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Abstract

We study the possibility of prediction/decision making in a finite 2—person game with

pure strategies, following the Nash(-Johansen) noncooperative solution theory. We adopt the

epistemic logic KD2 as the base logic to capture individual decision making from the view-

point of logical inference. Since some infinite regresses naturally arise in this theory, we use

a fixed-point extension EIR2 of KD2 to express them. In the logic EIR2 prediction/decision

making is described by the belief set ∆(g) for player  where g specifies a game. Our results

on prediction/decision making differ between solvable and unsolvable games. For the former,

we have game theoretic decidability, i.e., player  can decide whether each of his strategies

is a final decision or not. For the latter, we obtain undecidability, i.e., he can neither decide

some strategy to be a possible decision nor disprove it. These results can also be written

in terms of completeness/incompleteness: (EIR2;∆(g)) forms a complete theory (in a cer-

tain meaningful sense) if g is solvable; and it does an incomplete theory if g is unsolvable.

The latter takes the form of Gödel’s incompleteness theorem, while ours is a much simpler

propositional theory. Our undecidability is related to “self-referential” as is Gödel’s, but its

main source is a discord generated by interdependence of payoffs and independent predic-

tion/decision making.

Key words: Prediction/decision making, Infinite regress, Game theoretic decidability, Un-

decidability, Incompleteness, Nash solution, Subsolution

1 Introduction

Logical inference is an engine for decision making in games with two or more players. Although

game theory has studied decision making extensively, logical inference is kept informal. To study

such a decision making process, we adopt a formal system of epistemic logic, the epistemic

infinite regress logic EIR2 It is a fixed-point extension of the (propositional) epistemic logic

KD2 We focus on the 2-person case for simplicity. Because of interdependence of players,

prediction making is also required, and our logic allows us to model prediction making based on

logical inference. At the same time, our approach emphasizes players’ independence in terms of

subjective thinking, and this emphasis guides our formulation of EIR2. Our approach is coherent
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Ministry of Education, Science and Culture.
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§Faculty of Political Science and Economics, Waseda University, Tokyo, Japan, mkanekoepi@waseda.jp
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with Nash [16] and Johansen [9], who gave the noncooperative theory of prediction/decision

making in a non-formalized manner. We study this theory in the logic EIR2

We prove game theoretic decidability and undecidability, depending upon whether a game

has the interchangeable set of Nash equilibria. The former result states that a player can reach

a positive or a negative decision for each strategy, while the latter states that for some strategy,

he cannot reach either a positive or a negative decision. Our approach takes various different

perspectives from the standard literature of game theory as well as that of epistemic logic. Here,

we explain those perspectives.

Fixed-point extension of KD2: Prediction/decision making naturally leads to an infinite

regress of beliefs. This regress begins subjectively in the mind of player  in his prediction

making, which requires him to simulate the other player’s mind, and in such simulation another

layer of interpersonal thinking is required; the regress would go ad infinitum unless we stop it at

an arbitrary layer. We adopt the fixed-point extension EIR2 of KD2, to capture such an infinite

regress1. An infinite number of imaginary players are involved in this regress, and their scopes

are distinguished in the logic EIR2.

As the concept of infinite regress of beliefs is closely related to common knowledge, the logic

EIR2 is also related to the common knowledge logic CKL (cf., Fagin, et al. [4], and Meyer-van

der Hoek [14])2. In fact, if we add Axiom T(truthfulness) to EIR2 then infinite regress collapse

to common knowledge, and the resulting logic EIR2(T) becomes equivalent to CKL. Without

Axiom T, EIR2 can capture mutual subjectivity, which is not allowed in CKL. For this reason,

even thoguh some results in this paper are sharper in EIR2(T) than in EIR2 we take the latter

as the basic system.

Proof theory and model theory: Because of our focus on prediction/decision making with

logical inference, we use a proof-theoretic system, which allows us to formulate a player’s rea-

soning process explicitly. This approach is in sharp contrast with most models in epitemic game

theory3, which describe possible mental states in a single (semantic) model4. We also use model

theory (here, Kripke semantics) as a technical support, which is connected to our formal system

via the soundness/completeness theorem (see Hu-Kaneko [7]). By soundness/completeness for

EIR2 we can use Kripke models to evaluate provability via validity or finding a counter-model.

In particular, the soundness part will be used to prove our game theoretic undecidability result.

Basic beliefs as non-logical axioms: As the formal Peano arithmetic is formulated by proper

axioms in first-order classical logic, we postulate some basic beliefs as axioms for a player’s

prediction/decision making in the logic EIR2. Those basic beliefs include his understanding

of the game and prediction/decision criterion. The derivation from his beliefs to a decision is

expressed as

B(Γ

 ) ` B(I()) (1)

1Alternatively, we can adopt an infinitary logic. Hu et al. [8] discusses relationships between the logic EIR2

and its infinitary counterpart.
2 It is also related to “common belief” (cf., Heifetz [5]), but here, we compare only common knowledge with

our concept of infinite regress.
3Many aspects involved in playing a game are considered in van Benthem et al. [20] and van Benthem [19]. In

particular, matrix games are formulated by means of logic in Chap.12 of [19]. Nevertheless, an individual thought

process of prediction/decision making is only indirectly treated.
4The model-theoretic standpoint has been taken almost exclusively in the literature of epistemic logic with

applications to game theory; for example, see van Benthem et al. [20], the various papers in Brandenbuger

[3], and van Benthem [19]. Some exceptions are Kaneko-Nagashima [10], Kline [13], and Suzuki [18], where the

proof-theoretic standpoint is taken.
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That is, player  has basic beliefs Γ in his mind, and derives I(); his beliefs recommend  as

a possible final decision. The negative decision is expressed as B(Γ

 ) ` B(¬I()); his beliefs

recommend him not to take  Although (1) is expressed from the analyst’s viewpoint, we intend

to model these derivaitons as occurring in player ’s mind. Indeed, in EIR2 B(Γ

 ) ` B(I())

(B(Γ

 ) ` B(¬I()) is equivalent to Γ ` I() (Γ ` ¬I()); this equivalence is stated in

Lemma 2.5, and hence the derivation can be interpreted as occurring in player ’s mind. The

choice of the base logic KD2 is essential for this equivalence.

Game theoretic concepts: We only consider finite 2-person strategic games with pure strate-

gies. This simple setting is rich enough to obtain both decidability and undecidability results. In

fact, the characterization of games with decidability/undecidability corresponds to the solvabil-

ity requirement in Nash [16]. It captures players’ independence in ex ante prediction/decision

making, though Nash did not make a formal distinction between prediction and decision. Jo-

hansen [9] discussed Nash’s theory in a more philosophical manner with a conceptual distinction

between prediction and decision. As our axioms for prediction/decision making formalize his

argument in the logic EIR2 the resulting system is called the formalized Nash-Johansen theory

(for short, the formalized Nash theory).

Axiomatic formulation of prediction/decision making: We postulate three axioms, N0

N1 and N2, to be given in Section 4, for prediction/decision making They are in the scope

of player ’s mind, expressed as B(N012) := B(N0∧N1∧ N2) To make his prediction about
player ’s decision, player  uses the belief BB(N012) where N012 is the same as N012 with

the replacement of  with  For the same reason, BB(N012) requires BBB(N012) and so

on. Thus, to complete prediction making, player  would meet an infinite regress of beliefs:

B(N012) BB(N012) BBB(N012)  (2)

This is captured by the fixed-point operator, Ir(N012;N012) in the logic EIR
2

The infinite sequence (2), a fortiori, Ir(N012;N012) has a self-referential structure: The

sequence itself occurs in the scope ofB(·) the counterpart for player  is in the scope of BB(·),
and (2) again occurs again in BBB(·) and so on. This self-referential structure is crucial for
our undecidability result.

Conceptually, the infinite regress, Ir(N012;N012) is our basic postulate for prediction/decision

making. Mathematically, however, it only provides a necessary condition for possible decisions.

We formulate another axiom (schema), Ir(WF) that gives the sufficiency of this postulate to

determine a possible decision.

Formalized Nash theory: The set of beliefs Ir(N012;N012) Ir(WF) describes predic-

tion/decision making without concrete information about the game being played. We formulate

the basic beliefs of a game, including strategies and payoffs, by Ir(g) := Ir(; ) This ad-

dition completes our postulates of player ’s basic beliefs: ∆(g) = {Ir(g) Ir(N012;N012)}
∪Ir(WF) which plays the role of B(Γ


 ) in (1). Note that the set of beliefs ∆(g) depends

upon the game g = (; ) The pair (EIR
2;∆(g)) of the logic EIR

2 and player ’s basic beliefs

forms the formalized Nash theory for the game g

The literature of game theory tends to focus on the resulting outcome(s) from a solu-

tion/equilibrium theory. In our context, this focus can be stated as the following question:

(i): What decisions and predictions does (EIR2;∆(g)) recommend?

This question presumes that the theory (EIR2;∆(g)) has recommendations. However, we should
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ask the following question in the first place.

(ii): Does (EIR2;∆(g)) recommend any decision?

In fact, the answer to the second question is related to Nash’s [16] solvability condition.

We say that a game is solvable when the set of Nash equilibria is interchangeable, i.e., the set

has a product structure. Here, we give three examples of games; two are solvable and one is not.

In Table 11 each player has three strategies, and his payoff is given in the matrix (the first and

second entries are players 1’s and 2’s payoffs). The superscript NE stands for Nash equilibrium,

explained in Section 3. Table 11 has a unique Nash equilibrium. Table 12 called the battle

of the sexes, has two Nash equilibria; this is not solvable because the set is not a product set.

Table 13 called the matching pennies, has the empty set of Nash equilibria. Tables 11 and 13

are solvable games.

