where $A \in \Phi$;

$$
\frac{A \supset B}{B} \quad \text{MP} \quad \frac{[A \supset B : B \in \Phi]}{A \supset \land \Phi} \quad \text{\&-rule} \quad \frac{[B \supset A : B \in \Phi]}{\lor \Phi \supset A} \quad \lor\text{-rule}.
$$

The epistemic logic KD2 is defined by adding, to classical logic, two epistemic axioms and one inference rule for the belief operators $B_i(\cdot)$: for all formulæ A, C, and for $i = 1, 2$,

K $B_i(A \supset C) \supset (B_i(A) \supset B_i(C))$;
D $\neg B_i(\neg A \land A)$;

Necessitation $\frac{A}{B_i(A)}$.

Then, we have the *epistemic infinite regress logic* EIR2, by adding one axiom (schema) and one inference rule for the infinite regress operators $\text{Ir}_i(\cdot, \cdot)$: For $i = 1, 2$, and two pairs of formulæ $A = (A_1, A_2)$, $D = (D_1, D_2)$,

IRA_i $\quad \text{Ir}_i(A) \supset B_i(A_i) \land B_iB_j(A_j) \land B_iB_j(\text{Ir}_i(A))$;

IRI_i $\frac{D_i \supset B_i(A_i) \land B_iB_j(A_j) \land B_iB_j(D_i)}{D_i \supset \text{Ir}_i(A)}$.

Axiom IRA_i has a fixed-point structure in the sense that $B_iB_j(\text{Ir}_i(A))$ appears as an implication of $\text{Ir}_i(A)$. Replacing $\text{Ir}_i(A)$ in $B_iB_j(\text{Ir}_i(A))$ with its implication $B_i(A_i) \land B_iB_j(A_j)$ (formally with K and Nec), $\text{Ir}_i(A)$ implies the following infinite regress of beliefs:

$$
\{B_i(A_i), B_iB_j(A_j), B_iB_jB_i(A_i), \ldots\}. \quad (5)
$$

Rule IRI_i states that $\text{Ir}_i(A)$ is the logically weakest formula satisfying the property described in IRA_i, that is, if D_i enjoys it, then D_i implies $\text{Ir}_i(A)$. The soundness/completeness result (Theorem 2.1) shows that $\text{Ir}_i(A)$ captures faithfully the set in (5).

A *proof* $P = (X, <; \psi)$ consists of a finite tree $(X, <)$ and a function $\psi : X \to \mathcal{P}$ with the following requirements:

P1 for each node $x \in X$, $\psi(x)$ is a formula attached to x;
P2 for each leaf x in $\langle X, \prec \rangle$, $\psi(x)$ is an instance of the axiom schemata;

P3 for each non-leaf x in $\langle X, \prec \rangle$,

$$\{ \psi(y) : y \text{ is an immediate predecessor of } x \}$$

is an instance of the above five inference rules.

We call P a proof of A iff $\psi(x_0) = A$, where x_0 is the root of $\langle X, \prec \rangle$. We say that A is provable, denoted by $\vdash A$, iff there is a proof of A. For a set of formulae Γ, we write $\Gamma \vdash A$ iff Γ or there is a finite nonempty subset Φ of Γ such that $\vdash \wedge \Phi \supset A$. This treatment of non-logical assumptions is crucial in our study\(^7\).

The following results are basic to classical logic and/or KD\(^2\) (cf., Kaneko [11]). We use them without referring.

Lemma 2.1. Let $A \in \mathcal{P}$, Φ a finite set of formulae, and $i = 1, 2$. Then, (1) $\vdash A \supset B$ and $\vdash B \supset C$ imply $\vdash A \supset C$; (2) $\vdash (A \wedge B \supset C) \equiv (A \supset (B \supset C))$; (3) $\vdash B_i(\neg A) \equiv \neg B_i(A)$; (4) $\vdash \lor B_i(\Phi) \supset B_i(\lor \Phi)$; (5) $\vdash B_i(\lor \Phi) \equiv \land B_i(\Phi)$.

We will use the following three lemmas in the subsequent discussions. First, from Axiom IRA\(_i\) and Rule IR1\(_i\) ($i = 1, 2$), the operators $\text{Ir}_i(\cdot, \cdot)$ and $\text{Ir}_j(\cdot, \cdot)$ may appear to be independent of one another, but they are interdependent.

Lemma 2.2. (Epistemic content) Let $A = (A_1, A_2)$ be a pair of formulae. Then, $\vdash \text{Ir}_i(A) \equiv B_i(A_i \land \text{Ir}_j(A))$ for $i = 1, 2$.

Proof. Let us see $\vdash B_i(A_i \land \text{Ir}_j(A)) \supset \text{Ir}_i(A)$. Let $D_i = B_i(A_i) \land B_i(\text{Ir}_j(A))$ for $i = 1, 2$. By IRA\(_j\) (and, Nec, K), we have $\vdash D_i \supset B_i(A_i) \land B_j(A_j) \land B_iB_j(A_i) \land B_iB_j(\text{Ir}_j(A))$. Since the last two conjuncts are equivalent to $B_iB_j(D_i)$, we have $\vdash D_i \supset B_i(A_i) \land B_j(A_j) \land B_iB_j(D_i)$. Using IR1\(_i\), we have $\vdash B_i(A_i) \land B_i(\text{Ir}_j(A)) \supset \text{Ir}_i(A)$.

The above result for j implies $\vdash B_i(D_j) \supset B_i(\text{Ir}_j(A))$. Hence, $\vdash B_i(A_i) \land B_i(D_j) \supset B_i(A_i) \land B_i(\text{Ir}_j(A))$. Since $\vdash \text{Ir}_i(A) \supset B_i(A_i) \land B_i(D_j)$ by IRA\(_i\), we have $\vdash \text{Ir}_i(A) \supset B_i(A_i) \land B_i(\text{Ir}_j(A))$.

This lemma enables us to talk about the epistemic content of $\text{Ir}_i(A)$:

$$\text{Ir}_i^\phi(A) := A_i \land \text{Ir}_j(A),$$

which plays a crucial role in our consideration of prediction/decision making.

Lemma 2.3. (Basic properties for $\text{Ir}_i(\cdot, \cdot)$) Let $A = (A_1, A_2)$ and $C = (C_1, C_2)$ be two pairs of formulae in \mathcal{P} and $i = 1, 2$.

(1) If $\vdash \text{Ir}_k(A) \supset B_k(C_k)$ for $k = 1, 2$, then $\vdash \text{Ir}_i(A) \supset \text{Ir}_i(C)$. In particular, if $\vdash C_k$ for $k = 1, 2$, then $\vdash \text{Ir}_i(C)$.

(2) $\vdash \text{Ir}_i(A) \supset \text{Ir}_j(\text{Ir}_i^\phi(A), \text{Ir}_i^\phi(A))$;

(3) $\vdash \text{Ir}_i(A_1 \land C_1, A_2 \land C_2) \equiv \text{Ir}_i(A) \land \text{Ir}_i(C)$;

\(^7\)Since the deduction theorem (cf., Mendelson [15]) does not hold in epistemic logic, the introduction of non-logical axioms differs from in classical logic. We adopt the classic manner.
Lemma 2.4. (Admissible formulae and inference)

(1) \(\vdash \text{Ir}_i(A_1 \triangleright C_1, A_2 \triangleright C_2) \supset (\text{Ir}_i(A) \triangleright \text{Ir}_i(C)) \);

(5) \(\vdash \text{Ir}_i(-A_i; A_j) \supset \neg \text{Ir}_i(A), \vdash \text{Ir}_i(A_i; \neg A_j) \supset \neg \text{Ir}_i(A), \text{ and} \vdash \text{Ir}_i(-A_i; \neg A_j) \supset \neg \text{Ir}_i(A) \).

Proof. (1): Let \(\vdash \text{Ir}_k(A) \supset B_k(C_k) \) for \(k = 1, 2 \). We show \(\vdash \text{Ir}_1(A) \supset B_1(C_1) \wedge B_2(C_2) \wedge B_1(B_2(\text{Ir}_1(A))) \), which implies, by IRi, \(\vdash \text{Ir}_1(A) \supset \text{Ir}_1(C) \). First, \(\vdash B_1(B_2(\text{Ir}_1(A)) \supset B_2(C_1) \) by Nec and K. By Lemma 2.2, we have \(\vdash \text{Ir}_1(A) \supset B_2(C_1) \). By IRAi, we have \(\vdash \text{Ir}_1(A) \supset B_1(B_2(\text{Ir}_1(A))) \). By \(\wedge \)-rule, we have the target.

The other claims (2)-(4) follow (1). Here, we show (3). Since \(\vdash \text{Ir}_k(A_1 \wedge C_1, A_2 \wedge C_2) \supset B_k(C_k) \) for \(k = 1, 2 \), we have, by (1), \(\vdash \text{Ir}_k(A_1 \wedge C_1, A_2 \wedge C_2) \supset \text{Ir}_i(A) \). Similarly, \(\vdash \text{Ir}_k(A_1 \wedge C_1, A_2 \wedge C_2) \supset \text{Ir}_i(C) \). Hence, we have the one direction. Consider the converse. We have \(\vdash \text{Ir}_k(A) \wedge \text{Ir}_k(C) \supset B_k(A_k \wedge C_k) \) for \(k = 1, 2 \). We have \(\vdash \text{Ir}_1(A) \wedge \text{Ir}_1(C) \supset B_1(B_2(\text{Ir}_1(A)) \supset \text{Ir}_1(C)). \) Then, by IRAi, \(\vdash \text{Ir}_1(A) \wedge \text{Ir}_1(C) \supset \text{Ir}_1(A_1 \wedge C_1, A_2 \wedge C_2) \).

(5): Consider only the first one. Since \(\vdash \text{Ir}_1(-A_i; A_j) \supset \neg \text{Ir}_1(A) \), we have \(\vdash \text{Ir}_1(-A_i; A_j) \supset \neg B(A_i) \). Then, using the contrapositive of IRAi, i.e., \(\vdash \neg \{B_i(A_i) \wedge B_i(B_i(A_i)) \wedge B_i(B_i(\text{Ir}_1(A)))) \supset \neg \text{Ir}_1(A) \), we have \(\vdash \text{Ir}_1(-A_i; A_j) \supset \neg \text{Ir}_1(A) \).

The following statements for \(\text{Ir}_i^j(\cdot; \cdot) \) correspond to IRAi and IRi for \(\text{Ir}_i(\cdot; \cdot) \).

Lemma 2.4. (Admissible formulae and inference) Let \(A = (A_i; A_j) \) and \(D_i \) be any formulae. Then,

(1) \(\text{IRA}^j \vdash \text{Ir}_i^j(A) \supset A_i \wedge B_j(A_j) \wedge B_j B_i(\text{Ir}_i^j(A)) \);

(2) \(\text{IR}^j \) If \(\vdash D_i \supset A_i \wedge B_j(A_j) \wedge B_j B_i(D_i) \), then \(\vdash D_i \supset \text{Ir}_i^j(A_i; A_j) \).

Proof. (1): By definition (6), \(\vdash \text{Ir}_i^j(A) \supset A_i \wedge \text{Ir}_j(A) \). By Lemma 2.2 for \(j \), we have \(\vdash \text{Ir}_i^j(A) \supset A_i \wedge B_j(A_j) \wedge B_j B_i(\text{Ir}_i(A)) \).

