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1. Introduction

This is a sequel to our development of the game logic framework. In Part
T (Kaneko-Nagashima [4]) of this paper, we presented the framework in the
Hilbert style formulation and showed some applications of the framework
to game theory — the epistemic axiomatization of Nash equilibrium and the
undecidability on the playability of a game. To obtain the undecidability
results (Theorems 6.2 and 6.3 of Part I), we used the result called the term
existence theorem. This is a metatheorem stating an evaluation of provability
on an existential formula. The Hilbert style formulation is convenient in
presentation, but is difficult in managing an evaluation of such provability. In
general, it would be better to reformulate the Hilbert style formulation into a
Gentzen style sequent calculus for the purpose of evaluating provability. This
paper provides a Gentzen style formulation of the game logic framework, and
proves the cut-elimination theorem. As its application, we prove the term
existence theorem used in Part I.

First, we provide the sequent calculus corresponding to G L, which is an
infinitary predicate extension of the sequent calculus formulation of proposi-
tional KD/ along the line of Ohnishi-Matsumoto [5] and [6]. Then we present
the cut-elimination theorem for sequent calculus GL,. We discuss also the
infinitary predicate extensions of K4, K as well as S4. Section 4 provides
a sequent calculus formulation of logic GL,, for a finite m. This provides
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also an alternative sequent calculus formulation of GL,,. The corresponding
cut-elimination theorem will be provided, which will be proved in Section 5.

In Section 3, we prove the term existence theorem in sequent calculus
G L, using the cut-elimination theorem. As steps to this result, we provide
a more basic term existence theorem and another result which we call a
separation theorem. These two results hold, in fact, in GL,, for any m.

We will find that the separation theorem manifests cognitive relativism
in that the epistemic world of each player is separated from the others’. This
enables us to prove the results of Section 3. These results fail to hold for the
S4-type extension, in which knowledge must be always true relative to the
thinker and ultimately relative to the investigator.

In our sequent calculus, the Barcan rules, AK;(®) D K;(A®) for an al-
lowable set ® and VzK;(A(z)) D K;(VzA(x)), are formulated as inference
rules, (B-A) and (B-V), which violate the subformula property. Hence the
cut-elimination theorem for GL,, does not give a proof with the full subfor-
mula property. Nevertheless, this is not an obstacle in obtaining the term
existence theorem. For other applications, unfortunately, those inferences
become obstacles. A final remark is that since the Barcan rules are not
needed in the finitary propositional fragment of GL,, the cut-elimination
theorem for the finitary propositional fragment of GL,, provides a cut-free
proof with the full subformula property.

2. Sequent Calculus GL, and its Variations

2.1 Sequent Calculus GL, and the Cut-Elimination Theorem

We work on the same language P, as in Part I, and prepare an auxiliary
symbol —. We call the expression I' — O a sequent iff I' and © are finite sets
of formulae. The sets [' and © are called the antecedent and succedent of the
sequent I' — ©. The expression ', A — ©, A is used to denote TUA — OUA.
We omit the set-theoretical bracket {A}, for example, {A},I' — ©,{B} is
denoted as A,I' - ©, B.

Our sequent calculus GL,, is defined as follows:

Initial Sequents: An initial sequent is of the form A — A for any
formula A.

Inference Rules: We have three kinds of inference rules: structural, oper-
ational and K-inference rules.
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Structural Inferences:

r—-0e

AT — 0,A (th)

r—L+oeM MA-—A
A —0,A

where M is called the cut-formula.

(M) (cut),

Operational Inferences:

VzA(z),I' = © (v =)

Aa),I' - ©

ATl -0 {f -0,A: Acd}
T e N7 AED) TSore N
{AT 50:Acd} r—»0e,A4
veroe V7 rSeve *VMAED
r—+0A4 B,F—>®(D_> ATl —-0,B (5)
ADB,I'—-0 r-+e,Ao>8B
r—0,4 = =) AT >0 (= )
“AT -0 ' r—>0,-4"'
A(t),I' - © I' - 0,A(a)

I' - ©,VzA(z) (=V)

I' - 0, A()

dzA(z),I' - © I' - 0,3zA(x)

where @ is an allowable set, ¢ is a term, and a is a free variable which must
not occur in the lower sequents of (— V) and (3 —).

In an operational inference, the formulae to be changed in the upper
sequents are called the side formulae, and the formula newly created in the
lower sequent is called the principal formula. The free variable ¢ in (— V)
and (3 —) is called an eigenvariable.

The following two inference rules are specific to our system.

K-Inferences:
r, KZ(A) — 0

where |©|, the cardinality of ©, is at most one. Recall that K;(I') denotes
the set {K;(A) : Ae€TI'} and K;(I',A) is K;(T'U A).

(K = K),
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The last inference rules are as follows:

{I' 5 0,K;(A): Acd} K;(A®),' - ©
r—-0e

(B'/\)a

' - 0,K;(A(a)) K;(VzA(x)), I - ©
r—-oe

where @ is an allowable set and the free variable ¢ must not occur in
K;(VzA(z)),I' = © of (B-V). We call these the Barcan inferences. The side
formulae of (B-A) (and (B-Y)) are K;(A) (A € @) and K;(A®) (K;(A(a))
and K;(VzA(z)), respectively). We need these to derive the Barcan sequents
AK;(®) = K;(A®) and V2 K;(A(z)) — K;(VzA(x)).