Table 11 Table 12 Table 13

s21 s22 s23
s11 2 4 2 2 4 0

s12 3 3 4 2 3 0

s13 0 0 5 5 2 6

s21 s22
s11 2 1 0 0

s12 0 0 1 2

s21 s22
s11 1−1 −1 1
s12 −1 1 1−1

Positive, negative decisions, and undecidable: Our main results give a complete answer

to the question (ii) above. When a game is solvable we have the decidability result: for any

strategy  for player 

either ∆(g) ` B(I()) or ∆(g) ` B(¬I()) (3)

For Table 11 the set of beliefs ∆1(g) recommends player 1 to take s12 as a positive decision but

not to take either s11 or s13 In Table 13 ∆1(g) recommends all strategies as negative decisions.

We show that when a game g is not solvable as in Table 1.2, there is some strategy  for

each player  such that

neither ∆(g) ` B(I()) nor ∆(g) ` B(¬I()) (4)

That is, player  cannot decide with the belief set ∆(g) whether  is a positive or negative

decision. In Table 1.2, this holds for both strategies. This situation differs entirely from the

case where ∆(g) gives negative recommendations for all strategies such as in Table 1.3; in the

latter case, he may look for a different way for decision making, but in the former, i.e., (4), he

may not be able to notice this undecidability itself, and get stuck in his decision making.

Relations to Gödel’s incompleteness theorem and the source for our undecidability:

The result (4) has the same form as Gödel’s incompleteness theorem (cf., Boolos [2], Mendelson

[15]), but both interpretation and source for incompleteness differ. Gödel’s theorem is about

the Peano Arithmetic and based on the self-referential structure. Although the self-referential

structure involved in the infinite regress of beliefs is crucial to our undecidability result, it is

not the only source. Our answer to the above question (ii) reveals that the basic belief Ir(g)

plays an indispensable role. Among the three components of ∆(g) the second and third,

Ir(N012;N012) and Ir(WF) are symmetric between the two players, but discords in the

first, Ir(g) may bring about undecidability A detailed comparison with Gödel’s theorem will

be given in Section 6.
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The paper proceeds as follows: Section 2 formulates the logic EIR2. Section 3 gives various

game theoretic concepts. Section 4 gives three axioms for prediction/decision making, and the

game theoretic decidability result for a solvable game. Section 5 presents the undecidability

result for an unsolvable game. Section 6 gives concluding remarks.

2 The Epistemic Infinite Regress Logic EIR2

We formulate the logic EIR2 with the language for 2-person strategic games in Sections 2.1,

2.2, and give its semantics in Section 2.3. The language presumes the sets of strategies but this

restriction is not essential for our argument.

2.1 Language

Let  be a nonempty finite strategy set for player  = 1 2. We adopt the atomic formulae:

atomic preference formulae: Pr(; ) for  = 1 2 and   ∈  = 1 × 2;

atomic decision formulae: I() for  ∈   = 1 2.

The atomic formula Pr(·; ·) expresses the preference relation of player ; Pr(; ) means that
player  weakly prefers the strategy pair  = (1 2) to the pair  = (1 2). The atomic formula

I() expresses the idea that, from player ’s perspective,  is a possible final decision for him.

Now we proceed to have logical connectives and epistemic operators:

logical connective symbols: ¬ (not), ⊃ (imply), ∧ (and), ∨ (or);5

unary belief operators: B1(·), B2(·); binary infinite regress operators: Ir1(· ·), Ir2(· ·);
parentheses: (, ).

We stipulate that  refers to the other player than . Player ’s prediction about ’s decision is

expressed as B(I()) but this should occur in the scope of B(·) We use a pair of formulae,
(1 2), as arguments of the binary operators Ir1(· ·) and Ir2(· ·), and the intended meaning
of the formula Ir(1 2) is player ’s subjective belief of the infinite regress of beliefs about 

and  . We write Ir(1 2) also as Ir(;) and sometimes Ir[; ]

We define the sets of formulae, denoted by P, by induction: (o) all atomic formulae are
formulae; (i) if  are formulae, then so are ( ⊃ ), (¬), B() for  = 1 2; (ii) if

A = (1 2) is a pair of formulae, then Ir(A) is also a formula; and (iii) if Φ is a finite

(nonempty) set of formulae, then (∧Φ) and (∨Φ) are formulae6. We write ∧{} ∧{}
as  ∧   ∧  ∧  etc., and ( ⊃ ) ∧ ( ⊃ ) as  ≡  We abbreviate parentheses

or use different ones such as [ ] when no confusions are expected. We also write ∧B(Φ) for

∧{B() :  ∈ Φ} and etc.
We say that a formula  is non-epistemic iff B(·) or Ir(· ·) does not occur in  for  = 1 2.

The set of nonepistemic formulae is denoted by P  We say that  is a game formula iff the

atomic formulae occurring in  are of the form Pr1(·; ·) or Pr2(·; ·). If  contains only atomic

5Since we adopt classical logic as the base logic, we can abbreviate some of those connectives. Since, however,

our aim is to study logical inference for decision making rather than semantic contents, we use a full system.
6We presume the identity of finite sets in our language.
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formulae of the form Pr(·; ·) we call it a game formula for player  A game formula expresses
a reality of the target situation together with, potentially, beliefs about them, while the atomic

decision formulae I()’s are used to describe a player’s thinking about prediction/decision

making.

2.2 Proof theory of EIR2

We start with an explicit formulation of classical logic, which consists of five axiom (schemata)

and three inference rules: for all formulae , and finite nonempty sets Φ of formulae,

L1  ⊃ ( ⊃ );

L2 ( ⊃ ( ⊃ )) ⊃ (( ⊃ ) ⊃ ( ⊃ ));

L3 (¬ ⊃ ¬) ⊃ ((¬ ⊃ ) ⊃ );

L4 ∧Φ ⊃ , where  ∈ Φ;
L5  ⊃ ∨Φ, where  ∈ Φ;

 ⊃  


MP

{ ⊃  :  ∈ Φ}
 ⊃ ∧Φ ∧-rule { ⊃  :  ∈ Φ}

∨Φ ⊃ 
∨-rule

The epistemic logic KD2 is defined by adding, to classical logic, two epistemic axioms and one

inference rule for the belief operators B(·): for all formulae , and for  = 1 2,
K B( ⊃ ) ⊃ (B() ⊃ B());

D ¬B(¬ ∧);

Necessitation


B()
.

Then, we have the epistemic infinite regress logic EIR2 by adding one axiom (schema) and

one inference rule for the infinite regress operators Ir(· ·): For  = 1 2 and two pairs of formulae
A = (1 2) D = (12),

IRA Ir(A) ⊃ B() ∧BB() ∧BB(Ir(A));

IRI
 ⊃ B() ∧BB() ∧BB()

 ⊃ Ir(A) .

Axiom IRA has a fixed-point structure in the sense that BB(Ir(A)) appears as an im-

plication of Ir(A). Replacing Ir(A) in BB(Ir(A)) with its implication B() ∧BB()

(formally with K and Nec), Ir(A) implies the following infinite regress of beliefs:

{B()BB()BBB() } (5)

Rule IRI states that Ir(A) is the logically weakest formula satisfying the property described

in IRA, that is, if  enjoys it, then  implies Ir(A). The soundness/completeness result

(Theorem 2.1) shows that Ir(A) captures faithfully the set in (5).

A proof  = h;i consists of a finite tree hi and a function  :  → P with the

following requirements:

P1 for each node  ∈  () is a formula attached to ;
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P2 for each leaf  in hi, () is an instance of the axiom schemata;

P3 for each non-leaf  in hi,
{() :  is an immediate predecessor of }

()

is an instance of the above five inference rules.

We call  a proof of  iff (0) =  where 0 is the root of hi. We say that  is

provable, denoted by ` , iff there is a proof of . For a set of formulae Γ, we write Γ ` 

iff `  or there is a finite nonempty subset Φ of Γ such that ` ∧Φ ⊃ . This treatment of

non-logical assumptions is crucial in our study7.

The following results are basic to classical logic and/or KD2 (cf., Kaneko [11])We use them

without referring.

Lemma 2.1. Let  ∈ P, Φ a finite set of formulae, and  = 1 2. Then, (1) `  ⊃  and

`  ⊃  imply `  ⊃ ; (2) ` ( ∧ ⊃ ) ≡ ( ⊃ ( ⊃ )); (3) ` B(¬) ⊃ ¬B(); (4)

` ∨B(Φ) ⊃ B(∨Φ); (5) ` B(∧Φ) ≡ ∧B(Φ)

We will use the following three lemmas in the subsequent discussions. First, from Axiom

IRA and Rule IRI ( = 1 2), the operators Ir(· ·) and Ir(· ·) may appear to be independent
of one another, but they are interdependent.

Lemma 2.2. (Epistemic content) Let A = (1 2) be a pair of formulae Then, ` Ir(A) ≡
B( ∧ Ir(A)) for  = 1 2

Proof. Let us see ` B( ∧ Ir(A)) ⊃ Ir(A). Let  = B() ∧ B(Ir(A)) for  = 1 2

By IRA (and, Nec, K), we have `  ⊃ B() ∧BB() ∧BBB() ∧BBB(Ir(A))

Since the last two conjuncts are equivalent to BB() we have `  ⊃ B() ∧BB()∧
BB() Using IRI we have ` B() ∧B(Ir(A)) ⊃ Ir(A)

The above result for  implies ` B() ⊃ B(Ir(A)) Hence, ` B() ∧ B() ⊃
B() ∧B(Ir(A)) Since ` Ir(A) ⊃ B() ∧B() by IRA we have ` Ir(A) ⊃ B() ∧
B(Ir(A))¥

This lemma enables us to talk about the epistemic content of Ir(A);

Ir (A) :=  ∧ Ir(A) (6)

which plays a crucial role in our consideration of prediction/decision making.

Lemma 2.3. (Basic properties for (·; ·)) Let A = (1 2) and C = (1 2) be two pairs

of formulae in P and  = 1 2.