(2): Let \(\vdash D_i \supset A_i \wedge B_j(A_j) \wedge B_j B_i(D_i) \). Since \(\vdash D_i \supset B_j B_i(D_i) \) and \(\vdash D_i \supset A_i \), we have \(\vdash D_i \supset B_j B_i(A_i) \). Thus, \(\vdash D_i \supset B_j(A_j) \wedge B_j B_i(A_i) \wedge B_j B_i(D_i) \). By IRi, we have \(\vdash D_i \supset \text{Ir}_j(A_i; A_j) \). Thus, \(\vdash D_i \supset A_i \wedge \text{Ir}_j(A_i; A_j) \), which is \(\vdash D_i \supset \text{Ir}_i^j(A_i; A_j) \) by (6). ■

Although EIR2 is the main logical system we use, we mention some variants from time to time. The main undecidability result of the paper holds in stronger systems than EIR2, such as those obtained from EIR2 by adding Axiom T (truthfulness): \(B_i(A) \supset A; \) Axiom 4 (positive introspection): \(B_i(A) \supset B_i(B_i(A)); \) and/or Axiom 5 (negative introspection): \(\neg B_i(A) \supset B_i(\neg B_i(A)) \). In particular, Axiom T helps us understand the infinite regress formula \(\text{Ir}_i(A) \), especially its relationship to the common knowledge logic CKL (cf., Fagin et al. [4] and Meyerson der Hoek [14]). The logic CKL uses only one operator, \(C(\cdot) \), and adds the following axiom and rule to KD2:

CKA: \(C(A) \supset A \wedge B_1(C(A)) \wedge B_2(C(A)) \);

CKI: \[
\frac{D \supset A \wedge B_1(D) \wedge B_2(D)}{D \supset C(A)}.
\]

Axiom CKA and Rule CKI are interpreted as meaning that \(C(A) \) describes the common knowledge of \(A \) from the outside analyst’s perspective. In contrast, \(\text{Ir}_i(A) \) describes player \(i \)'s beliefs

*We regard KD2 as the basic system; Axiom K and Necessitation give the inference ability of classical logic to each player. If Axiom D is dropped, player’s beliefs can be arbitrary with no restrictions; for instance, \(B_i(p) \neq \neg B_i(\neg p) \) holds. Axiom D avoids this contradictory beliefs.
from his subjective perspective. This difference is reflected by the counterpart of (5) in CKL, i.e., C(A) captures the entire set:

$$\{A, B_1(A), B_2(A), B_1B_2(A), B_2B_1(A), B_1B_2B_2(A), \ldots\}. \tag{7}$$

This set of formulae having all finite sequences of $B_2B_1\ldots$ including the repetitive ones such as $B_1B_2B_2$, while each in (5) has the outer $B_i(\cdot)$ and all $B_i, B_j\ldots$ are alternating.

If we add Axiom T to the logic EIR2, which is denoted by EIR$^2(T)$, an infinite regress collapses to common knowledge. Lemma 2.2 implies $\vdash \text{Ir}_1(A_1, A_2) \equiv \text{Ir}_j(A_1, A_2) (\equiv \text{Ir}_2^T(A_1, A_2))$ for $i = 1, 2$ in EIR$^2(T)$. It holds in EIR$^2(T)$ that for any formulae A_1, A_2 and D,

cka: $\vdash \text{Ir}_i(A_1, A_2) \supset (A_1 \land A_2) \land B_1\text{Ir}_1(A_1, A_2) \land B_2\text{Ir}_i(A_1, A_2)$;

cki: if $\vdash D \supset (A_1 \land A_2) \land B_1(D) \land B_2(D)$, then $\vdash D \supset \text{Ir}_1(A_1, A_2)$.

Thus, in EIR$^2(T)$, CKA and CKI are derived formulae and admissible rule for $\text{Ir}_1(A_1, A_2)$, and hence $\text{Ir}_1(A_1, A_2)$ means the common knowledge of $A_1 \land A_2$. However, as Axiom T destroys players’ subjective perspectives, we do not impose it unless stated otherwise.

We will use the belief eraser ε_0 to connect EIR2 to classical logic. The non-epistemic formula $\varepsilon_0(A) \in \mathcal{P}_N$ is obtained from $A \in \mathcal{P}$ by eliminating all occurrences of $B_1(\cdot), B_2(\cdot)$ in A and replacing all occurrences of $\text{Ir}_1(C_1, C_2)$ in A by $\varepsilon_0(C_1) \land \varepsilon_0(C_2)$. Then, we have

$$\vdash A \text{ implies } \vdash_0 \varepsilon_0(A), \tag{8}$$

where \vdash_0 is the provability relation of classical logic in \mathcal{P}_N. This is proved by induction on a proof of A from its leaves (cf., Kaneko-Nagashima [10]).

2.3 Kripke semantics and the soundness/completeness of EIR2

Here, we report soundness/completeness for EIR2 with respect to the Kripke semantics. We will use the soundness part for the main undecidability result.

A Kripke frame $(W; R_1, R_2)$ consists of a nonempty set W of possible worlds and an accessibility relation R_i for player $i = 1, 2$. We say that a frame $(W; R_1, R_2)$ is serial iff for $i = 1, 2$ and for all $w \in W$, wR_iu for some $u \in W$. A truth assignment τ is a function from $W \times AF$ to $\{\top, \bot\}$, where AF is the set of atomic formulae. A pair $M = ((W; R_1, R_2), \tau)$ is called a model. When $(W; R_1, R_2)$ is serial, we say that M is a serial model.

We say that $\langle (w_0, i_0), \ldots, (w_\nu, i_\nu), w_{\nu+1}\rangle (\nu \geq 0)$ is an alternating chain iff $i_{k-1} \neq i_k$ for $k = 1, \ldots, \nu$ and $w_{k-1}R_{i_{k-1}}w_k$ for $k = 1, \ldots, \nu + 1$. The alternating structure corresponds to the set given by (5). This is used for evaluating the truth values of formulae $\text{Ir}_i(A_1, A_2), i = 1, 2$.

The valuation in (M, w), denoted by $(M, w) \models$, is defined over \mathcal{P} by induction on the length of a formula as follows:

- **V0** for any $A \in AF$, $(M, w) \models A \iff \tau(w, A) = \top$;
- **V1** $(M, w) \models \neg A \iff (M, w) \not\models A$;
- **V2** $(M, w) \models A \supset B \iff (M, w) \not\models A$ or $(M, w) \models B$;
- **V3** $(M, w) \models \bigwedge \Phi \iff (M, w) \models A$ for all $A \in \Phi$;
The alternating rearchability in the semantics implies that if if (to inseparability between player Counterexamples are given also in [7]. The failure of the following lemma under Axiom T is due Axioms T, 4 and 5. is given in Hu-Kaneko [7], which also shows that the theorem still holds under any additions of structure shared by knowledge operator in CKL; the only di instead of simple rearchability (cf., Fagin et al. [4], Meyer-van der Hoek [14]).

We have the following soundness/completeness theorem.

Theorem 2.1. (Soundness and Completeness) Let \(A \in \mathcal{P} \). Then, \(\vdash A \) in EIR\(^2\) if and only if \((M, w) \models A \) for all serial models \(M = (\langle W; R_1, R_2 \rangle, \tau) \) and any \(w \in W \).

Soundness (only-if) is proved as follows: Let \(P = (X, <; \psi) \) be a proof of \(A \). Then, by induction on the tree structure of \((X, <) \) from its leaves, we show that for any \(x \in X \), \(\vdash \psi(x) \) implies \(\models \psi(x) \). The two new steps are : (1) \(\models C \) for any instance \(C \) of IRA\(_i\); and (2) the validity relation \(\models \) preserves Rule IRA\(_i\). Both steps follow from V6. The proof of completeness is given in Hu-Kaneko [7], which also shows that the theorem still holds under any additions of Axioms T, 4 and 5.

Theorem 2.1 shows that our infinite regress operator \(\text{Ir}_i(A) \) faithfully captures the set in (5). The alternating rearchability in the semantics implies that if \(\text{Ir}_i(A) \) holds at a world \(w \) and if \(wR_iu \), then \(A_i \) and \(\text{Ir}_j(A) \) hold at world \(u \), which corresponds to Lemma 2.2. Moreover, if \(uR_iv \), then \(\text{Ir}_i(A) \) holds at world \(v \), which corresponds to IRA\(_i\). These reflect the self-referential structure shared by \(\text{Ir}_i(A) \) and \(\text{Ir}_j(A) \).

In addition, the proof of the above theorem gives the (strong) finite model property (cf., p.145, 339, Blackburn, et al. [1]). Thus, this logic is effectively decidable (called simply “decidable” in the logic literature), i.e., the set of provable formulae is recursive. In Section 6, we will discuss this problem relative to the game theoretic decidability/undecidability result for prediction/decision making.

The following lemma requires KD\(^2\) to be the base logic for EIR\(^2\). It is proved by Theorem 2.1 in Hu-Kaneko [7]. If we add any of Axioms T, 4 or 5 to EIR\(^2\), the lemma does not hold. Counterexamples are given also in [7]. The failure of the following lemma under Axiom T is due to inseparability between player \(i \)'s mind and the objective situation, which violates our basic approach to model player’s subjective decision making in this paper.

Lemma 2.5. (Change of Scopes) (1): \(B_i(\Gamma_i^o) \vdash B_i(A) \iff \Gamma_i^o \vdash A \); (2): \(B_i(\Gamma_i^o) \vdash \neg B_i(A) \iff B_i(\Gamma_i^o) \vdash B_i(\neg A) \).

In our applications, \(B_i(\Gamma_i^o) \) takes the form \(\text{Ir}_i(C) \), and the inferences have the form \(\text{Ir}_i(C) \vdash B_i(A) \) or \(\text{Ir}_i(C) \vdash \neg B_i(A) \). By Lemmas 2.2 and 2.5, this is equivalent to \(\text{Ir}_i(C) \vdash A \) or \(\text{Ir}_i(C) \vdash \neg A \). This is interpreted as meaning that \(\text{Ir}_i(C) \vdash A \) or \(\text{Ir}_i(C) \vdash \neg A \) is obtained in the mind of player \(i \).
3 Game Theoretic Concepts

Here, we give a few game theoretic concepts relevant for our discussions, and formulate them in the language of EIR\(^2\). We also prepare some completeness results for game formulae, which are crucial to understand our game theoretic undecidability result.

3.1 Preliminary definitions

Let \(G = \{\{1, 2\}, \{S_1, S_2\}, \{h_1, h_2\}\} \) be a finite 2-person game, where \(\{1, 2\} \) is the set of players, \(S = S_1 \times S_2 \) is the set of strategy pairs, and \(h_i : S \to \mathbb{R} \) is the payoff function for player \(i = 1, 2 \). We also write \((s_i; s_j) \) for \(s = (s_1, s_2) \in S \). A strategy \(s_i \) for player \(i \) is a best-response against \(s_j \) iff \(h_i(s_i; s_j) \geq h_i(t_i; s_j) \) for all \(t_i \in S_i \). A strategy pair \(s = (s_i; s_j) \) is a Nash equilibrium in \(G \) iff \(s_i \) is a best response against \(s_j \) for \(i = 1, 2 \). We denote the set of all Nash equilibria in \(G \) by \(E(G) \). The set \(E(G) \) may be empty, e.g., Table 1.3 has the empty \(E(G) \). We say that \(s_i \) is a Nash strategy iff \((s_i; s_j) \) is a Nash equilibrium for some \(s_j \in S_j \).