(1) If ` Ir(A) ⊃ B() for  = 1 2, then ` Ir(A) ⊃ Ir(C) In particular, if `  for

 = 1 2, then ` Ir(C)
(2) ` Ir(A) ⊃ Ir(Ir1(A) Ir2(A));
(3) ` Ir(1 ∧ 1 2 ∧ 2) ≡ Ir(A) ∧ Ir(C);

7Since the deduction theorem (cf., Mendelson [15]) does not hold in epistemic logic, the introduction of non-

logical axioms differs from in classical logic. We adopt the classic manner.
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(4) ` Ir(1 ⊃ 1 2 ⊃ 2) ⊃ (Ir(A) ⊃ Ir(C));
(5) ` Ir(¬;) ⊃ ¬Ir(A) ` Ir(;¬) ⊃ ¬Ir(A) and ` Ir(¬;¬) ⊃ ¬Ir(A)

Proof. (1): Let ` Ir(A) ⊃ B() for  = 1 2 We show ` Ir(A) ⊃ B() ∧ BB() ∧
BB(Ir(A)) which implies, by IRI ` Ir(A) ⊃ Ir(C) First, ` B(Ir(A)) ⊃ BB() by

Nec and K. By Lemma 2.2, we have ` Ir(A) ⊃ BB() By IRA, we have ` Ir(A) ⊃
BB(Ir(A)) By ∧-rule, we have the target.

The other claims (2)-(4) follow (1). Here, we show (3). Since ` Ir(1 ∧ 1 2 ∧ 2) ⊃
B() for  = 1 2 we have, by (1), ` Ir(1 ∧ 1 2 ∧ 2) ⊃ Ir(A) Similarly, ` Ir(1 ∧
1 2 ∧ 2) ⊃ Ir(C) Hence, we have the one direction. Consider the converse. We have

` Ir(A)∧Ir(C) ⊃ B(∧) for  = 1 2We have ` Ir(A)∧Ir(C) ⊃ BB(∧) and `
Ir(A)∧Ir(C) ⊃ BB(Ir(A)∧Ir(C)) Then, by IRI ` Ir(A)∧Ir(C) ⊃ Ir(1∧1 2∧2)
(5): Consider only the first one. Since ` Ir(¬;) ⊃ B(¬) we have ` Ir(¬;) ⊃
¬B() Then, using the contrapositive of IRA, i.e., ` ¬[B()∧BB()∧BB(Ir(A))] ⊃
¬Ir(A) we have ` Ir(¬;) ⊃ ¬Ir(A)¥

The following statements for Ir (·; ·) correspond to IRA and IRI for Ir(·; ·)
Lemma 2.4. (Admissible formulae and inference) Let A = (;) and  be any for-

mulae. Then,

(1)(IRA
 ) ` Ir (A) ⊃  ∧B() ∧BB(Ir


 (A));

(2)(IRI ) If `  ⊃  ∧B() ∧BB() then `  ⊃ Ir (;)

Proof. (1): By definition (6), ` Ir (A) ⊃ ∧Ir(A) By Lemma 2.2 for  we have ` Ir (A) ⊃
 ∧B() ∧BB(Ir(A))

(2): Let `  ⊃  ∧ B() ∧ BB() Since `  ⊃ BB() and `  ⊃  we

have `  ⊃ BB() Thus, `  ⊃ B() ∧ BB() ∧ BB() By IRI we have

`  ⊃ Ir(;) Thus, `  ⊃  ∧ Ir(;) which is `  ⊃ Ir (;) by (6)¥

Although EIR2 is the maing logical system we use, we mention some variants from time

to time. The main undecidability result of the paper holds in stronger systems than EIR2

such as those obtained from EIR2 by adding Axiom T (truthfulness): B() ⊃ ; Axiom 4

(positive introspection): B() ⊃ BB(); and/or Axiom 5 (negative introspection): ¬B() ⊃
B(¬B())

8. In particular, Axiom T helps us understand the infinite regress formula Ir(A),

especially its relationship to the common knowledge logic CKL (cf., Fagin et al. [4] and Meyer-

van der Hoek [14]). The logic CKL uses only one operator, C(·), and adds the following axiom
and rule to KD2:

CKA: C() ⊃  ∧B1(C()) ∧B2(C());

CKI:
 ⊃  ∧B1() ∧B2()

 ⊃ C() .

Axiom CKA and Rule CKI are interpreted as meaning that C() describes the common knowl-

edge of  from the outside analyst’s perspective. In contrast, Ir(A) describes player ’s beliefs

8We regard KD2 as the basic system; Axiom K and Necessitation give the inference ability of classical logic

to each player. If Axiom D is dropped, player’s beliefs can be arbitrary with no restrictions; for instance,

B() 0 ¬B(¬) holds. Axiom D avoids this contradictory beliefs.
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from his subjective perspective. This difference is reflected by the counterpart of (5) in CKL,

i.e., C() captures the entire set:

{B1()B2()B1B2()B2B1()B1B2B2() } (7)

This set of formulae having all finite sequences of B2B1 including the repetitive ones such as

B1B2B2, while each in (5) has the outer B(·) and all BB  are alternating

If we add Axiom T to the logic EIR2 which is denoted by EIR2(T) an infinite regress

collapses to common knowledge. Lemma 2.2 implies ` Ir(1 2) ≡ Ir(1 2) (≡ Ir (1 2))
for  = 1 2 in EIR2(T) It holds in EIR2(T) that for any formulae 1 2 and 

cka: ` Ir(1 2) ⊃ (1 ∧2) ∧B1Ir(1 2) ∧B2Ir(1 2);
cki: if `  ⊃ (1 ∧2) ∧B1() ∧B2() then `  ⊃ Ir(1 2)

Thus, in EIR2(T) CKA and CKI are derived formulae and admissible rule for Ir(1 2), and

hence Ir(1 2) means the common knowledge of 1 ∧ 2 However, as Axiom T destroys

players’ subjective perspectives, we do not impose it unless stated otherwise.

We will use the belief eraser 0 to connect EIR
2 to classical logic. The nonepistemic formula

0() ∈ P is obtained from  ∈ P by eliminating all occurrences of B1(·)B2(·) in  and

replacing all occurrences of Ir(1 2) in  by 0(1) ∧ 0(2) Then, we have

`  implies `0 0() (8)

where `0 is the provability relation of classical logic in P . This is proved by induction on a
proof of  from its leaves (cf., Kaneko-Nagashima [10]).

2.3 Kripke semantics and the soundness/completeness of EIR2

Here, we report soundness/completeness for EIR2 with respect to the Kripke semantics. We will

use the soundness part for the main undecidability result.

A Kripke frame h ;1 2i consists of a nonempty set  of possible worlds and an acces-

sibility relation  for player  = 1 2. We say that a frame h ;1 2i is serial iff for  = 1 2
and for all  ∈ ,  for some  ∈ . A truth assignment  is a function from  × to

{>⊥}, where  is the set of atomic formulae. A pair  = (h ;1 2i ) is called a model.
When h ;1 2i is serial, we say that  is a serial model.

We say that h(0 0)  (  ) +1i ( ≥ 0) is an alternating chain iff −1 6=  for

 = 1   and −1−1 for  = 1   + 1 The alternating structure corresponds to the

set given by (5). This is used for evaluating the truth values of formulae Ir(1 2),  = 1 2.

The valuation in (), denoted by () |=, is defined over P by induction on the length
of a formula as follows:

V0 for any  ∈  , () |= ⇐⇒ () = >;
V1 () |= ¬⇐⇒ () 2 ;

V2 () |=  ⊃  ⇐⇒ () 2  or () |= ;

V3 () |= ∧Φ⇐⇒ () |=  for all  ∈ Φ;
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V4 () |= ∨Φ⇐⇒ () |=  for some  ∈ Φ;
V5 () |= B()⇐⇒ () |=  for all  with ;

V6 () |= Ir(1 2) ⇐⇒ (+1) |=  for any alternating chain h(0 0) 
(  ) +1i with (0 0) = ( ).

The steps other than V6 are standard. V6 is similar to the valuation for the common

knowledge operator in CKL; the only difference is to use alternating reachability for two formulae,

instead of simple rearchability (cf., Fagin et al. [4], Meyer-van der Hoek [14]).

We have the following soundness/completeness theorem.

Theorem 2.1. (Soundness and Completeness) Let  ∈ P. Then, `  in EIR2 if and only

if () |=  for all serial models  = (h ;1 2i ) and any  ∈ .

Soundness (only-if) is proved as follows: Let  = (;) be a proof of  Then, by

induction on the tree structure of () from its leaves we show that for any  ∈  ` ()

implies |= () The two new steps are : (1) |=  for any instance  of IRA; and (2) the

validity relation |= preserves Rule IRI Both steps follow from V6. The proof of completeness

is given in Hu-Kaneko [7], which also shows that the theorem still holds under any additions of

Axioms T, 4 and 5.

Theorem 2.1 shows that our infinite regress operator Ir(A) faithfully captures the set in

(5). The alternating rearchability in the semantics implies that if Ir(A) holds at a world  and

if , then  and Ir(A) hold at world  which corresponds to Lemma 2.2. Moreover, if

, then Ir(A) holds at world  which corresponds to IRA These reflect the self-referential

structure shared by Ir(A) and Ir(A).

In addition, the proof of the above theorem gives the (strong) finite model property (cf.,

p.145, 339, Blackburn, et al. [1]). Thus, this logic is effectively decidable (called simply “de-

cidable” in the logic literature), i.e., the set of provable formulae is recursive. In Section 6, we

will discuss this problem relative to the game theoretic decidability/undecidability result for

prediction/decision making.

The following lemma requires KD2 to be the base logic for EIR2 It is proved by Theorem

2.1 in Hu-Kaneko [7]. If we add any of Axioms T, 4 or 5 to EIR2, the lemma does not hold.

Counterexamples are given also in [7]. The failure of the following lemma under Axiom T is due

to inseparability between player ’s mind and the objective situation, which violates our basic

approach to model player’s subjective decision making in this paper.