A subset \(E \) of \(S \) is interchangeable (Nash [16]) iff

\[
\text{for all } s, s' \in E, (s_i; s_j') \in E \text{ for } i = 1, 2.
\]

(9)

This is equivalent to \(E = E_1 \times E_2 \), where \(E_i = \{s_i \in S_i : (s_i; s_j) \in E \text{ for some } s_j\} \) for \(i = 1, 2 \). Let \(E = \{E : E \subseteq E(G) \text{ and } E \text{ satisfies } (9)\} \). The game \(G \) is solvable iff \(E(G) \) satisfies (9), and we call \(E(G) \) the Nash solution. Otherwise, it is unsolvable, and a nonempty set \(F \subseteq S \) is a subsolution iff \(F \) is a maximal set in \(E \), i.e., there is no \(E' \in E \) such that \(F \subseteq E' \). Table 1.1 is solvable with the solution \(\{(s_{12}, s_{21})\} \). Table 1.2 is unsolvable, and has two subsolutions: \(\{(s_{11}, s_{21})\} \) and \(\{(s_{12}, s_{22})\} \). Table 1.3 is solvable but has the empty \(E(G) \).

Hu-Kaneko [6] derived the Nash theory from the following decision criteria: Let \(E_i \) be a subset of \(S_i \) for \(i = 1, 2 \).

Na\(_1\): for any \(s_1 \in E_1 \), \(s_1 \) is a best response against all \(s_2 \in E_2 \);

Na\(_2\): for any \(s_2 \in E_2 \), \(s_2 \) is a best response against all \(s_1 \in E_1 \).

In Na\(_i\), \(E_i \) describes the set of possible final decisions for player \(i \), and \(E_j \) describes \(i \)'s prediction about \(j \)'s possible final decisions. Here \(i \)'s prediction comes from his thinking about \(j \)'s criterion Na\(_j\). When \(i \) makes his prediction based on Na\(_j\), elements in \(E_j \) occur in the scope of \(j \)'s thinking, and this prediction occurs in the scope of \(i \)'s thinking. However, this argument is entirely interpretational. To make it explicit, we need the logic EIR\(^2\).

The following proposition was proved in Hu-Kaneko [6].

Proposition 3.1. Let \(E(G) \neq \emptyset \), and \(E_i \) a nonempty subset of \(S_i \) for \(i = 1, 2 \).

(1) Suppose that \(G \) is solvable. Then \(E = E_1 \times E_2 \) is the Nash solution of \(G \) if and only if \((E_1, E_2) \) is the greatest pair satisfying Na\(_1\)-Na\(_2\).\(^{10}\)

(2) Suppose that \(G \) is unsolvable. Then \(E = E_1 \times E_2 \) is a Nash subsolution if and only if \((E_1, E_2) \) is a maximal pair satisfying Na\(_1\)-Na\(_2\).

\(^{10}\)Nash [16] himself assumed the mixed strategies, and proved the existence of a Nash equilibrium. Here, we do not allow mixed strategies, and some games have no Nash equilibria.

\(^{11}\)The “greatest” and “maximal” are relative to the componentwise set-inclusions.
3.2 Some completeness results for game formulae

To express a game $G = \{\{1, 2\}, \{S_1, S_2\}, \{h_1, h_2\}\}$ in the logic EIR2, we formalize payoff functions h_1 and h_2 in terms of preference formulae (the players and strategies are already included in the language):

$$g_i = \bigwedge \{ [Pr_i(s; t) : h_i(s) \geq h_i(t)] \cup \{ \neg Pr_i(s; t) : h_i(s) < h_i(t) \} \}. \tag{10}$$

We call g_i the formalized payoffs associated with h_i for $i = 1, 2$, and $g = (g_1, g_2)$ is determined by G. Since (10) also contains negative preferences, for all $s, t \in S$, $g_1 \vdash Pr_i(s; t)$ or $g_1 \vdash \neg Pr_i(s; t)$, i.e., under g_i, completeness holds for all atomic preference formulae for player i.

Consistency of $g_1 \land g_2$ can be shown by constructing a truth assignment. Consistency of the infinite regress $\textbf{Ir}_1(g_1, g_2)$ in EIR2 is also obtained by applying the belief eraser ε_0: Suppose that $\textbf{Ir}_1(g_1, g_2) \vdash \neg A \land A$ for some nonepistemic formula A. Applying ε_0, we have $g_1 \land g_2 \vdash \neg \varepsilon_0 A \land \varepsilon_0 A$ by (8), which is impossible because of consistency of $g_1 \land g_2$. In the same way, we have consistency of $\textbf{Ir}_1^\circ (g_1, g_2)$ in EIR2. These are listed for the purpose of reference:

$$\textbf{Ir}_1(g_1, g_2)$$ and $\textbf{Ir}_1^\circ (g_1, g_2)$ are consistent in EIR2. \tag{11}

We formalize best response and Nash equilibrium: The statement “$s_i \in S_i$ is a best response to $s_j \in S_j$” is expressed as bst$_i(s_i; s_j) := \land_{t \in S_i} Pr_i((s_i; s_j); (t; s_j))$. The statement “$s = (s_1, s_2) \in S$ is a Nash equilibrium” is given as nash$(s) := \text{bst}_1(s_1; s_2) \land \text{bst}_2(s_2; s_1)$. Those are game formulae. As far as game formulae are concerned, the infinite regress of the formalized payoffs $\textbf{Ir}_1(g_1, g_2)$ contains sufficient information to prove or to disprove them.

Lemma 3.1. Let A_i be a nonepistemic game formula for $i = 1, 2$ (i.e., it contains atomic formula of the form $Pr_i(\cdot; \cdot)$). Let G be a game and $g = (g_1, g_2)$ its formalized payoffs. Then,

(1) $g_i \vdash A_i$ or $g_i \vdash \neg A_i$ for $i = 1, 2$;

(2) the following three are equivalent:

(a) $\textbf{Ir}_1(g) \vdash \textbf{Ir}_1(A)$ for $i = 1, 2$; (b) $\textbf{Ir}_1^\circ (g) \vdash \textbf{Ir}_1^\circ (A)$ for $i = 1, 2$; (c) $g_i \vdash A_i$ for $i = 1, 2$.

Proof. (1) Let $Pr_i(s; t)$ be any atomic formula. Recall that $g_i \vdash Pr_i(s; t)$ or $g_i \vdash \neg Pr_i(s; t)$. We can extend this result to other nonepistemic game formulae for i by induction on their lengths.

(2) (c) \implies (a) \implies (b): Suppose that $g_i \vdash A_i$, i.e., $g_i \supset A_i$ for $i = 1, 2$. It follows from Lemma 2.3.(1) that $\vdash \textbf{Ir}_1(g_1 \supset A_1, g_2 \supset A_2)$. By Lemma 2.3.(4), $\textbf{Ir}_1(g) \vdash \textbf{Ir}_1(A)$ for $i = 1, 2$. Since $\vdash g_i \supset A_i$, we have $g_i \land \textbf{Ir}_1(g) \vdash A_i \land \textbf{Ir}_1(A)$, i.e., $\textbf{Ir}_1^\circ (g) \vdash \textbf{Ir}_1^\circ (A)$.

((b) \implies (c)): Suppose that $g_1 \not\vdash A_1$ or $g_2 \not\vdash A_2$. By (1), $g_i \vdash \neg A_i$ or $g_j \vdash \neg A_j$ or both. We only consider the case where $g_i \vdash A_i$ and $g_j \vdash \neg A_j$. Using the same arguments as above, $\textbf{Ir}_1^\circ (g) \vdash \textbf{Ir}_1^\circ (A_i ; \neg A_j)$. By Lemma 2.4.(1), $\textbf{Ir}_1^\circ (g) \vdash B_j(\neg A_j)$ and hence, $\textbf{Ir}_1^\circ (g) \vdash \neg B_j(A_j)$. But by Lemma 2.4.(1), $\vdash \textbf{Ir}_1^\circ (A \supset B_j(A_j))$, equivalently, $\vdash \neg B_j(A_j) \supset \neg \textbf{Ir}_1^\circ (A)$. Thus, $\textbf{Ir}_1^\circ (g) \vdash \neg \textbf{Ir}_1^\circ (A_i ; A_j)$. By (11), we have $\textbf{Ir}_1^\circ (g) \not\vdash \textbf{Ir}_1^\circ (A_i; A_j)$. The other cases are similar. ■
Theorem 3.1. \(\text{Completeness for infinite regresses of game formulae} \) Let \(G \) be a game and \(g = (g_1, g_2) \) its formalized payoffs. Let \(A_i \) be a nonepistemic game formula for \(i = 1, 2 \). Then, either \(\text{Ir}_i(g) \vdash \text{Ir}_i(A) \) or \(\text{Ir}_i(g) \vdash \neg \text{Ir}_j(A) \), which implies either \(\text{Ir}_i(g) \vdash \text{Ir}_i(A) \) or \(\text{Ir}_i(g) \vdash \neg \text{Ir}_i(A) \).

\textbf{Proof.} Since \(g_i \vdash A_i \) or \(g_i \vdash \neg A_i \) for \(i = 1, 2 \), we should consider the four cases. Here, we consider only the case where \(g_i \vdash \neg A_i \) for \(i = 1, 2 \). By (6), \(\text{Ir}_i(g) \vdash \neg A_i \). Using the contrapositive of Lemma 2.4.1, we have \(\neg A_i \supset \neg \text{Ir}_i(A_i) \). Thus, \(\text{Ir}_i(g) \vdash \neg \text{Ir}_i(A_i) \).

The above theorem, together with the next one, will be used for our game theoretic decidability result. In fact, the result gets sharper with Axiom T. Let \(\text{Ir}_i(g) \vdash \neg A_i \). Hence, either \(\text{Ir}_i(g) \vdash A \) or \(\text{Ir}_i(g) \vdash \neg A \).

\textbf{Theorem 3.2. (Completeness for game formulae under Axiom T)} Let \(G \) be a game and \(g = (g_1, g_2) \) its formalized payoffs. For any game formula \(A \), either \(\text{Ir}_i(g) \vdash A \) or \(\text{Ir}_i(g) \vdash \neg A \) in \(\text{EIR}^2(T) \).

\textbf{Proof.} We prove the claim \(\text{Ir}_i(g) \vdash A \) or \(\text{Ir}_i(g) \vdash \neg A \) by induction on the length of \(A \). This implies \(\text{Ir}_i(g) \vdash B_i(A) \) or \(\text{Ir}_i(g) \vdash B_i(\neg A) \); then we have the assertion by Axiom T. Let \(A \) be an atomic formula. Then, \(g_1 \wedge g_2 \vdash A \) or \(g_1 \wedge g_2 \vdash \neg A \). Then, \(\text{Ir}_i(g) \vdash g_1 \wedge g_2 \) by (6) and Axiom T. Thus, \(\text{Ir}_i(g) \vdash A \) or \(\text{Ir}_i(g) \vdash \neg A \).

Let \(A \) be nonatomic, and suppose the inductive hypothesis that decidability holds for the immediate subformulæ of \(A \). Let \(A = C \supset D \). By the inductive hypothesis, decidability holds for \(C \) and \(D \). Using this, we have \(\text{Ir}_i(g) \vdash A \) or \(\text{Ir}_i(g) \vdash \neg A \). Similar arguments apply to connectives \(\neg, \wedge \) and \(\vee \).