Lemma 2.5. (Change of Scopes) (1): B(Γ

 ) ` B()⇐⇒ Γ ` ;

(2): B(Γ

 ) ` ¬B()⇐⇒ B(Γ


 ) ` B(¬)

In our applications, B(Γ

 ) takes the form Ir(C) and the inferences have the form Ir(C) `

B() or Ir(C) ` ¬B(). By Lemmas 2.2 and 2.5, this is equivalent to Ir (C) `  or

Ir (C) ` ¬. This is interpreted as meaning that Ir (C) `  or Ir (C) ` ¬ is obtained in the
mind of player .
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3 Game Theoretic Concepts

Here, we give a few game theoretic concepts relevant for our discussions, and formulate them in

the language of EIR2. We also prepare some completeness results for game formulae, which are

crucial to understand our game theoretic undecidability result.

3.1 Preliminary definitions

Let  = ({1 2} {1 2} {1 2}) be a finite 2-person game, where {1 2} is the set of players,
 = 1×2 is the set of strategy pairs, and  :  → R is the payoff function for player  = 1 2.
We also write (; ) for  = (1 2) ∈ . A strategy  for player  is a best-response against

 iff (; ) ≥ (; ) for all  ∈ . A strategy pair  = (; ) is a Nash equilibrium in 

iff  is a best response against  for  = 1 2. We denote the set of all Nash equilibria in  by

(). The set () may be empty, e.g., Table 1.3 has the empty (). We say that  is a

Nash strategy iff (; ) is a Nash equilibrium for some  ∈  .

A subset  of  is interchangeable (Nash [16]) iff

for all  0 ∈  (; 
0
) ∈  for  = 1 2 (9)

This is equivalent to  = 1 × 2 where  = { ∈  : (; ) ∈  for some } for  = 1 2.
Let E = { :  ⊆ () and  satisfies (9)} The game  is solvable iff () satisfies (9),

and we call () the Nash solution. Otherwise, it is unsolvable, and a nonempty set  ⊆ 

is a subsolution iff  is a maximal set in E i.e., there is no 0 ∈ E such that (0. Table
1.1 is solvable with the solution {(s12 s21)}. Table 1.2 is unsolvable, and has two subsolutions:
{(s11 s21)} and {(s12 s22)}. Table 1.3 is solvable but has the empty ()9.

Hu-Kaneko [6] derived the Nash theory from the following decision criteria: Let  be a

subset of  for  = 1 2

Na1: for any 1 ∈ 1, 1 is a best response against all 2 ∈ 2;

Na2: for any 2 ∈ 2, 2 is a best response against all 1 ∈ 1.

In Na,  describes the set of possible final decisions for player , and  describes ’s prediction

about ’s possible final decisions. Here ’s prediction comes from his thinking about ’s criterion

Na . When  makes his prediction based on Na , elements in  occur in the scope of ’s

thinking, and this prediction occurs in the scope of ’s thinking. However, this argument is

entirely interpretational. To make it explicit, we need the logic EIR2.

The following proposition was proved in Hu-Kaneko [6].

Proposition 3.1. Let () 6= ∅ and  a nonempty subset of  for  = 1 2.

(1) Suppose that  is solvable. Then  = 1 × 2 is the Nash solution of  if and only if

(1 2) is the greatest pair satisfying Na1-Na2.
10

(2) Suppose that  is unsolvable. Then  = 1 × 2 is a Nash subsolution if and only if

(1 2) is a maximal pair satisfying Na1-Na2.

9Nash [16] himself assumed the mixed strategies, and proved the existence of a Nash equilibrium. Here, we do

not allow mixed strategies, and some games have no Nash equilibria
10The “greatest” and “maximal” are relative to the componentwise set-inclusions.
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These two cases correspond basically to the game theoretic decidability and undecidability

results to be given in the subsequent sections. Here, we avoided unnecessary complication for

the case of () = ∅ In the subsequent sections, we will allow () = ∅, too.

3.2 Some completeness results for game formulae

To express a game = ({1 2} {1 2} {1 2}) in the logic EIR2, we formalize payoff functions
1 and 2 in terms of preference formulae (the players and strategies are already included in the

language):

 = ∧ [{Pr(; ) : () ≥ ()} ∪ {¬Pr(; ) : ()  ()}]  (10)

We call  the formalized payoffs associated with  for  = 1 2, and g = (1 2) is determined by

 Since (10) also contains negative preferences, for all   ∈   ` Pr(; ) or  ` ¬Pr(; )
i.e., under  completeness holds for all atomic preference formulae for player .

Consistency of 1 ∧ 2 can be shown by constructing a truth assignment. Consistency of the
infinite regress Ir(1 2) in EIR

2 is also obtained by applying the belief eraser 0 : Suppose that

Ir(1 2) ` ¬∧ for some nonepistemic formula  Applying 0 we have 1∧2 `0 ¬0∧0
by (8) which is impossible because of consistency of 1∧2. In the same way, we have consistency
of Ir (1 2) in EIR

2 These are listed for the purpose of reference:

Ir(1 2) and Ir

 (1 2) are consistent in 2 (11)

We formalize best response andNash equilibrium: The statement “ ∈  is a best response to

 ∈ ” is expressed as bst(; ) := ∧∈Pr((; ); (; )) The statement “ = (1 2) ∈ 

is a Nash equilibrium” is given as nash() := bst1(1; 2)∧bst2(2; 1) Those are game formulae.
As far as game formulae are concerned, the infinite regress of the formalized payoffs Ir(1 2)

contains sufficient information to prove or to disprove them.

Lemma 3.1. Let  be a nonepistemic game formula for  = 1 2 (i.e., it contains atomic

formula of the form Pr(·; ·)). Let  be a game and g = (1 2) its formalized payoffs. Then,

(1)  `  or  ` ¬ for  = 1 2;

(2) the following three are equivalent:

(a) Ir(g) ` Ir(A) for  = 1 2; (b) Ir (g) ` Ir (A) for  = 1 2; (c)  `  for  = 1 2.

Proof. (1) Let Pr(; ) be any atomic formula. Recall that  ` Pr(; ) or  ` ¬Pr(; ) We
can extend this result to other nonepistemic game formulae for  by induction on their lengths.

(2) (() =⇒ () =⇒ ()): Suppose that  ` , i.e., `  ⊃  for  = 1 2. It follows from

Lemma 2.3.(1) that ` Ir(1 ⊃ 1 2 ⊃ 2). By Lemma 2.3.(4), Ir(g) ` Ir(A) for  = 1 2

Since `  ⊃  we have  ∧ Ir(g) `  ∧ Ir(A) i.e., Ir (g) ` Ir (A)
(() =⇒ ()): Suppose that 1 0 1 or 2 0 2. By (1),  ` ¬ or  ` ¬ or both.

We only consider the case where  `  and  ` ¬ . Using the same arguments as above,

Ir (g) ` Ir (;¬). By Lemma 2.4.(1), Ir

 (g) ` B(¬) and hence, Ir


 (g) ` ¬B(). But

by Lemma 2.4.(1), ` Ir (A) ⊃ B() equivalently, ` ¬B() ⊃ ¬Ir (A). Thus, Ir (g) `
¬Ir (;). By (11), we have Ir


 (g) 0 Ir


 (;). The other cases are similar.¥
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The next theorem shows that Ir(g) is complete relative to infinite regresses of nonepistemic

game formulae A = (1 2) for the players. It states this in terms of the epistemic content

Ir (·; ·) for coherency of the later purpose.
Theorem 3.1. (Completeness for infinite regresses of game formulae) Let  be a game

and g = (1 2) its formalized payoffs. Let  be a nonepistemic game formula for  = 1 2.

Then, either Ir (g) ` Ir (A) or Ir (g) ` ¬Ir (A) which implies either Ir(g) ` Ir(A) or
Ir(g) ` ¬Ir(A)

Proof. Since  `  or  ` ¬ for  = 1 2 we should consider the four cases. Here, we consider

only the case where  ` ¬ for  = 1 2 By (6), Ir (g) ` ¬ Using the contrapositive of

Lemma 2.4.(1), we have ` ¬ ⊃ ¬Ir (;) Thus, Ir

 (g) ` ¬Ir (;)¥

The above theorem, together with the next one, will be used for our game theoretic decid-

ability result. In fact, the result gets sharper with Axiom T In particular, the next theorem will

be used for the full completeness theorem (Theorem 4.4) for solvable games and the no-formula

theorem (Theorem 5.2) for unsolvable games.

Theorem 3.2. (Completeness for game formulae under Axiom T) Let  be a game and

g = (1 2) its formalized payoffs. For any game formula  either Ir(g) `  or Ir(g) ` ¬
in EIR2(T)

Proof. We prove the claim Ir (g) `  or Ir (g) ` ¬ by induction on the length of . This

implies Ir(g) ` B() or Ir(g) ` B(¬); then we have the assertion by Axiom T. Let  be

an atomic formula. Then, 1 ∧ 2 `  or 1 ∧ 2 ` ¬. Then, Ir (g) ` 1 ∧ 2 by (6) and Axiom
T. Thus, Ir (g) `  or Ir (g) ` ¬

Let  be nonatomic, and suppose the inductive hypothesis that decidability holds for the

immediate subformulae of  Let  =  ⊃  By the inductive hypothesis, decidability holds

for  and  Using this, we have Ir (g) `  or Ir (g) ` ¬ Similar arguments apply to
connectives ¬ ∧ and ∨.

Let  = B(). The hypothesis is: Ir

 (g) `  or Ir (g) ` ¬. Let Ir (g) `  Then,

B(Ir

 (g)) ` B(). By IRA


 and Axiom T, Ir (g) ` B(Ir


 (g)) and Ir


 (g) ` B(Ir


 (g))

Thus, Ir (g) ` B(). Now, let Ir

 (g) ` ¬. By the same arguments, we have Ir (g) `

B(¬), and, by Axiom D, Ir (g) ` ¬B().