Let \(A = B_k(C) \). The hypothesis is: \(\text{Ir}_i(g) \vdash C \) or \(\text{Ir}_i(g) \vdash \neg C \). Let \(\text{Ir}_i(g) \vdash C \). Then, \(B_k(\text{Ir}_i(g)) \vdash B_k(C) \). By IRA and Axiom T, \(\text{Ir}_i(g) \vdash B_i(\text{Ir}_i(g)) \) and \(\text{Ir}_i(g) \vdash B_i(\text{Ir}_i(g)) \). Thus, \(\text{Ir}_i(g) \vdash B_k(C) \). Now, let \(\text{Ir}_i(g) \vdash \neg C \). By the same arguments, we have \(\text{Ir}_i(g) \vdash B_k(\neg C) \), and, by Axiom D, \(\text{Ir}_i(g) \vdash \neg B_k(C) \).

Let \(A = \text{Ir}_k(C_1, C_2) \). The induction hypothesis is that decidability holds for \(C_1 \) and \(C_2 \). Now, suppose \(\text{Ir}_i(g) \vdash C_1 \wedge C_2 \). As remarked for \(\text{EIR}^2(T) \) in the end of Section 2.2, \(\text{Ir}_i(g) \vdash \text{Ir}_j(g) \) and \(\text{Ir}_i(g) \vdash \text{Ir}_j(g) \). Hence, \(\text{Ir}_k(g) \vdash C_k \) for \(k = 1, 2 \). Thus, \(\text{Ir}_k(g) \vdash B_k(C_k) \) for \(k = 1, 2 \). By Lemma 2.3.1, \(\text{Ir}_k(g) \vdash \text{Ir}_k(C_1, C_2) \) for \(k = 1, 2 \). Since \(\text{Ir}_i(g) \vdash \text{Ir}_k(g) \) for \(k = 1, 2 \) by (6) and Axiom T, we have \(\text{Ir}_i(g) \vdash \text{Ir}_k(C_1, C_2) \).

Let \(\text{Ir}_i(g) \vdash (\neg C_i) \wedge (\neg C_j) \). By the same argument, we have \(\text{Ir}_i(g) \vdash \text{Ir}_i(\neg C_i; C_j) \). By Lemma 2.3.5, \(\text{Ir}_i(g) \vdash \neg \text{Ir}_i(C_1; C_2) \). The same argument can be applied to the case of \(\text{Ir}_i(g) \vdash C_i \wedge (\neg C_j) \) and \(\text{Ir}_i(g) \vdash (\neg C_i) \wedge (\neg C_j) \).

4 Formalized Nash Theory

We give three axioms for player \(i \)'s prediction/decision making, and assume the symmetric axioms for player \(j \)'s prediction about player \(j \)'s prediction/decision making. These lead to an
infinite regress of those axioms. In this section, we show, for a solvable game, that the infinite regress of those axioms can be fully explicated, and obtain the decidability result.

4.1 Axioms for Prediction/Decision Making

We start with the following three axioms. These are intended to be the contents of player \(i \)'s basic beliefs and hence they occur in player \(i \)'s mind, i.e., in the scope of \(B_i(\cdot) \);

\[\text{N0}_{i} \text{ (Optimization against all predictions):} \quad \land_{s \in S}[I_i(s_i) \land B_j(I_j(s_j)) \supset \text{bst}_i(s_i; s_j)]. \]

\[\text{N1}_{i} \text{ (Necessity of predictions):} \quad \land_{s_i \in S_i}[I_i(s_i) \supset \lor_{s_j \in S_j} B_j(I_j(s_j))]. \]

\[\text{N2}_{i} \text{ (Predictability):} \quad \land_{s_i \in S_i}[I_i(s_i) \supset B_jB_i(I_i(s_i))]. \]

For each \(i = 1, 2 \), let \(N_i = N_0_i \land N_1_i \land N_2_i \), and let \(N = (N_1, N_2) \).

The first axiom directly corresponds to \(N_{A_i} \). The second requires player \(i \) to have a prediction for his decision. It corresponds to the nonemptiness of \(E_1 \) and \(E_2 \) in Proposition 3.1, while \(N_1 \) allows both to be empty. The third states that in the mind of player \(i \), his decision is correctly predicted by player \(j \). We find a similar structure in Axiom IRA\(_i\), but note that \(N_2 \) and IRA\(_i\) have different orders of applications of \(B_i \) and \(B_j \). Indeed, \(I_i(s_i) \) is naked without having the intended scope of \(B_i(\cdot) \), while \(\text{Ir}_i(\cdot, \cdot) \) includes the outer \(B_i(\cdot) \), as shown in Lemma 2.2.

Axioms \(N_i \) and \(N_j \) are interdependent: Since \(N_i \) includes \(B_j(I_j(s_j)) \), player \(i \) needs to predict what \(j \) would choose. This prediction is made by the criterion \(B_iB_j(N_j) \). Then, \(B_i(I_i(s_i)) \) requires \(B_iB_jB_i(N_i) \), and so on. These are captured by the infinite regress formula \(\text{Ir}_i(N) = \text{Ir}_i(N_i; N_j) \).

The infinite regress \(\text{Ir}_i(N) \) within the logic EIR\(_2\) may be compared with Johansen's [9] interpretation of Nash theory. This will be discussed in Section 6.

We take the infinite regress \(\text{Ir}_i(N_i; N_j) \) as basic beliefs for player \(i \)'s prediction/decision making: \(I_i(s_i) \) and \(B_j(I_j(s_j)) \) in \(\text{Ir}_i(N_i; N_j) \) are treated as “unknowns” to be found by player \(i \) with logical analysis. From \(\text{Ir}_i(N_i; N_j) \), necessary conditions for \(I_i(s_i) \) and \(I_j(s_j) \) are derived as the following game formulae: for each \(i = 1, 2 \) and \(s_i \in S_i \),

\[A_i^∗(s_i) := \forall t_i \in S_i \text{Ir}_i[t_i; t_j; \text{bst}_i(s_i; t_j); \text{bst}_j(t_j; s_i)]. \tag{12} \]

These candidate formulae play a crucial role in our subsequent analysis.

The nonepistemic content of \(A_i^∗(s_i) \) is given as \(\varepsilon_0(A_i^∗(s_i)) = \forall t_i \in S_i (\text{bst}_i(s_i; t_j) \land \text{bst}_j(t_j; s_i)) = \forall t_i \in S_i \text{bst}_i(s_i; t_j) \land \text{bst}_j(t_j; s_i) \). That is, \(\varepsilon_0(A_i^∗(s_i)) \) means “\(s_i \) is a Nash strategy”. In the logic EIR\(_2\)(T), we may interpret \(\text{Ir}_i(\cdot, \cdot) \) as the common knowledge operator (recall \(\text{cka} \) and \(\text{cki} \) in Section 2.2), and hence \(A_i^∗(s_i) \) means “\(s_i \) is a common knowledge Nash strategy”. We emphasize this interpretation with Axiom T by writing \(\text{Ir}_i^T[\text{bst}_i(s_i; t_j); \text{bst}_j(t_j; s_i)] \) as \(C^*(\text{Nash}(s_i; t_j)) \) in EIR\(_2\)(T), and \(A_i^*(s_i) \) becomes \(\forall t_i \in S_i C^*(\text{Nash}(s_i; t_j)) \). This formula was discussed in Kaneko-Nagashima [10] and Kaneko [12].

We have the following result, which will be proved in the end of this subsection.

**Theorem 4.1. (Necessity) For \(i = 1, 2 \),

\[\text{Ir}_i(N) \vdash B_i(I_i(s_i) \supset A_i^∗(s_i)) \text{ for all } s_i \in S_i. \tag{13} \]**
That is, player \(i \) infers \(A_i^*(s_i) \) as a necessary condition for his decision. By this and Lemma 2.2, we have also \(\mathbf{Ir}_i(\mathbf{N}) \models \mathbf{B}_j(\mathbf{I}_j(s_j)) \supset \mathbf{B}_j(A^*_i(s_j)) \) for all \(s_j \in S_j \); player \(i \) infers \(\mathbf{B}_j(A^*_i(s_j)) \) as a necessary conditions for his prediction. By Lemma 2.3.(1), we have, also, \(\mathbf{Ir}_i(\mathbf{N}) \models \mathbf{Ir}_j(\mathbf{I}_i(s_i) \supset A^*_j(s_i); \mathbf{I}_j(s_j) \supset A^*_j(s_j)) \) for all \(s \in S \). That is, those necessary conditions form an infinite regress, too. For our purposes, however, we only focus on implications of the form in (13).

Recalling \(\varepsilon_0(A^*_i(s_i)) \), (13) may be interpreted as meaning that a Nash strategy is derived. However, our target is prediction/decision making by a player. A possible decision resulting from this process is expressed by \(\mathbf{I}_i(s_i) \), and \(A^*_i(s_i) \) is only a necessary condition for it. This is a purely solution-theoretic statement in the sense that it does not depend upon payoffs. Also, even if payoffs, e.g., \(\mathbf{Ir}_i(g_1, g_2) \), are specified, (13) does not give a positive answer to \(\mathbf{I}_i(s_i) \); that is, the contrapositive of (13) may give only a negative decision \(\neg \mathbf{I}_i(s_i) \) from \(\neg A^*_i(s_i) \). We discuss the converse of (13) under the assumption of \(\mathbf{Ir}_i(g_1, g_2) \) in later sections.

Here, we prove Theorem 4.1. It follows from (2) of the next lemma. (1) does not need \(\mathbf{N}_1 \). We write \(\mathbf{N}_0 \triangleq \mathbf{N}_2 \) for \(i = 1, 2 \).

Lemma 4.1. For \(i = 1, 2 \), and \(s = (s_i; s_j) \in S

1: \(\mathbf{Ir}_i(\mathbf{N}) \models \mathbf{I}_i(s_i) \supset \mathbf{B}_j(\mathbf{I}_j(s_j)) \supset \mathbf{Ir}_i[bst_i(s_i; s_j); bst_j(s_i; s_j)]; \)

2: \(\mathbf{Ir}_i(\mathbf{N}) \models \mathbf{B}_i(\mathbf{I}_i(s_i)) \supset \mathbf{I}_i(s_i) \supset A^*(s_i). \)

Proof. (1): Let \(\theta_i(s_i; s_j) \equiv \mathbf{Ir}_i[bst_i(s_i; s_j); bst_j(s_i; s_j)]; \)

By this and Lemma 2.4.(2), we have \(\vdash \theta_i(s_i; s_j) \supset \mathbf{Ir}_i[bst_i(s_i; s_j); bst_j(s_i; s_j) \supset bst_j(s_i; s_j)], \) which implies the assertion.