Let  = Ir(1 2). The induction hypothesis is that decidability holds for 1 and 2 Now,

suppose Ir (g) ` 1 ∧ 2. As remarked for EIR2(T) in the end of Section 2.2, Ir (g) ` Ir(g)
and Ir(g) ` Ir (g) Hence, Ir(g) `  for  = 1 2. Thus, Ir(g) ` B() for  = 1 2 By

Lemma 2.3.(1), Ir(g) ` Ir(1 2) for  = 1 2 Since Ir (g) ` Ir(g) for  = 1 2 by (6) and
Axiom T, we have Ir (g) ` Ir(1 2)

Let Ir (g) ` (¬) ∧   By the same argument, we have Ir

 (g) ` Ir(¬;) By Lemma

2.3.(5), Ir (g) ` ¬Ir(;)The same argument can be applied to the case of Ir

 (g) `  ∧

(¬) and Ir

 (g) ` (¬) ∧ (¬)¥

4 Formalized Nash Theory

We give three axioms for player ’s prediction/decision making, and assume the symmetric

axioms for player ’s prediction about player ’s prediction/decision making. These lead to an
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infinite regress of those axioms. In this section, we show, for a solvable game, that the infinite

regress of those axioms can be fully explicated, and obtain the decidability result.

4.1 Axioms for Prediction/Decision Making

We start with the following three axioms. These are intended to be the contents of player ’s

basic beliefs and hence they occur in player ’s mind, i.e., in the scope of B(·);
N0 (Optimization against all predictions): ∧∈ [I() ∧B(I()) ⊃ bst(; )]
N1 (Necessity of predictions): ∧∈ [I() ⊃ ∨∈B(I())]

N2 (Predictability): ∧∈ [I() ⊃ BB(I())].

For each  = 1 2, let N = N0 ∧N1 ∧N2, and let N = (N1N2).

The first axiom directly corresponds to Na. The second requires player  to have a prediction

for his decision. It corresponds to the nonemptiness of 1 and 2 in Proposition 3.1, while N1
allows both to be empty. The third states that in the mind of player , his decision is correctly

predicted by player  We find a similar structure in Axiom IRA but note that N2 and IRA

have different orders of applications of B and B  Indeed, I() is naked without having the

intended scope of B(·) while Ir(· ·) includes the outer B(·) shown as in Lemma 2.2
Axioms N and N are interdependent: Since N includes B(I()) player  needs to predict

what  would choose. This prediction is made by the criterion BB(N) Then, B(I()) re-

quiresBBB(N) and so on. These are captured by the infinite regress formula Ir(N) = Ir(N;N)

The infinite regress Ir(N) within the logic EIR
2 may be compared with Johansen’s [9] inter-

pretation of Nash theory. This will be discussed in Section 6.

We take the infinite regress Ir(N;N) as basic beliefs for player ’s prediction/decision

making; I() and B(I()) in Ir(N;N) are treated as “unknowns” to be found by player 

with logical analysis. From Ir(N;N) necessary conditions for I() and I() are derived as

the following game formulae: for each  = 1 2 and  ∈ 

∗ () := ∨∈Ir [bst(; );bst( ; )] (12)

These candidate formulae play a crucial role in our subsequent analysis.

The nonepistemic content of ∗ () is given as 0(
∗
 ()) = ∨∈ hbst(; ) ∧bst( ; )i =

∨∈nash(; ) That is, 0(∗ ()) means “ is a Nash strategy”. In the logic EIR2(T) we
may interpret Ir(· ·) as the common knowledge operator (recall cka and cki in Section 2.2),
and hence ∗ () means “ is a common knowledge Nash strategy”. We emphasize this inter-
pretation with Axiom T by writing Ir [bst(; );bst( ; )] as C

∗(Nash(; )) in EIR2(T)
and ∗() becomes ∨∈C∗(Nash(; )) This formula was discussed in Kaneko-Nagashima
[10] and Kaneko [12]. While without Axiom T, the formula ∗ () occurs in the mind of player
 independent of reality as well as the other player  with Axiom T, ∨∈C∗(Nash(; ))
(≡ ∗ ()) describes reality as well as both players’ thinking.

We have the following result, which will be proved in the end of this subsection.

Theorem 4.1. (Necessity) For  = 1 2

Ir(N) ` B(() ⊃ ∗ ()) for all  ∈  (13)
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That is, player  infers ∗ () as a necessary condition for his decision. By this and

Lemma 2.2, we have also Ir(N) ` B[B(I()) ⊃ B(
∗
 ())] for all  ∈  ; player  in-

fers B(
∗
 ()) as a necessary conditions for his prediction. By Lemma 2.3.(1), we have, also,

Ir(N) ` Ir[I() ⊃ ∗ ();I() ⊃ ∗ ()] for all  ∈  That is, those necessary conditions

form an infinite regress, too. For our purposes, however, we only focus on implications of the

form in (13).

Recalling 0(
∗
 ()) (13) may be interpreted as meaning that a Nash strategy is derived.

However, our target is prediction/decision making by a player. A possible decision resulting

from this process is expressed by I() and ∗ () is only a necessary condition for it. This is
a purely solution-theoretic statement in the sense that it does not depend upon payoffs. Also,

even if payoffs, e.g., Ir(1 2) are specified, (13) does not give a positive answer to I(); that

is, the contrapositive of (13) may give only a negative decision ¬I() from ¬∗ ()We discuss
the converse of (13) under the assumption of Ir(1 2) in later sections.

Here, we prove Theorem 4.1. It follows from (2) of the next lemma. (1) does not need N1

We write N0 ∧N2 as N02 for  = 1 2
Lemma 4.1. For  = 1 2 and  = (; ) ∈ 

(1): Ir [N02;N02 ] ` I() ∧B(I()) ⊃ Ir [bst(; );bst(; )];
(2): Ir [N;N ] ` I() ⊃ ∗()

Proof. (1): Let (; ) := Ir

 [N02N02 ]∧I() ∧B(I()) Here, we show, for  = 1 2

` (; ) ⊃ bst(; ) ∧B(bst( ; )) ∧BB(( )) (14)

By this and Lemma 2.4.(2), we have ` (; ) ⊃ Ir [bst(; );bst(; )] which implies the
assertion

The first part, ` (; ) ⊃ bst(; ) of (14) comes from N0 and I()∧B(I()) Con-

sider the second part. Since ` ( ) ⊃B(N02) and ` B(N02)∧B(I())∧BB(I()) ⊃
B(bst( ; )) we have ` ( ) ∧ B(I()) ∧ BB(I()) ⊃ B(bst( ; )) Observe

that B(I()) is included in ( ) and BB(I()) is derived from I() in (; ) by

N2 Hence, ` (; ) ⊃ B(bst( ; )). Now, consider the third part of (14). By Lemma

2.4.(1), ` Ir [N02;N02 ] ⊃BB(Ir

 [N02;N02 ]) Using N2 we have ` Ir [N02;N02 ]∧I() ⊃

BB(I()) and, using B(N2) in Ir

 [N02;N02 ] we have ` Ir [N02;N02 ] ∧ B(I()) ⊃

BBB(I()) Summing those three up, we obtain ` (; ) ⊃ BB((; ))

(2): It follows from (1) that Ir [N02;N02 ] ` I()∧B(I()) ⊃∨∈Ir [bst(; );bst( ; )]
This is equivalent to Ir [N02;N02 ] ` B(I()) ⊃ (I() ⊃ ∗ ()) Hence Ir


 [N02;N02 ] `

∨∈B(I()) ⊃ (I() ⊃ ∗ ()) Adding N1 to Ir

 [N02;N02 ] we delete the first disjunctive

formula, i.e., Ir [N;N ] ` I() ⊃ ∗ ()¥

4.2 Choice of the deductive weakest formulae for N and N

The basic belief Ir[N;N ] only gives necessary conditions for I() and B(I()) but not

sufficient conditions. In fact, there are formulae, other than ∗ () and ∗ () enjoying the
properties described by N and N  For example, the families of formulae, {⊥()}∈   = 1 2
where ⊥() := ¬( ⊃ )  ∈  and  is an atomic preference formula, make N = N0∧N1∧N2
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trivially hold with the substitution of ⊥() for each I() in N To avoid such unintended

candidates and to analyze the exact logical contents of Ir[N;N ], we choose families of formulae

{()}∈ and {()}∈ having only the properties N and N 

We formalize this choice by an axiom scheme. We call A = (A;A) a pair of candidate

families iff A and A are families of formulae indexed by  ∈  and  ∈   i.e., A =

{()}∈ and A = {()}∈ . Let N(A) be the formula obtained from N by replacing

all occurrences of I() in N by () for each  ∈   = 1 2. We denote the following

formula by WF(A):
N(A) ∧B(N(A)) ∧ [∧∈hI() ∧B(I()) ⊃ () ∧B(())i] (15)

⊃ ∧∈h() ⊃ I()i
LetWF(A) = (WF1(A)WF2(A)). The axiom scheme for the choice of the weakest candidate

formulae is denoted by Ir(WF) i.e., it is the set {Ir(WF(A)) : A is a pair of candidate

families}.
The formula WF(A) in (15) contains the additional premise ∧∈hI() ∧ B(I()) ⊃

() ∧B(())i A sole use of WF(A) is not meaningful since I() ∧B(I()) have no

properties, yet. It is used together with Ir(N;N) This premise corresponds to the maximality

requirement in the definition of a subsolution in Section 3. If we drop the additional premise,

(15) becomes

WF+ (A) := N(A) ∧B(N(A)) ⊃ ∧∈h() ⊃ I()i (16)

This is stronger than WF(A). As we show later, it works only for a solvable game, but not for
an unsolvable game, while WF(A) in (15) works for any game.