The first part, \(\vdash \theta_i(s_i; s_j) \supset bst_i(s_i; s_j), \) of (14) comes from \(\mathbf{N}_0 \) and \(\mathbf{I}_i(s_i) \supset \mathbf{B}_j(\mathbf{I}_j(s_j)) \). Consider the second part. Since \(\vdash \theta_i(s_i; s_j) \supset \mathbf{B}_j(\mathbf{N}_0 \supset \mathbf{B}_j(\mathbf{I}_j(s_j))) \supset \mathbf{B}_j(\mathbf{I}_j(s_j)), \) we have \(\vdash \theta_i(s_i; s_j) \supset \mathbf{B}_j(\mathbf{I}_j(s_j)) \supset \mathbf{B}_j(\mathbf{I}_j(s_j)) \supset \mathbf{B}_j(\mathbf{I}_j(s_j)). \) Observe that \(\mathbf{B}_j(\mathbf{I}_j(s_j)) \) is included in \(\theta_i(s_i; s_j) \) and \(\mathbf{B}_j(\mathbf{I}_j(s_j)) \) is derived from \(\mathbf{I}_i(s_i) \) in \(\theta_i(s_i; s_j) \) by \(\mathbf{N}_0 \). Hence, \(\vdash \theta_i(s_i; s_j) \supset bst_j(s_i; s_j). \) Now, consider the third part of (14). By Lemma 2.4.(1), \(\vdash \mathbf{Ir}_i[bst_i(s_i; s_j); bst_j(s_i; s_j)]; \)

(2): It follows from (1) that \(\mathbf{Ir}_i(bst_i(s_i; s_j); bst_j(t_j; s_j)]; \)

This is equivalent to \(\mathbf{Ir}_i[bst_i(s_i; s_j); bst_j(t_j; s_j)]; \)

Hence \(\mathbf{Ir}_i[bst_i(s_i; s_j); bst_j(t_j; s_j)]; \)

Adding \(\mathbf{N}_1 \) to \(\mathbf{Ir}_i[N_i; N_j]; \)

We delete the first disjunctive formula, i.e., \(\mathbf{Ir}_i[N_i; N_j]; \)

\[4.2 \quad \text{Choice of the deductive weakest formulae for } N_i \text{ and } N_j \]

The basic belief \(\mathbf{Ir}_i[N_i; N_j] \) only gives necessary conditions for \(\mathbf{I}_i(s_i) \) and \(\mathbf{B}_j(\mathbf{I}_j(s_j)), \) but not sufficient conditions. In fact, there are formulae, other than \(A^*_i(s_i) \) and \(A^*_j(s_j), \) enjoying the properties described by \(N_i \) and \(N_j. \) For example, the families of formulae, \(\{ \mathbb{L}(s_i) \}_{s_i \in S_i}, i = 1, 2, \) where \(\mathbb{L}(s_i) \equiv \neg (p \supset p), s_i \in S_i \) and \(p \) is an atomic preference formula, make \(N_i \equiv N_0 \cup N_1 \cup N_2 \)
trivially hold with the substitution of $\bot(s_i)$ for each $I_i(s_i)$ in N_i. To avoid such unintended candidates and to analyze the exact logical contents of $I_i[N_i;N_j]$, we choose families of formulae $\{A_i(s_i)\}_{s_i \in S_i}$ and $\{A_i(s_j)\}_{s_j \in S_j}$ having only the properties N_i and N_j.

We formalize this choice by an axiom scheme. We call $\mathcal{A} = (\mathcal{A}_i; \mathcal{A}_j)$ a pair of candidate families if \mathcal{A}_i and \mathcal{A}_j are families of formulae indexed by $s_i \in S_i$ and $s_j \in S_j$, i.e., $\mathcal{A}_i = \{A_i(s_i)\}_{s_i \in S_i}$ and $\mathcal{A}_j = \{A_i(s_j)\}_{s_j \in S_j}$. Let $N_i(\mathcal{A})$ be the formula obtained from N_i by replacing all occurrences of $I_i(s_k)$ in N_i by $A_k(s_k)$ for each $s_k \in S_k, k = 1, 2$. We denote the following formula by $WF_i(\mathcal{A})$:

$$N_i(\mathcal{A}) \land B_j(N_j(\mathcal{A})) \land [\land_{s \in S_i} I_i(s_i) \land B_j(I_j(s_j))] \supset A_i(s_i) \land B_j(A_j(s_j))$$

(15)

$$\land_{s_i \in S_i} (A_i(s_i) \supset I_i(s_i)).$$

Let $WF(\mathcal{A}) = (WF_1(\mathcal{A}), WF_2(\mathcal{A}))$. The axiom scheme for the choice of the weakest candidate formulae is denoted by $Ir_i(WF)$, i.e., it is the set $\{Ir_i(WF(\mathcal{A})) : \mathcal{A} \text{ is a pair of candidate families}\}$.

The formula $WF_i(\mathcal{A})$ in (15) contains the additional premise $\land_{s \in S_i} I_i(s_i) \land B_j(I_j(s_j)) \supset A_i(s_i) \land B_j(A_j(s_j))$. A sole use of $WF_i(\mathcal{A})$ is not meaningful since $I_i(s_i) \land B_j(I_j(s_j))$ have no properties, yet. It is used together with $Ir_i(N_i;N_j)$. This premise corresponds to the maximality requirement in the definition of a subsolution in Section 3. If we drop the additional premise, (15) becomes

$$WF^+_i(\mathcal{A}) := N_i(\mathcal{A}) \land B_j(N_j(\mathcal{A})) \land \land_{s_i \in S_i} (A_i(s_i) \supset I_i(s_i)).$$

(16)

This is stronger than $WF_i(\mathcal{A})$. As we show later, it works only for a solvable game, but not for an unsolvable game, while $WF_i(\mathcal{A})$ in (15) works for any game.

We study implications from $\{Ir_i(N)\} \cup Ir_i(WF)$ under the infinite regress of formalized payoffs $Ir_i(g) = Ir_i(g_i;g_j)$. We postulate the entire set of axioms, denoted by $\Delta_i(g) := \{Ir_i(g), Ir_i(N)\} \cup Ir_i(WF)$, as the basic beliefs for player i’s prediction/decision making.

We first state the consistency of the basic beliefs $\Delta_i(g)$. The following lemma will be proved in the proof of Lemma 5.1.

Lemma 4.2. (Consistency of the belief set) $\Delta_i(g)$ is consistent for any game G.

In fact, $\Delta^+_i(g) = \{Ir_i(g), Ir_i(N)\} \cup Ir_i(WF^+)$ is consistent if and only if G is a solvable game, and Δ^+_i is equivalent to Δ_i for any solvable G.

The formalized Nash theory is expressed as $(EIR^2; \Delta_i(g))$. That is, we fix the logic EIR2, and within it, we have the set of nonlogical axioms $\Delta_i(g)$, which depends upon a game G. We are interested in the logical implications related to prediction/decision making derived from $\Delta_i(g)$ in EIR2.

4.3 Game theoretic decidability for solvable games

Here, we show that the basic beliefs $\Delta_i(g)$ determine the possible final decisions for a solvable game.

Theorem 4.2. (Determination I) Let G be a solvable game and g its formalized payoffs. Then, for $i = 1, 2$,

$$\Delta_i(g) \vdash B_i(I_i(s_i) \equiv A^*_i(s_i)) \text{ for all } s_i \in S_i.$$

(17)
Proof. We prove the following claims.

Claim 1: Let G be solvable. Then, $\text{Ir}_i^*(g) \vdash A_i^*(s_i) \land B_j(A_j^*(s_j)) \supset \text{bst}_i(s_i; s_j)$.

Claim 2: $\vdash A_i^*(s_i) \supset \forall t_j \in S_j B_j(A_j^*(t_j))$.

Claim 3: $\vdash A_i^*(s_i) \supset B_j B_i(A_i^*(s_i))$.

Proof of Claim 1: Since $\text{bst}_i(s_i; s_j)$ is a game formula for $i = 1, 2$, we have, for each $s \in S$, $\text{Ir}_i^*(g) \vdash \text{Ir}_i^*(\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i))$ or $\text{Ir}_i^*(g) \vdash \neg \text{Ir}_i^*(\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i))$ by Theorem 3.1. Hence, for each $s_i \in S_i$, $\text{Ir}_i^*(g) \vdash A_i^*(s_i)$ or $\text{Ir}_i^*(g) \vdash \neg A_i^*(s_i)$. Using Lemma 2.2, we have, for each $s_i \in S_i$, $\text{Ir}_i^*(g) \vdash B_j(A_j^*(s_j))$ or $\neg B_j(A_j^*(s_j))$. Also, for each $s \in S$, $\text{Ir}_i^*(g) \vdash \text{bst}_i(s_i; s_j)$ or $\text{Ir}_i^*(g) \vdash \neg \text{bst}_i(s_i; s_j)$. Thus, $\text{Ir}_i^*(g) \vdash A_i^*(s_i) \land B_j(A_j^*(s_j)) \supset \text{bst}_i(s_i; s_j)$ or $\text{Ir}_i^*(g) \vdash \neg [A_i^*(s_i) \land B_j(A_j^*(s_j)) \supset \text{bst}_i(s_i; s_j)]$. If the latter held, then, applying the epistemic eraser ε_0 to this, we would have $g_i \land g_j \vdash \neg [(\forall t_j \in S_j \text{nash}(s_i, t_j)) \land (\forall t_j \in S_j \text{nash}(s_i, t_j)) \supset \text{bst}_i(s_i; s_j)]$, which is impossible since G is a solvable game. Hence, we have the assertion.

Proof of Claim 2: By Lemma 2.2, we have $\vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)] \supset B_j(\text{Ir}_j^*[\text{bst}_j(s_j; s_i); \text{bst}_i(s_i; s_j)])$. Hence, $\vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)] \supset B_j(\forall t_j \in S_j \text{Ir}_j^*[\text{bst}_j(s_j; t_j); \text{bst}_i(s_i; t_j)])$, i.e., $\vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)] \supset B_j(A_j^*(s_j))$. Hence, $\vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)] \supset \forall t_j \in S_j B_j(A_j^*(t_j))$. Thus, $\vdash \forall t_j \in S_j \text{Ir}_i^*[\text{bst}_i(s_i; t_j); \text{bst}_j(s_j; t_j)] \supset \forall t_j \in S_j B_j(A_j^*(t_j))$, i.e., $\vdash \forall t_j \in S_j \text{Ir}_i^*[\text{bst}_i(s_i; t_j); \text{bst}_j(s_j; t_j)] \supset \forall t_j \in S_j B_j(A_j^*(t_j))$.

Proof of Claim 3: Since $\vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)] \supset B_j(\text{Ir}_j^*[\text{bst}_j(s_j; s_i); \text{bst}_i(s_i; s_j)])$ and $\vdash B_j(\text{Ir}_j^*[\text{bst}_j(s_j; s_i); \text{bst}_i(s_i; s_j)]) \supset B_j B_i(\text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)])$, we have $\vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)] \supset B_j B_i(\text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)])$. We take disjunctions from the latter to the former with respect to s_j, and have $\vdash \forall t_j \in S_j \text{Ir}_i^*[\text{bst}_i(s_i; t_j); \text{bst}_j(s_j; t_j)] \supset \forall t_j \in S_j B_j B_i(\text{Ir}_i^*[\text{bst}_i(s_i; t_j); \text{bst}_j(s_j; t_j)])$. Then, the former is $A_i^*(s_i)$, and the latter implies $B_j B_i(\forall t_j \in S_j \text{Ir}_i^*[\text{bst}_i(s_i; t_j); \text{bst}_j(s_j; t_j)])$, i.e., $B_j B_i(A_i^*(s_i))$.