We study implications from {Ir(N)}∪Ir(WF) under the infinite regress of formalized pay-

offs Ir(g) = Ir(; )We postulate the entire set of axioms, denoted by∆(g) := {Ir(g) Ir(N)}∪
Ir(WF) as the basic beliefs for player ’s prediction/decision making.

We first state the consistency of the basic beliefs ∆(g) The following lemma will be proved

in the proof of Lemma 5.1.

Lemma 4.2. (Consistency of the belief set) ∆(g) is consistent for any game .

In fact, ∆+ (g) = {Ir(g) Ir(N)} ∪ Ir(WF+) is consistent if and only if  is a solvable

game, and ∆+ is equivalent to ∆ for any solvable 

The formalized Nash theory is expressed as (EIR2;∆(g)) That is, we fix the logic EIR
2 and

within it, we have the set of nonlogical axioms ∆(g) which depends upon a game . We are

interested in the logical implications related to prediction/decision making derived from ∆(g)

in EIR2

4.3 Game theoretic decidability for solvable games

Here, we show that the basic beliefs ∆(g) determine the possible final decisions for a solvable

game.

Theorem 4.2. (Determination I) Let  be a solvable game and g its formalized payoffs.

Then, for  = 1 2

∆(g) ` B(I() ≡ ∗ ()) for all  ∈  (17)
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Proof. We prove the following claims.

Claim 1: Let  be solvable. Then, Ir (g) ` ∗ () ∧B(
∗
 ()) ⊃ bst(; )

Claim 2: ` ∗ () ⊃ ∨∈B(
∗
 ())

Claim 3: ` ∗ () ⊃ BB(
∗
 ())

Proof of Claim 1: Since bst(; ) is a game formula for  = 1 2, we have, for each  ∈ 

Ir (g) ` Ir (bst(; );bst( ; )) or Ir (g) ` ¬Ir (bst(; );bst( ; )) by Theorem 3.1.

Hence, for each  ∈  Ir

 (g) ` ∗ () or Ir


 (g) ` ¬∗ () Using Lemma 2.2, we have, for

each  ∈   Ir

 (g) ` B(

∗
 ()) or Ir


 (g) ` ¬B(

∗
 ()) Also, for each  ∈  Ir (g) `

bst(; ) or Ir

 (g) ` ¬bst(; ) Thus, Ir (g) ` ∗ ()∧B(

∗
 ()) ⊃ bst(; ) or Ir (g) `

¬[∗ ()∧B(
∗
 ()) ⊃ bst(; )] If the latter held, then, applying the epistemic eraser 0 to

this, we would have  ∧  ` ¬[(∨∈nash( )) ∧ (∨∈nash(  )) ⊃ bst(; )] which is
impossible since  is a solvable game. Hence, we have the assertion.

Proof of Claim 2: By Lemma 2.2, we have ` Ir [bst(; );bst( ; )] ⊃ B(Ir

 [bst( ; );

bst(; )]) Hence, ` Ir [bst(; ); bst( ; )] ⊃ B(∨∈Ir [bst( ; );bst(; )]) i.e., `
Ir [bst(; ); bst( ; )] ⊃B(

∗
 ())Hence, ` Ir [bst(; );bst( ; )] ⊃∨∈B(

∗
 ())

Then, ` ∨∈Ir [bst(; );bst( ; )] ⊃ ∨∈B(
∗
()) i.e., ` ∗ () ⊃ ∨∈B(

∗
 ())

Proof of Claim 3: Since ` Ir [bst(; );bst( ; )] ⊃ B(Ir

 [bst( ; ); bst(; )]) and `

B(Ir

 [bst( ; ); bst(; )]) ⊃ BB(Ir


 [bst(; ); bst( ; )]) we have ` Ir [bst(; );

bst( ; )] ⊃ BB(Ir

 [bst(; );bst( ; )])We take disjunctions from the latter to the for-

mer with respect to   and have ` ∨∈Ir [bst(; );bst( ; )] ⊃∨∈BB(Ir

 [bst(; );

bst( ; )]) Then, the former is
∗
 () and the latter impliesBB(∨∈Ir [bst(; );bst( ; )])

i.e., BB(
∗
 ())

Here, we prove the theorem. It follows from the above claims that Ir (g) ` N(A∗) for
 = 1 2 Hence, Ir (g) ` N(A∗) ∧B(N(A∗)) It follows from Theorem 4.1 that Ir (N;N) `
∧∈[I()∧B(I()) ⊃ ∗ ()∧B(

∗
 ())] Thus, Ir


 (g) Ir


 (N) Ir


 (WF) ` ∗ () ⊃ I()

Hence, ∆(g) ` B(
∗
 () ⊃ I()) Combining this with Theorem 4.1, we have (17).¥

Theorem 4.2 implies that ∆(g) ` BB(I() ≡ ∗ ()) for all  ∈   That is, player

 infers from his beliefs ∆(g) that his possible decision and prediction are fully expressed

by ∗ () and B(
∗
 ()) for a solvable game  As remarked above, in the logic EIR2(T),

∗ () can be written as ∨∈C∗(Nash(; )) and Theorem 4.2 becomes ∆(g) ` I() ≡
∨∈C∗(Nash(; )). That is, a possible decision  is the Nash strategy with common knowl-
edge. This corresponds to the result given in Kaneko [11], which assumes Axiom T, but here we

extend the analysis to a purely subjective framework.

Then, because of the above theorem and Theorem 3.1, player  can decide whether a given

strategy  is a final decision for him or not, which is stated by the following theorem.

Theorem 4.3. (Game theoretic decidability) Let  be a solvable game and g = (1 2) its

formalized payoffs. Then, for  = 1 2 and each  ∈ ,

either ∆(g) ` B(I()) or ∆(g) ` B(¬I()) (18)

Proof. Since bst(; ) is a nonepistemic game formula for  = 1 2, it follows from Theo-

rem 3.1 that Ir (g) ` Ir [bst(; );bst( ; )] or Ir (g) ` ¬Ir [bst(; ); bst( ; )] If
 is a Nash strategy for , then Ir


 (g) ` Ir [bst(; );bst( ; )] for some  ∈  ; so,
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Ir (g) ` ∨Ir [bst(; );bst( ; )] i.e., Ir (g) ` ∗ () If not, we have Ir

 (g) ` ¬ ∨

Ir [bst(; );bst( ; )] i.e., Ir

 (g) ` ¬∗ () Thus, we have Ir(g) ` B(

∗
 ()) or Ir(g) `

B(¬∗ ()) By (17), we have ∆(g) ` B(I()) or ∆(g) ` B(¬I())¥
It holds for a solvable game  that for each strategy  ∈  

either ∆(g) ` BB(I()) or ∆(g) ` BB(¬I()) (19)

Thus, player  can predict whether a given strategy  for  is a possible decision for him for

not. From now on, we concentrate on decidability or undecidability for player .

Since 0
∗
 () = ∨∈nash(; ) the positive or negative decision in (18) corresponds to

whether  is a Nash strategy or not. For the negative case, we need to add only Ir(g) to Ir(N)

in Theorem 4.1 that is, if  is not a Nash strategy, then

Ir(g) Ir(N) ` B(¬I()) (20)

This result is independent of the solvability of the game  For the positive case, we need the

full set ∆(g) = {Ir(g) Ir(N)} ∪ Ir(WF) and the solvability of .

Since Table 1.1 is a solvable game, Theorem 4.3 is applicable, and the belief set ∆1(g)

recommends strategy s12 as a positive decision to player 1 but s11 s13 as negative decisions

Table 1.2 is an unsolvable game; Theorem 4.2 is not applicable. In Table 1.3, (20) recommends

all strategies as negative decisions.

Theorem 4.3 is sufficient for our purpose from the game theoretic perspective. However, at

expense of the subjective nature for decision/prediction making, we obtain full completeness

with Axiom T, which gives a full characterization of logical contents of ∆() Moreover, as a

corollary, (EIR2(T);∆(g)) is effectively decidable.

Theorem 4.4. (Full Completeness with Axiom T) Let  be a solvable game. Then, the

theory (EIR2(T);∆(g)) is complete, i.e., for any  ∈ P ∆(g) `  or ∆(g) ` ¬

Proof. In EIR2(T) it holds that ∆(g) ` I() ≡ ∗ () for any  ∈  and  = 1 2 Let  be

any formula, and # the formula obtained by replacing each occurrence of I() in  by ∗ ()
( ∈   = 1 2) We can show by induction of the length of a formula that ∆(g) ` # ≡ 

We consider only the step of  = Ir(1 2) The induction hypothesis is that ∆(g) ` 
#
 ≡ 

for  = 1 2 Recall ∆(g) `  implies ∆(g) ` B() for  = 1 2 in EIR
2(T) It follows from

IRA that ∆(g) ` Ir(1 2) ⊃ B(
#
 ) ∧ BB(

#
 ) ∧ BB(Ir(1 2)) By IRI we have

∆(g) ` Ir(1 2) ⊃ Ir(#1  #2 ) The converse is parallel.
Then, since ∆(g) ` # ≡  for any formula  and since ∆(g) ` # or ∆(g) ` ¬# by

Theorem 3.2, we have ∆(g) `  or ∆(g) ` ¬¥

5 Game Theoretic Undecidability for Unsolvable Games

The situation for an unsolvable game is entirely different from that for a solvable game. When

 is unsolvable we have the undecidability result that for each player  there is some strategy

 such that he cannot infer from his belief set ∆(g) = {Ir(g) Ir(N)} ∪ Ir(WF) whether 
is a final decision or not. We also give two other results related to this theorem.
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5.1 Game theoretic undecidability

Here is the main result of the paper. We place all the proofs of the results in Section 5.2.

Theorem 5.1. (Game theoretic undecidability) Let  be an unsolvable game, g = (1 2)

its formalized payoffs, and  = 1 2 Then, there is an  ∈  such that

neither ∆(g) ` B(I()) nor ∆(g) ` B(¬I()) (21)

This result also holds in the logic EIR2(T)

For a game with no Nash equilibria, Theorem 4.3 states that player  can deny any strategy

for his decision, in which case, he may think about some other criterion. In contrast, Theorem

5.1 is different in that it does not lead him to such a conclusion, since player  may not notice

this undecidability.