Here, we prove the theorem. It follows from the above claims that $\text{Ir}_i^*(g) \vdash N_i(A^*)$ for $i = 1, 2$. Hence, $\text{Ir}_i^*(g) \vdash N_i(A^*) \land B_j(N_j(A^*))$. It follows from Theorem 4.1 that $\text{Ir}_i^*(g) \vdash \land_{s \in S}[I_i(s_i) \land B_j(I_j(s_j))] \supset A_i^*(s_i) \land B_j(A_j^*(s_j))$. Thus, $\text{Ir}_i^*(g), \text{Ir}_i^*(N_i), \text{Ir}_i^*(\text{WF}) \vdash A_i^*(s_i) \supset I_i(s_i)$. Hence, $\Delta_i(g) \vdash B_i(A_i^*(s_i) \supset I_i(s_i))$. Combining this with Theorem 4.1, we have (17).

Theorem 4.2 implies that $\Delta_i(g) \vdash B_i B_i(I_i(s_i) \equiv A_j^*(s_j))$ for all $s_j \in S_j$. That is, player i infers from his beliefs $\Delta_i(g)$ that his possible decision and prediction are fully expressed by $A_i^*(s_i)$ and $B_j(A_j^*(s_j))$ for a solvable game G. As remarked above, in the logic EIR$^2(T)$, $A_i^*(s_i)$ can be written as $\forall t_j \in S_j C_i^*(\text{nash}(s_i; t_j))$, and Theorem 4.2 becomes $\Delta_i(g) \vdash I_i(s_i) \equiv \forall t_j \in S_j C_i^*(\text{nash}(s_i; t_j))$. That is, a possible decision s_i is the Nash strategy with common knowledge. This corresponds to the result given in Kaneko [11], which assumes Axiom T, but here we extend the analysis to a purely subjective framework.

Then, because of the above theorem and Theorem 3.1, player i can decide whether a given strategy s_i is a final decision for him or not, which is stated by the following theorem.

Theorem 4.3. (Game theoretic decidability) Let G be a solvable game and $g = (g_1, g_2)$ its formalized payoffs. Then, for $i = 1, 2$ and each $s_i \in S_i$, either $\Delta_i(g) \vdash B_i(I_i(s_i))$ or $\Delta_i(g) \vdash B_i(\neg I_i(s_i))$. (18)

Proof. Since $\text{bst}_i(s_i; s_j)$ is a nonepistemic game formula for $i = 1, 2$, it follows from Theorem 3.1 that $\text{Ir}_i^*(g) \vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)]$ or $\text{Ir}_i^*(g) \vdash \neg \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)]$. If s_i is a Nash strategy for G, then $\text{Ir}_i^*(g) \vdash \text{Ir}_i^*[\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)]$ for some $s_j \in S_j$; so,
Theorem 4.4. (Full Completeness with Axiom T) We consider only the step of σ with Axiom T, which gives a full characterization of logical contents of σ for γ is unsolvable. Thus, we have $\sigma \models B_i(A_i^*(s_i))$ or $\sigma \models B_i(\neg A_i^*(s_i))$. By (17), we have $\Delta_i(g) \models B_i(I_i(s_i))$ or $\Delta_i(g) \models B_i(\neg I_i(s_i)).$

It holds for a solvable game G that for each strategy $s_j \in S_j$, either $\Delta_i(g) \models B_i B_j(I_j(s_j))$ or $\Delta_i(g) \models B_i B_j(\neg I_j(s_j)).$ \hspace{1cm} (19)

Thus, player i can predict whether a given strategy s_j for j is a possible decision for him for not. From now on, we concentrate on decidability or undecidability for player i.

Since $\varepsilon_0 A_i^*(s_i) = \forall j \in S_i \text{hash}(s_i; t_j)$, the positive or negative decision in (18) corresponds to whether s_i is a Nash strategy or not. For the negative case, we need to add only $\sigma_i(g)$ to $\sigma_i(N)$ in Theorem 4.1, that is, if s_i is not a Nash strategy, then

$\sigma_i(g), \sigma_i(N) \models B_i(\neg I_i(s_i)).$ \hspace{1cm} (20)

This result is independent of the solvability of the game G. For the positive case, we need the full set $\Delta_i(g) = \{\sigma_i(g), \sigma_i(N)\} \cup \sigma_i(WF)$ and the solvability of G.

Since Table 1.1 is a solvable game, Theorem 4.3 is applicable, and the belief set $\Delta_1(g)$ recommends strategy s_{12} as a positive decision to player 1, but s_{11}, s_{13} as negative decisions. Table 1.2 is an unsolvable game; Theorem 4.2 is not applicable. In Table 1.3, (20) recommends all strategies as negative decisions.

Theorem 4.3 is sufficient for our purpose from the game theoretic perspective. However, at expense of the subjective nature for decision/prediction making, we obtain full completeness with Axiom T, which gives a full characterization of logical contents of $\Delta_i(g)$. Moreover, as a corollary, $(EIR^2(T); \Delta_i(g))$ is effectively decidable.

Theorem 4.4. (Full Completeness with Axiom T) Let g be a solvable game. Then, the theory $(EIR^2(T); \Delta_i(g))$ is complete, i.e., for any $A \in P$, $\Delta_i(g) \vdash A$ or $\Delta_i(g) \vdash \neg A$.

Proof. In $EIR^2(T)$, it holds that $\Delta_i(g) \vdash I_i(s_i) \equiv A_i^*(s_i)$ for any $s_i \in S_i$ and $i = 1, 2$. Let C be any formula, and $C^\#$ the formula obtained by replacing each occurrence of $I_i(s_i)$ in C by $A_i^*(s_i)$ $(s_i \in S_i, i = 1, 2)$. We can show by induction of the length of a formula that $\Delta_i(g) \vdash C^\# \equiv C$.

We consider only the step of $C = \sigma_i(C_1, C_2)$. The induction hypothesis is that $\Delta_i(g) \vdash C^\# \equiv C_k$ for $k = 1, 2$. Recall $\Delta_i(g) \vdash A$ implies $\Delta_i(g) \vdash B_k(A)$ for $k = 1, 2$ in $EIR^2(T)$. It follows from IRAi that $\Delta_i(g) \vdash \sigma_i(C_1, C_2) \supset B_i(C_i^\#) \land B_j(C_j^\#) \land B_j(\sigma_i(C_1, C_2))$. By RIIi, we have $\Delta_i(g) \vdash \sigma_i(C_1, C_2) \supset \sigma_i(C_i^\#, C_j^\#)$. The converse is parallel.

Then, since $\Delta_i(g) \vdash C^\# \equiv C$ for any formula C and since $\Delta_i(g) \vdash C^\#$ or $\Delta_i(g) \vdash \neg C^\#$ by Theorem 3.2, we have $\Delta_i(g) \vdash C$ or $\Delta_i(g) \vdash \neg C$. ■

5 Game Theoretic Undecidability for Unsolvable Games

The situation for an unsolvable game is entirely different from that for a solvable game. When G is unsolvable, we have the undecidability result that for each player i, there is some strategy s_i such that he cannot infer from his belief set $\Delta_i(g) = \{\sigma_i(g), \sigma_i(N)\} \cup \sigma_i(WF)$ whether s_i is a final decision or not. We also give two other results related to this theorem.
5.1 Game theoretic undecidability

Here is the main result of the paper. We place all the proofs of the results in Section 5.2.

Theorem 5.1. (Game theoretic undecidability) Let G be an unsolvable game, $g = (g_1, g_2)$ its formalized payoffs, and $i = 1, 2$. Then, there is an $s_i \in S_i$ such that

\[\text{neither } \Delta_i(g) \vdash B_i(I_i(s_i)) \text{ nor } \Delta_i(g) \vdash B_i(\neg I_i(s_i)). \tag{21} \]

This result also holds in the logic EIR$^2(T)$.

For a game with no Nash equilibria, Theorem 4.3 states that player i can deny any strategy for his decision, in which case, he may think about some other criterion. In contrast, Theorem 5.1 is different in that it does not lead him to such a conclusion, since player i may not notice this undecidability.

By Lemma 2.2, (21) is equivalent to $\Delta_i(g) \not\models B_i(I_i(s_i))$ and $\Delta_i(g) \not\models \neg B_i(I_i(s_i))$. Hence, (EIR$^2; \Delta_i(g)$) is incomplete. Theorem 5.1 also holds in EIR$^2(T)$, and since $\vdash \text{Ir}_i(A_1, A_2) \equiv \text{Ir}_i^*(A_1, A_2)$ (also in EIR$^2(T)$), it also holds that $\Delta_i(g) \not\models B_i(I_i(s_i))$ and $\Delta_i(g) \not\models \neg B_i(I_i(s_i))$. Hence, in contrast to Theorem 4.4, (21) implies the incompleteness of the theory (EIR$^2(T); \Delta_i(g)$).

Even for an unsolvable game, Theorem 3.2 states that the theory (EIR$^2(T); \Delta_i(g)$) is complete within the set of game formulae. As a result, no game formulae can be used to express $I_i(s_i)$ under the theory (EIR$^2(T); \Delta_i(g)$) when G is unsolvable. This observation leads to the following theorem.

Theorem 5.2. (No-formula) Let G be an unsolvable game, $g = (g_1, g_2)$ its formalized payoffs, and $i = 1, 2$. Let $s_i \in S_i$ be a strategy for which (21) holds. Then, in EIR$^2(T)$, (also in EIR2), there is no game formula A_i such that $\Delta_i(g) \vdash B_i(I_i(s_i)) \equiv A_i$.

Theorem 5.1 states existence of strategies satisfying (21), and here we give a full characterization of such strategies. The negative decision given in (20) holds for all non-Nash strategies s_i for any game G. Hence, s_i for (21) has to be a Nash strategy. Later, we show that a necessary and sufficient condition for (21) is that

$$s_i \text{ is a Nash strategy but } s_i \notin F_i \text{ for some subsolution } F_1 \times F_2. \tag{22}$$

In the battle of the sexes (Table 1.2), since this holds for each of s_{11} and $s_{12}, i = 1, 2$, we have undecidability (21) for both strategies of both players. This observation can be generalized as follows: when each subsolution is a singleton set, every Nash strategy s_i satisfies (22), and (21) holds for it. A sufficient condition for each subsolution to be singleton is that all payoffs are distinct.

Nevertheless, it would be nicer to study game theoretical undecidability without this condition. Table 5.1, with some identical payoff values, has two subsolutions $F^1 = \{(s_{11}, s_{21}), (s_{12}, s_{21})\}$ and $F^2 = \{(s_{11}, s_{21}), (s_{11}, s_{22})\}$. Since (s_{11}, s_{21}) belongs to both subsolutions, (22) does not hold for s_{11}, but it holds for s_{12}. We claim that (21) holds for s_{12} but not for s_{11}.

<table>
<thead>
<tr>
<th></th>
<th>s_{21}</th>
<th>s_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{11}</td>
<td>$(1, 1)^{F^1}$</td>
<td>$(0, 1)^{F^2}$</td>
</tr>
<tr>
<td>s_{12}</td>
<td>$(1, 0)^{F^1}$</td>
<td>$(0, 0)^{F^2}$</td>
</tr>
</tbody>
</table>

Table 5.1
Let G be any game with its subsolutions F^1, \ldots, F^k. We denote the intersection $\cap_{i=1}^k F^i$ by \hat{F}. We stipulate that if G has no Nash equilibria, then $k = 0$ and $\hat{F} = \emptyset$. If $k = 1$, then F^1 is the set of all Nash equilibria $E(G)$. This intersection \hat{F} satisfies interchangeability (9); so it is written as $\hat{F} = \hat{F}_1 \times \hat{F}_2$. As stated above, when all payoffs are distinct, $\hat{F} = \cap_{i=1}^k F^i = \emptyset$ for $k \geq 2$.

We have the following characterization of the case of having a positive decision.

Theorem 5.3. (Positive Decision) Let G be any game, $g = (g_1, g_2)$ its formalized payoffs, and $i = 1, 2$. Then, for all $s_i \in S_i$, $\Delta_i(g) \models B_i(I_i(s_i))$ if and only if $s_i \in \hat{F}_i$.

This has various implications: When G has no Nash equilibria, i.e., $\hat{F} = \emptyset$, $\Delta_i(g)$ gives no positive decisions; when G is solvable, it gives a positive decision. When G has multiple subsolutions, there are two cases: if $\hat{F} = \emptyset$, then it gives no positive decision; and if $\hat{F} \neq \emptyset$, it gives a positive decision, i.e., $s_i \in \hat{F}_i$.

5.2 Proof of the Theorems

We stipulate that when $E(G) = \emptyset$, then the subsolution F is empty and $F_1 = F_2 = \emptyset$. The proof of Lemma 5.1 together with soundness for EIR2 gives a proof of Lemma 4.2.

Lemma 5.1. Let G be any game. Then, for any subsolution $F = F_1 \times F_2$ in G, there is a KD-model $M = ((W; R_1, R_2), \tau)$ and a world $w \in W$ such that

\[(M, w) \models \text{Ir}_i(g) \land \text{Ir}_1(N) \text{ and } (M, w) \models \text{Ir}_i(\text{WF}(A)) \text{ for all } A; \tag{23}\]

\[\text{for any } s_i \in S_i, \ (M, w) \models B_i(I_i(s_i)) \iff (M, w) \models I_i(s_i) \iff s_i \in \hat{F}_i. \tag{24}\]

Proof. We construct a model $M = ((W; R_1, R_2), \tau)$ satisfying (23) and (24). Let $F = F_1 \times F_2$ be a subsolution. Let $(W; R_1, R_2)$ be the frame given by $W = \{w\}$ and $R_k = \{(w, w)\}$ for $k = 1, 2$, i.e., it has a single world, and R_k is reflexive. Hence, this is a frame for Axiom T (and 4, 5), too. Define τ by, for $k = 1, 2$,

\[\text{for any } s, s' \in S, \ \tau(\text{PR}_k(s; s')) = \top \iff h_k(s) \geq h_k(s'); \tag{25}\]

\[\tau(w, I_k(s_k)) = \top \iff s_k \in F_k. \tag{26}\]

That is, the preferences true relative to h_k are given by τ; and $I_k(s_k)$ is true if and only if $s_k \in F_k$. By (25), we have $(M, w) \models g_1 \land g_2$. Also, since $W = \{w\}$, we have, for any formula C and $k = 1, 2$,

\[(M, w) \models C \iff (M, w) \models B_k(C). \tag{27}\]

Now, because F is a subsolution and $(M, w) \models g_1 \land g_2$, it follows that $(M, w) \models \text{bst}_i(s_i; s_j)$ for all $(s_i; s_j) \in F$ and for $i = 1, 2$. Thus, $(M, w) \models N_0$. Also, $(M, w) \models N_1$ by (26), and $(M, w) \models N_2$, by $W = \{w\}$. Thus, $(M, w) \models \text{Ir}_i(N)$ for both $i = 1, 2$.

Let us show $(M, w) \models \text{Ir}_i(\text{WF}(A))$ for all A. Let $A_k = \{A_k(s_k)\}_{s_k \in S_k}, k = 1, 2$ be given.

Let $E_k = \{s_k \in S_k : (M, w) \models A_k(s_k)\}$ for $k = 1, 2$. First, notice, using (27), that if $(M, w) \models \neg[N_1(A) \land N_2(A)]$, then $(M, w) \not\models \text{WF}_i(A)$. Thus, we can assume that $(M, w) \models N_1(A) \land N_2(A)$. Using $N_0(A) \land N_0_2(A)$, we have, for any $(s_1; s_2) \in S$, $(M, w) \models A_1(s_1) \land A_2(s_2) \supset \text{bst}_1(s_1; s_2) \land \text{bst}_2(s_2; s_1)$, i.e., $E_1 \times E_2 \subseteq E(G)$. Consider two cases.
(i) Let $E_1 \times E_2 \subseteq F$. Then, by (26), for $k = 1, 2$, $(M, w) \models \land_{s_k \in S_k} [A_k(s_k) \supset I_k(s_k)]$; so $(M, w) \models W F_i(A)$.

(ii) Let $E_1 \times E_2 - F \neq \emptyset$. Because F is a subsolution, it is maximal having the form of $F = F_1 \times F_2$. Also by $E_1 \times E_2 \subseteq E(G)$, we have $F - E \neq \emptyset$. Let $(s_1^*, s_2^*) \in F - E$. Then, $(M, w) \models [I_{1}(s_{1}^{*}) \land I_{2}(s_{2}^{*})] \land \lnot [I_{1}(s_{1}^{*}) \land I_{2}(s_{2}^{*})]$ and hence for $i = 1, 2$, $(M, w) \models \lnot [I_{i}(s_{i}^{*}) \land B_{j}(I_{j}(s_{j}^{*})) \supset A_{i}(s_{i}^{*}) \land B_{j}(A_{j}(s_{j}^{*})))$. Thus, $(M, w) \models W F_i(A)$ for $i = 1, 2$.

Proof of Theorem 5.1: Let G be an unsolvable game, and let F, F' be two subsolutions with $(s_i; s_j) \in F$ but $(s_i; s_j) \notin F'$. By Lemma 5.1, there are two models M and M' so that (23) and (24), respectively, for F and F'. Hence, $(M, w) \models B_i(I_w(s_i))$ but $(M', w') \not\models B_i(I_{w'}(s_i))$. By soundness for EIR, we have $\Delta_i(g) \not\Leftrightarrow B_i(I_w(s_i))$ and $\Delta_i(g) \not\Leftrightarrow B_i(I_{w'}(s_i))$.

Proof of Theorem 5.2: Suppose that there is a game formula A such that $\Delta_i(g) \vdash B_i(I_w(s_i)) \equiv A_i$ in EIR; *a fortiori*, the same holds for EIR2(T). Theorem 3.2 claims that in EIR2(T), $I_{w}(g) \vdash B_i(A)$ or $I_{w}(g) \vdash B_i(-A)$. This and the supposition imply $\Delta_i(g) \vdash B_i(I_w(s_i))$ or $\Delta_i(g) \vdash B_i(-I_w(s_i))$ in EIR2(T). This is impossible since Theorem 5.1 holds for EIR2(T).

Since the model given in Lemma 5.1 has a single world, it is a model for Axioms T, 4 and 5. Hence, Theorem 5.1 holds for EIR2 with those axioms. In the following proof, we use the fact that Theorem 5.1 holds for EIR2(T). As mentioned earlier, we first prove Theorem 5.2, followed by the proof of Theorem 5.3.

The necessity in Theorem 5.3 requires a modification of the previous characterization (Theorem 4.2). We modify the target formulae $\{A_i^*(s_i)\}_{i \in S_i}, i = 1, 2$, as follows:

$$A_{**}(s_i) := \forall_{t_j \in t_i} I_{rj}(\text{bst}_j(s_i; t_j); \text{bst}_j(t_j; s_i)).$$

This differs from $A_*(s_i)$ with the domain of disjunction F_j instead of S_j. In this sense, it depends upon the specification of the payoff functions. We define the candidate formulae $C_i = \{C_i^*(s_i)\}_{s_i \in S_i}, i = 1, 2$ as follows:

$$C_i^*(s_i) = \begin{cases} A_{**}^*(s_i) & \text{if } s_i \in F_i \\ A_*^*(s_i) & \text{if } s_i \notin E(G)_i \\ I_i(s_i) & \text{otherwise.} \end{cases}$$

That is, $C_i^*(s_i)$ is $A_{**}^*(s_i)$ if $s_i \in F_i$, but is $A_*^*(s_i)$ if s_i is not a Nash strategy. Crucially, it is $I_i(s_i)$ if s_i is a Nash strategy but is not a part of the intersection F_i. The last treatment trivializes the additional premise in $W F_i$ of (15). Then, the following characterization theorem, which will be proved in Section 5.2, implies the previous theorem and is proved before that theorem.

Lemma 5.2. (Characterization II) Let G be any game with its subsolutions F^1, \ldots, F^k, $g = (g_1, g_2)$ its formalized payoffs, and $i = 1, 2$. Then, $\Delta_i(g) \vdash B_i(I_w(s_i) \equiv C_i^*(s_i))$ for all $s_i \in S_i$.

Proof. When $s_i \in F_i$, we have $I_{rj}(g) \vdash A_{**}^*(s_i)$, which implies $I_{rj}(g) \vdash I_i(s_i) \supset A_{**}^*(s_i)$. In the other cases, by Lemma 4.1.(2), $I_{rj}(g) \vdash I_i(s_i) \supset C_i^*(s_i)$. Thus,

$$I_{rj}(g), I_{rj}(N) \vdash I_i(s_i) \supset C_i^*(s_i) \text{ for all } s_i \in S_i.$$

(30)

Now, consider the converse of (30).

We modify the claims 1-3 in the proof of Theorem 4.2 as follows: for any $(s_i; s_j) \in S$,
(1*): If $C_i^*(s_i) = A_i^*(s_i)$ or $C_j^*(s_j) = A_j^*(s_j)$, then $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash C_i^*(s_i) \land B_j(C_j^*(s_j)) \supset \text{bst}_i(s_i; s_j)$.

(2*): $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash C_i^*(s_i) \supset \forall t_j \in S_j B_j(C_j^*(t_j))$.

(3*): $\text{Ir}_i^o(N) \supset C_i^*(s_i) \supset B_j B_i(C_i^*(s_i))$.

(1*): If $C_i^*(s_i) = A_i^*(s_i)$ or $C_j^*(s_j) = A_j^*(s_j)$, then $\text{Ir}_i^o(g) \vdash \neg C_i^*(s_i)$ or $\text{Ir}_i^o(g) \vdash B_j(\neg C_j^*(s_j))$; so, the assertion holds. Let $C_i^*(s_k) = A_i^*(s_k)$ and $C_j^*(s_j) = A_j^*(s_j)$. So, we have $\text{Ir}_i^o(g) \vdash \text{bst}_i(s_i; s_j)$; so, we have the assertion. Let $C_i^*(s_k) = A_i^*(s_k)$ and $C_j^*(s_j) = \text{I}_j(s_j)$. Then, for any $k = 1, ..., l$, $(s_i; t_j) \in F^k$ for some t_j, and also, for some k_0, $(s_j; t_i) \in F^{k_0}$ for some t_i. Hence, we have $(s_i; s_j) \in F^{k_0}$, i.e., $(s_i; s_j)$ is a Nash equilibrium. Hence, $\text{Ir}_i^o(g) \vdash \text{bst}_i(s_i; s_j)$. The case where $C_i^*(s_k) = I_i(s_i)$ and $C_j^*(s_j) = A_j^*(s_j)$ is similar.