By Lemma 2.2, (21) is equivalent to ∆(g) 0 B(I()) and ∆() 0 ¬B(I()) Hence,

(EIR2;∆(g)) is incomplete. Theorem 5.1 also holds in EIR2(T) and since ` Ir(1 2) ≡
Ir(1 2) (≡ Ir (1 2)) in EIR

2(T) it also holds that ∆(g) 0 B(I()) and ∆() 0
¬B(I()) Hence, in contrast to Theorem 4.4, (21) implies the incompleteness of the theory

(EIR2(T);∆(g)).

Even for an unsolvable game, Theorem 3.2 states that the theory (EIR2(T);∆(g)) is com-

plete within the set of game formulae. As a result, no game formulae can be used to express

I() under the theory (EIR
2(T);∆(g)) when  is unsolvable. This observation leads to the

following theorem.

Theorem 5.2. (No-formula) Let  be an unsolvable game, g = (1 2) its formalized payoffs,

and  = 1 2. Let  ∈  be a strategy for which (21) holds. Then, in EIR
2(T) (also in EIR2),

there is no game formula  such that ∆(g) ` B(I() ≡ )

Theorem 5.1 states existence of strategies satisfying (21), and here we give a full characteri-

zation of such strategies. The negative decision given in (20) holds for all non-Nash strategies 
for any game  Hence,  for (21) has to be a Nash strategy. Later, we show that a necessary

and sufficient condition for (21) is that

 is a Nash strategy but  ∈  for some subsolution 1 × 2 (22)

In the battle of the sexes (Table 1.2), since this holds for each of s1 and s2  = 1 2 we have

undecidability (21) for both strategies of both players. This observation can be generalized as

follows: when each subsolution is a singleton set, every Nash strategy  satisfies (22), and (21)

holds for it. A sufficient condition for each subsolution to be singleton is that all payoffs are

distinct.

Nevertheless, it would be nicer to study game theoretical undecidability without this condi-

tion. Table 5.1, with some identical payoff values, has two subsolutions  1 = {(s11 s21) (s12 s21)}
and  2 = {(s11 s21) (s11 s22)} Since (s11 s21) belongs to both subsolutions, (22) does not hold
for s1 but it holds for s2 We claim that (21) holds for s2 but not for s1

Table 5.1

s21 s22

s11
 1(1 1)

2
(0 1)

2

s12
 1(1 0) (0 0)
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Let  be any game with its subsolutions  1    We denote the intersection ∩=1  by

̂  We stipulate that if  has no Nash equilibria, then  = 0 and ̂ = ∅. If  = 1, then  1

is the set of all Nash equilibria () This intersection ̂ satisfies interchangeability (9); so it

is written as ̂ = ̂1 × ̂2 As stated above, when all payoffs are distinct, ̂ = ∩=1  = ∅ for
 ≥ 2

We have the following characterization of the case of having a positive decision.

Theorem 5.3. (Positive Decision) Let  be any game, g = (1 2) its formalized payoffs,

and  = 1 2. Then, for all  ∈  ∆(g) ` B(I()) if and only if  ∈ ̂

This has various implications: When  has no Nash equilibria, i.e., ̂ = ∅ ∆(g) gives

no positive decisions; when  is solvable, it gives a positive decision. When  has multiple

subsolutions, there are two cases; if ̂ = ∅ then it gives no positive decision; and if ̂ 6= ∅ it
gives a positive decision, i.e.,  ∈ ̂.

5.2 Proof of the theorems

We stipulate that when () = ∅ then the subsolution  is empty and 1 = 2 = ∅. The proof
of Lemma 5.1 together with soundness for EIR2 gives a proof of Lemma 4.2.

Lemma 5.1. Let  be any game. Then, for any subsolution  = 1 × 2 in  there is a

KD-model  = (h ;1 2i ) and a world  ∈ such that

() |= Ir(g) ∧ Ir(N) and () |= Ir(WF(A)) for all A; (23)

for any  ∈  () |= B(I())⇔ () |= I()⇔  ∈  (24)

Proof. We construct a model  = (h ;1 2i ) satisfying (23) and (24). Let  = 1 × 2
be a subsolution. Let h ;1 2i be the frame given by  = {} and  = {()} for
 = 1 2 i.e., it has a single world, and  is reflexive. Hence, this is a frame for Axiom T (and

4, 5), too. Define  by, for  = 1 2

for any ; 0 ∈  (PR(; 
0)) = >⇔ () ≥ (

0); (25)

( I()) = >⇔  ∈  (26)

That is, the preferences true relative to  are given by  ; and I() is true if and only if

 ∈  By (25), we have () |= 1 ∧ 2 Also, since  = {}, we have, for any formula 
and  = 1 2

() |=  ⇔ () |= B() (27)

Now, because  is a subsolution and () |= 1 ∧ 2, it follows that () |= bst(; )
for all (; ) ∈  and for  = 1 2. Thus, () |= N0 Also, () |= N1 by (26), and

() |= N2 by  = {} Thus, () |= Ir(N) for both  = 1 2.

Let us show () |= Ir(WF(A)) for all A. Let A = {()}∈   = 1 2 be given.

Let  = { ∈  : () |= ()} for  = 1 2. First, notice, using (27), that if () |=
¬[N1(A) ∧ N2(A)], then () |= WF(A). Thus, we can assume that () |= N1(A) ∧
N2(A) Using N01(A)∧N02(A) we have, for any (1; 2) ∈  () |= 1(1) ∧ 2(2) ⊃
bst1(1; 2)∧bst2(2; 1) i.e., 1 ×2 ⊆ (). Consider two cases.
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(i) Let 1×2 ⊆  . Then, by (26), for  = 1 2, () |= ∧∈ [() ⊃ I()]; so () |=
WF(A).
(ii) Let 1 × 2 −  6= ∅. Because  is a subsolution, it is maximal having the form of

 = 1 × 2 Also by 1 × 2 ⊆ () we have  −  6= ∅. Let (∗1 ∗2) ∈  − . Then,

() |= [I1(
∗
1)∧I2(∗2)] ∧ ¬[1(∗1) ∧ 2(

∗
2)] and hence for  = 1 2, () |= ¬[I(∗ ) ∧

B(I(
∗
 )) ⊃ (

∗
 ) ∧B(

∗
 ())]. Thus, () |= WF(A) for  = 1 2.¥

Proof of Theorem 5.1: Let  be an unsolvable game, and let  0 be two subsolutions with
(; ) ∈  but (; ) ∈  0 By Lemma 5.1, there are two models  and  0 so that (23)
and (24), respectively, for  and  0 Hence, () |= B(I()) but (

0 0) 2 B(I()) By

soundness for EIR2 we have ∆(g) 0 ¬B(I()) and ∆(g) 0 B(I())¥

Proof of Theorem 5.2: Suppose that there is a game formula  such that∆(g) ` B(I() ≡
) in EIR

2; a fortiori, the same holds for EIR2(T)Theorem 3.2 claims that in EIR2(T) Ir(g) `
B() or Ir(g) ` B(¬) This and the supposition imply ∆(g) ` B(I()) or ∆(g) `
B(¬I()) in EIR2(T) This is impossible since Theorem 5.1 holds for EIR2(T).¥

Since the model given in Lemma 5.1 has a single world, it is a model for Axioms T, 4 and 5.

Hence, Theorem 5.1 holds for EIR2 with those axioms. In the following proof, we use the fact

that Theorem 5.1 holds for EIR2(T) As mentioned earlier, we first prove Theorem 5.2, followed

by the proof of Theorem 5.3.

The necessity in Theorem 5.3 requires a modification of the previous characterization (Tho-

erem 4.2). We modify the target formulae {∗ ()}∈   = 1 2 as follows:

∗∗() := ∨∈̂Ir

 [bst(; );bst( ; )] (28)

This differs from ∗() with the domain of disjunction ̂ instead of   In this sense, it

depends upon the specification of the payoff functions. We define the candidate formulae

C = {∗ ()}∈   = 1 2 as follows:

∗ () =

⎧⎨⎩ ∗∗ () if  ∈ ̂
∗ () if  ∈ ()
I() otherwise.

(29)

That is, ∗ () is 
∗∗
 () if  ∈ ̂ but is 

∗
 () if  is not a Nash strategy. Crucially, it is I()

if  is a Nash strategy but is not a part of the intersection ̂ The last treatment trivializes the

additional premise in WF of (15). Then, the following characterization theorem, which will be

proved in Section 5.2, implies the previous theorem and is proved before that theorem.

Lemma 5.2. (Characterization II) Let  be any game with its subsolutions  1    g =

(1 2) its formalized payoffs, and  = 1 2. Then, ∆(g) ` B(I() ≡ ∗ ()) for all  ∈ 

Proof. When  ∈ ̂ we have Ir

 (g) ` ∗∗ () which implies Ir


 (g) ` I() ⊃ ∗∗ () In the

other cases, by Lemma 4.1.(2), Ir (N) ` I() ⊃ ∗ () Thus,

Ir (g) Ir

 (N) ` I() ⊃ ∗ () for all  ∈  (30)

Now, consider the converse of (30).

We modify the claims 1-3 in the proof of Theorem 4.2 as follows: for any (; ) ∈ 
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(1∗): Ir (g) Ir

 (N) ` ∗ () ∧B(

∗
 ()) ⊃ bst(; )

(2∗): Ir (g) Ir

 (N) ` ∗ () ⊃ ∨∈B(

∗
 ())

(3∗): Ir (N) ` ∗ () ⊃ BB(
∗
 ())

(1∗): If ∗ () = ∗ () or 
∗
 () = ∗ () then Ir


 (g) ` ¬∗ () or Ir (g) ` B(¬∗ ());

so, the assertion holds. Let ∗ () = ∗∗ () and ∗ () = ∗∗ () So, we have Ir

 (g) `

bst(; ); so, we have the assertion. Let 
∗
 () = ∗∗ () and ∗ () = I() Then, for any

 = 1   (; ) ∈   for some   and also, for some 0 ( ; ) ∈  0 for some   Hence,

we have (; ) ∈  0  i.e., (; ) is a Nash equilibrium. Hence, Ir

 (g) ` bst(; ) The case

where ∗ () = I() and ∗ () = ∗∗ () is similar

(2∗): First, let ∗ () = I() By N1 ` ∗ () ⊃ ∨∈B(I()) Then, since Ir

 (g) Ir


 (N) `

Ir(g)∧Ir(N) by (6), we use (30) for  and get Ir (g) Ir (N) ` ∨∈B(I()) ⊃ ∨∈B(
∗
 ())

Thus, Ir (g) Ir

 (N) ` ∗ () ⊃ ∨∈B(

∗
 ()) Second, let 

∗
 () = ∗ () Then, Ir


 (g) `

¬∗ () and hence, Ir (g) ` ∗ () ⊃ ∨∈B(
∗
 ()) Third, let 

∗
 () = ∗∗ (). Let

 ∈ ̂  Then, since ` Ir (bst(; );bst( ; )) ⊃ Ir(bst( ; );bst(; )) by (6) we have
` ∗ () ⊃ ∨∈̂B(

∗
 ()) Then, ` ∗ () ⊃ [∨

∈̂B(
∗
 ())] ∨ [∨∈−̂B(

∗
 ())]

equivalently, ` ∗ () ⊃ ∨∈B(
∗
 ())

(3∗): If ∗ () = ∗ () we have ` ∗ () ⊃ BB(
∗
 ()) by the previous claim 3. The case

for ∗ () = ∗∗ () is similar. If 
∗
 () = I() then ` ∗ () ⊃ BB(

∗
 ()) by N2¥

The above three statements imply Ir (g) Ir

 (N) ` N(C∗) ∧B(N(C∗)) and also, by (30),

we have Ir (g) Ir

 (N) ` ∧∈hI()∧ B(I()) ⊃ ∗ () ∧ B(

∗
 ())i Then, we using

Ir (WF(C∗)) we have Ir (g) Ir (N) Ir (WF(C∗)) ` ∗() ⊃ I()¥
Proof of Theorem 5.3: (Only-if): Suppose (; ) ∈ ̂ for any  ∈   Let  be not a Nash

strategy. Then, ∆(g) ` B(¬I()) by (20); so ∆(g) ` ¬B(I()) by Axiom D. Since ∆(g) is

consistent by Lemma 4.2, we have ∆(g) 0 B(I()) Let  be a Nash strategy. Then,  ∈  


for some subsolution  
1 ×  

2 Thus, ∆(g) 0 B(I()) by (22)

(If): If (; ) ∈ ̂ for some   then Ir

 (g) ` ∗∗() Hence, ∆

 (g) ` I() by Theorem 5.2

which implies ∆(g) ` B(I())¥

6 Conclusions

We have considered prediction/decision making by player  in a finite 2-person game  We

describe his decision criterion as N = N0∧N1∧N2 occurring in his mind, with the symmetric
treatment for player  These lead to an infinite regress of N and N  captured by Ir(N;N)

in the epistemic infinite regress logic EIR2 We have adopted Ir(N) = Ir(N;N) as his basic

beliefs, together with Ir(WF) and Ir(g) For a solvable game  ∆(g) = {Ir(g) Ir(N)} ∪
Ir(WF) determines I() as the specific formula ∗() given in (12). The situation for an
unsolvable  is entirely different: for some strategy  ∆(g) fails to determine whether it is

a possible decision or not. Here, we discuss our game theoretic decidability and undecidability

result, with comparisons to the literature as well as some possible extensions.

Positive, negative decisions, and undecidable: Suppose that  is solvable. Our game

theoretic decidability result states that player  finds his Nash strategy to be a possible decision,

and any non-Nash strategy to be a negative decision. Player  may find multiple possible
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decisions or no decisions. Our theory is silent for this choice if it exists; otherwise, negative

decisions led by the emptiness may lead player  to a different decision criterion.

In contrast, when  has multiple subsolutions and hence is unsolvable, we presented the

undecidability result that player  cannot find any positive decision, unless the subsolutions

have the nonempty intersection. One potential solution is to allow communication between the

players so that they may agree upon a specific subsolution. One difficulty is that player  may

not notice the necessity of this communication in the first place.

Two independent minds and discord in Ir(g): Theorem 5.1 is equivalent to, by Lemma 2.5,

∆(g) 0 B(I()) and∆(g) 0 ¬B(I()) which is parallel to Gödel’s incompleteness theorem.

Indeed, this states that the theory (EIR2;∆(g)) (and even (EIR
2(T);∆(g)) is incomplete.

These incompleteness results have some similarity but their sources are different.

Gödel’s theorem is caused by the self-referential structure of Peano Arithmetic, i.e., the

theory of Peano Arithmetic can be described inside the theory itself. Our framework also

includes a self-referential structure; the infinite regress operator Ir(·; ·) includes Ir(·; ·) and
vice versa in EIR2Moreover, the criteria {Ir(N)}∪Ir(WF) are completely symmetric between

the two minds. Our undecidability arises in this context, but it is not directly generated. The

direct cause lies in the infinite regress of the game Ir(g) which includes a possible discord

between the players, depending upon whether the game is solvable or not.

Johansen’s argument: This may be better understood by looking at Johansen’s [9] argument.

He gave the following four postulates for prediction/decision making and asserted that the Nash

noncooperative solution could be derived from them for solvable games.

Postulate J1 (Closed world): A player makes his decision  ∈  on the basis of, and only

on the basis of information concerning the action possibility sets of two players 1 2 and their

payoff functions 1 2

Postulate J2 (Symmetry in rationality): In choosing his own decision, a player assumes

that the other is rational in the same way as he himself is rational.

Postulate J3 (Predictability): If any11 decision is a rational decision to make for an indi-

vidual player, then this decision can be correctly predicted by the other player.

Postulate J4 (Optimization against “for all” predictions): Being able to predict the

actions to be taken by the other player, a player’s own decision maximizes his payoff function

corresponding to the predicted actions of the other player.

These postulates, except for J2, can be seen as corresponding to N0N1N2 for  = 1 2

Postulate J2 is interpreted as corresponding to the self-referential structure described above.

That is, player  assumes the entirely symmetric structure for player ’s thinking; Complete

symmetry is obtained in terms of infinite regresses {Ir(N)}∪ Ir(WF) in the logic EIR2 while

still keeping the independence of the two minds. Once Ir(g) is introduced, it may contain some

discord. Johansen did not discuss this part.

In the following, we discuss various related problems and possible extensions.

Some extensions and variants: Our results (3) and (4) are obtained for EIR2 As stated,

those results hold for a stronger system than EIR2 for example, in those with any of Axioms T,

4, and 5, but we choose KD2 to keep subjectivity of each player. In the present logic EIR2, player

 has the theory ∆(g) but player  can have his own theory B(Γ), which may be entirely

11This “any” was “some” in Johansen’s original Postulate 3. He assumed (p.435) that the game has the unique

Nash equilibrium. In this case, the above difference does not matter.
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different from ∆(g) If they recommend compatible decisions and predictions, the players may

not find the differences in their theories by watching the ex post play. This is not allowed in the

logic EIR2(T) Thus, EIR2 enables us to separate between subjective thinking and actual plays.

This separation may deserve further investigation.

We have confined ourselves to the 2-person case both for the logic and game theory. For

-person case ( ≥ 3) we would meet new problems in both epistemic logic and game theory.
We will discuss those extensions in separate papers.

Other game theoretic undecidability: Kaneko-Nagashima [10] gave a 3-person game having

a unique Nash equilibrium in mixed strategies. It is assumed that the game structure and real

number theory Φ (real closed field theory) are common knowledge among the players in

an infinitary predicate logic. They showed that C(∃Nash()) is provable from their common

knowledge of  and Φ  but that neither ∃C(Nash()) nor ¬∃C(Nash()) is provable. That
is, the players commonly know the abstract existence of a Nash equilibrium, but do not find a

concrete one; hence they cannot play the specific Nash equilibrium strategy.

This undecidability is caused by the lack of names for some irrational numbers such as√
51 in their language, which is involved in the Nash equilibrium in the 3-person game with

rational payoffs. The main reason for this difficulty is to give a name to a concept, but not the

self-referential structure.

Other game theoretic solution concepts: The game theory literature has various “solu-

tion concepts” other than the Nash theory (cf., Osborne-Rubinstein [17]). One concept is the

“dominant strategy” criterion, which requires a player to choose one which is best against any

strategy of the player. We can extend this by requiring one player to use a best response against

any dominant strategy of the other player, predicting that the other player adopts the dominant

strategy criterion. Even we can extend this argument to any finite number of repetitions of

predictions about the other player’s decisions, starting with the dominant strategy criterion at

the deepest level. In those cases, we have game theoretic decidability result. We conjecture that

any solution concept which does not require infinite regress will lead to similar decidability.

Effective decidability of the theory: When  is a solvable game, effective decidability

(decidability in the logic literature) of the theory (EIR2(T);∆(g)) follows from the full com-

pleteness theorem (Theorem 4.2). For (EIR2;∆(g)) we need to restrict the class of formulae.

When  is unsolvable, this argument does not work: the effective decidability in such a case

remains open.

Future directions: Our approach assumes unbounded logical abilities and unbounded interper-

sonal thinking, but we still meet the undecidability result. From the social science perspective,

it may be fruitful to investigate whether a theory with bounded logical abilities or bounded

interpersonal thinking can avoid undecidability. This is an entirely open problem.
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