(2*): First, let $C_i^*(s_i) = I_i(s_i)$. By N1, $\vdash C_i^*(s_i) \supset \forall t_j \in S_j B_j(I_j(t_j))$. Then, since $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash \text{Ir}_j(g) \land \text{Ir}_j(N)$ by (6), we use (30) for j and get $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash \forall t_j \in S_j B_j(I_j(t_j)) \supset \forall t_j \in S_j B_j(C_j^*(t_j))$. Thus, $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash C_i^*(s_i) \supset \forall t_j \in S_j B_j(C_j^*(t_j))$. Second, let $C_i^*(s_i) = A_i^*(s_i)$. Then, $\text{Ir}_i^o(g) \vdash \neg C_i^*(s_i)$, and hence, $\text{Ir}_i^o(g) \vdash C_i^*(s_i) \supset \forall t_j \in S_j B_j(C_j^*(t_j))$. Third, let $C_i^*(s_i) = A_j^*(s_i)$. Let $s_j \in \hat{F}_j$. Then, since $\vdash \text{Ir}_i^o(^{\text{bst}_i(s_i; s_j); \text{bst}_j(s_j; s_i)}; \text{bst}_j(s_j; s_i)) \supset \text{Ir}_j(^{\text{bst}_j(s_j; s_i); \text{bst}_j(s_j; s_i)}; \text{bst}_j(s_j; s_i))$ by (6), we have $\vdash C_i^*(s_i) \supset \forall t_j \in \hat{F}_j B_j(C_j^*(t_j))$. Then, $\vdash C_i^*(s_i) \supset \forall t_j \in \hat{F}_j B_j(C_j^*(t_j)) \supset \forall t_j \in S_j \neg \hat{F}_j B_j(C_j^*(t_j))$, equivalently, $\vdash C_i^*(s_i) \supset \forall t_j \in S_j B_j(C_j^*(t_j))$.

(3*): If $C_i^*(s_i) = A_i^*(s_i)$, we have $\vdash C_i^*(s_i) \supset B_j B_i(C_i^*(s_i))$ by the previous claim 3. The case for $C_i^*(s_i) = A_j^*(s_i)$ is similar. If $C_i^*(s_i) = I_i(s_i)$, then $\vdash C_i^*(s_i) \supset B_j B_i(C_i^*(s_i))$ by N2.

The above three statements imply $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash N_i(C_i^*) \land B_j(N_j(C_j^*)$, and also, by (30), we have $\text{Ir}_i^o(g), \text{Ir}_i^o(N) \vdash \land_{s_j \in S_j} (I_i(s_i)) \land B_j(I_j(s_i)) \supset C_i^*(s_i) \land B_j(C_j^*(s_j))$. Then, using $\text{Ir}_i^o(WF(C^*))$, we have $\text{Ir}_i^o(g), \text{Ir}_i^o(N), \text{Ir}_i^o(WF(C^*)) \vdash C_i^*(s_i) \supset I_i(s_i)$.

Proof of Theorem 5.3: (Only-if): Suppose $(s_i; s_j) \notin \hat{F}$ for any $s_j \in S_j$. Let s_i be not a Nash strategy. Then, $\Delta_i(g) \vdash \neg B_i(I_i(s_i))$ by (20); so $\Delta_i(g) \vdash \neg B_i(I_i(s_i))$ by Axiom D. Since $\Delta_i(g)$ is consistent by Lemma 4.2, we have $\Delta_i(g) \not\vdash B_i(I_i(s_i))$. Let s_i be a Nash strategy. Then, $s_i \notin F_1^i$ for some subsolution $F_1^i \times F_2^j$. Thus, $\Delta_i(g) \not\vdash B_i(I_i(s_i))$ by (22).

(**): If $(s_i; s_j) \in \hat{F}$ for some s_j, then $\text{Ir}_i^o(g) \vdash A_i^*(s_i)$. Hence, $\Delta_i(g) \vdash I_i(s_i)$ by Theorem 5.2, which implies $\Delta_i(g) \vdash B_i(I_i(s_i))$.

6 Conclusions

We have considered prediction/decision making by player i in a finite 2-person game G. We describe his decision criterion as $N_i = N_0 \land N_1 \land N_2$, occurring in his mind, with the symmetric treatment for player j. These lead to an infinite regress of N_i and N_j, captured by $\text{Ir}_i(N_i; N_j)$ in the epistemic infinite regress logic EIR². We have adopted $\text{Ir}_i(N) = \text{Ir}_i(N_i; N_j)$ as his basic beliefs, together with $\text{Ir}_i(WF)$ and $\text{Ir}_i(g)$. For a solvable game G_1, $\Delta_i(g) = \{\text{Ir}_i(g), \text{Ir}_i(N)\} \cup \text{Ir}_i(WF)$ determines $I_i(s_i)$ as the specific formula $A_i^*(s_i)$ given in (12). The situation for an unsolvable G is entirely different: for some strategy s_i, $\Delta_i(g)$ fails to determine whether it is a possible decision or not. Here, we discuss our game theoretic decidability and undecidability result, with comparisons to the literature as well as some possible extensions.

Positive, negative decisions, and undecidable: Suppose that G is solvable. Our game theoretic decidability result states that player i finds his Nash strategy to be a possible decision, and any non-Nash strategy to be a negative decision. Player i may find multiple possible
decisions or no decisions. Our theory is silent for this choice if it exists; otherwise, negative
decisions led by the emptiness may lead player i to a different decision criterion.

In contrast, when G has multiple subsolutions and hence is unsolvable, we presented the
undecidability result that player i cannot find any positive decision, unless the subsolutions
have the nonempty intersection. One potential solution is to allow communication between the
players so that they may agree upon a specific subsolution. One difficulty is that player i may
not notice the necessity of this communication in the first place.

Two independent minds and discord in \(\text{Ir}_i(g) \): Theorem 5.1 is equivalent to, by Lemma 2.5,
\(\Delta_i(g) \not\subset B_i(I_i(s_i)) \) and \(\Delta_i(g) \not\subset -B_i(I_i(s_i)) \), which is parallel to Gödel’s incompleteness theorem.
Indeed, this states that the theory \(\text{EIR}^2; \Delta_i(g) \) (and even \(\text{EIR}^2(T); \Delta_i(g) \)) is incomplete.
These incompleteness results have some similarity but their sources are different.

Gödel’s theorem is caused by the self-referential structure of Peano Arithmetic, i.e., the
theory of Peano Arithmetic can be described inside the theory itself. Our framework also
includes a self-referential structure; the infinite regress operator \(\text{Ir}_i(; ;) \) includes \(\text{Ir}_j(; ;) \), and
vice versa in \(\text{EIR}^2 \). Moreover, the criteria \(\{\text{Ir}_i(N)\} \cup \text{Ir}_i(\text{WF}) \) are completely symmetric between
the two minds. Our undecidability arises in this context, but it is not directly generated. The
direct cause lies in the infinite regress of the game \(\text{Ir}_i(g) \), which includes a possible discord
between the players, depending upon whether the game is solvable or not.

Johansen’s argument: This may be better understood by looking at Johansen’s [9] argument.
He gave the following four postulates for prediction/decision making and asserted that the Nash
noncooperative solution could be derived from them for solvable games.

Postulate J1 (Closed world): A player makes his decision \(s_i \in S_i \) on the basis of, and only
on the basis of information concerning the action possibility sets of two players \(S_1, S_2 \) and their
payoff functions \(h_1, h_2 \).

Postulate J2 (Symmetry in rationality): In choosing his own decision, a player assumes
that the other is rational in the same way as he himself is rational.

Postulate J3 (Predictability): If any\(^{11} \) decision is a rational decision to make for an individual player, then this decision can be correctly predicted by the other player.

Postulate J4 (Optimization against “for all” predictions): Being able to predict the actions to be taken by the other player, a player’s own decision maximizes his payoff function
keeping the independence of the two minds. Once \(\text{Ir}_i(g) \) is introduced, it may contain some
discord. Johansen did not discuss this part.

In the following, we discuss various related problems and possible extensions.

Some extensions and variants: Our results (3) and (4) are obtained for \(\text{EIR}^2 \). As stated,
those results hold for a stronger system than \(\text{EIR}^2 \), for example, in those with any of Axioms T,
4, and 5, but we choose \(\text{KD}^2 \) to keep subjectivity of each player. In the present logic \(\text{EIR}^2 \), player
\(i \) has the theory \(\Delta_i(g) \), but player \(j \) can have his own theory \(B_j(\Gamma_j) \), which may be entirely

\(^{11} \)This “any” was “some” in Johansen’s original Postulate 3. He assumed (p.435) that the game has the unique
Nash equilibrium. In this case, the above difference does not matter.
different from $\Delta_i(g)$. If they recommend compatible decisions and predictions, the players may not find the differences in their theories by watching the *ex post* play. This is not allowed in the logic $\text{EIR}^2(T)$. Thus, EIR^2 enables us to separate between subjective thinking and actual plays. This separation may deserve further investigation.

We have confined ourselves to the 2-person case both for the logic and game theory. For n-person case ($n \geq 3$), we would meet new problems in both epistemic logic and game theory. We will discuss those extensions in separate papers.

Other game theoretic undecidability: Kaneko-Nagashima [10] gave a 3-person game having a unique Nash equilibrium in mixed strategies. It is assumed that the game structure and real number theory Φ_{rcf} (real closed field logic) are common knowledge among the players in an infinitary predicate logic. They showed that $\mathbf{C}(\exists x \text{Nash}(x))$ is provable from their common knowledge of G and Φ_{rcf}, but that neither $\exists x \mathbf{C}(\text{Nash}(x))$ nor $\neg \exists x \mathbf{C}(\text{Nash}(x))$ is provable. That is, the players commonly know the abstract existence of a Nash equilibrium, but do not find a concrete one; hence they cannot play the specific Nash equilibrium strategy.

This undecidability is caused by the lack of names for some irrational numbers such as $\sqrt{51}$ in their language, which is involved in the Nash equilibrium in the 3-person game with rational payoffs. The main reason for this difficulty is to give a name to a concept, but not the self-referential structure.

Other game theoretic solution concepts: The game theory literature has various “solution concepts” other than the Nash theory (cf., Osborne-Rubinstein [17]). One concept is the “dominant strategy” criterion, which requires a player to choose one which is best against any strategy of the player. We can extend this by requiring one player to use a best response against any dominant strategy of the other player, predicting that the other player adopts the dominant strategy criterion. Even we can extend this argument to any finite number of repetitions of predictions about the other player’s decisions, starting with the dominant strategy criterion at the deepest level. In those cases, we have game theoretic decidability result. We conjecture that any solution concept which does not require infinite regress will lead to similar decidability.

Effective decidability of the theory: When G is a solvable game, effective decidability (decidability in the logic literature) of the theory $(\text{EIR}^2(T); \Delta_i(g))$ follows from the full completeness theorem (Theorem 4.2). For $(\text{EIR}^2; \Delta_i(g))$, we need to restrict the class of formulae. When G is unsolvable, this argument does not work: the effective decidability in such a case remains open.

Future directions: Our approach assumes unbounded logical abilities and unbounded interpersonal thinking, but we still meet the undecidability result. From the social science perspective, it may be fruitful to investigate whether a theory with bounded logical abilities or bounded interpersonal thinking can avoid undecidability. This is an entirely open problem.

References