In a similar manner to in Part I, a proof is defined to be a countable
tree with the following properties: (i) every path from the root is finite;
(ii) a sequent is associated with each node, and the sequent associated with
each leaf is an initial sequent; and (iii) adjoining nodes together with the
associated sequents form an instance of the above inference rules; and (iv)
all formulae occuring in the proof belongs to P; for some ¢ < w.! A sequent
I' — © is said to be provable in GL,,, denoted by F, I' — O, iff there is a
proof such that I' — © is associated with its root. This I' — © is called the
endsequent of the proof.

Without K-inferences, the above system is an infinitary extension of
Gentzen’s LK. If we restrict the system to the finitary propositional frag-
ment, then it is the sequent calculus formulation of KD/ with n knowl-
edge operators. Ohnishi-Matsumoto [5] and [6] first formulated some modal
propositional logics including propositional T, §4 and S5, in sequential cal-
culi. Ours is an infinitary predicate extension of KD/ with the Barcan rules
along this line of research. We will discuss the extensions of some other
systems later.

We use the same notations GL, and -, as in Part I. This is due to the
following theorem.

(B'V)a

THEOREM 2.1. Let ® be an allowable set of closed formulae and A a for-
mula. Then -, A® — A if and only if @ -, A in the sense of Part I.

The following lemma together with the deduction theorem (Lemma 2.1)
of Part I implies Theorem 2.1.

LEMMA 2.2. 1): If+, A in the sense of Part I, then -, — A.

! Condition (iv) is used only for the equivalence between game logics between the Hilbert
and Gentzen styles.
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2): If -, I' = O, then F, AI' D VO in the sense of Part I, where AI' (and
VO ) is interpreted as ~AV A (and —A N A) when T’ (and O, respectively) is
empty.

Assertion (1) is proved inductively on the structure of a proof of A in the
Hilbert Style. Assertion (2) is proved inductively on the structure of a proof
of I' = ©. For example, (PL;): K;(A) D K;K;(A) is proved in the sequent
calculus as follows:

Ki(A) — K;(A)
K;(A) = K;K;(A)

(K — K),

which implies +,, — K;(A) D K;K;(A) by (—D). Conversely, let us prove
that (K — K) is allowed in the Hilbert style formulation: Suppose F,
(AI)A(AK;(A)) D VO. By Lemma 3.3.1) of Part I and (MP;), b, K;((AI')A
(AK;(A))) D K;(VO). Using F, AK;(X) = K;(AX) for any finite set 3 and
also (PI;), we have F, AK;(I', A) D K;(VO). Since |0| < 1, -, AK;(T',A) D
VK;(©).

In GL,, the sequent AK;(®) — K;(A®) is provable for any allowable
set @, using (B-A): For any A € &, F, AK;(®) — K;(A), which implies
Fo AK;i(®) — K;i(A®), K;(A) by (th). Hence

{AKi((I)) — Ki(Aq)),Ki(A) A€ Q)} Ki(/\q)) — Ki(/\q))
/\Ki(q)) — Ki(/\q))

(B-A).

In the case of finite ®, AK;(®) — K;(A®) is provable without (B-A).

In the same way, we can show F, VzK;(A(z)) — K;(VzA(x)).

Note that Lemma 2.2.2) could not hold without assuming the Barcan
axioms for the Hilbert style formulation and the Barcan inferences for the
Genzten style formulation.

In Section 4, we will give an alternative formulation of GL, and prove
the cut-elimination theorem for it in Section 5. From this cut-elimination
theorem, we will prove the following in Section 4.

THEOREM 2.3. [Cut-Elimination for GL,] If b, I' — O, there is a cul-free
proof of I' = © in GL,,.

In GL,, if the Barcan inference (B-A) or (B-V) occurs in a proof, some
formulae of the form Kj;(-) occur in the upper sequent but not in the lower
sequent of the inference. Hence the above cut-elimination theorem does
not imply the full subformula property that every formula occurring in a
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cut-free proof is a subformula of a formula occurring in its endsequent.?
Nevertheless, the subformula property holds for the other kinds of formulae.
This partial violation of the subformula property is sometimes an obstacle
and sometimes not. Fortunately, it does not prevent us from proving the
term existence theorem, which is the present primary purpose of Part II.

In logic GL,, we give a special attention to a part of a cut-free proof,
where the violation of the subformula property is kept minimal. Counsider a
proof P. In the path from the root to a leaf, the lower sequent of the lowest
occurrence of (K — K) is called a boundary. If the path does not have
such an inference, the boundary is the initial sequent. The part of P from
the endsequent to all boundaries is called the trunk of P. In the trunk of a
cut-free proof, there is no occurrence of inference (K — K). Since the side
formulae of inference (B-A) or (B-Y) are of the form K;(B) for some j and
B, the following holds for a cut-free proof P:

any formula occurring in the trunk of P is
(2.1)  a subformula of some formula occurring in the endsequent
or has the outermost symbol K; for some j.

This property will be used in proving the term existence theorem in Section
3.

When we prohibit the use of (K — K), (B-A) and (B-V), the system
is essentially the same as Gentzen’s LK with the infinitary modification,
which corresponds to the base logic GLj defined in Part I. We denote the
provability in GLgy by ¢ . Then it is shown as Proposition 4.1 of Part I that

(2.2) Fo I' = O implies ¢ e[’ — €O.

Recall that eI is obtained from I' by eliminating all K; (j = 1,...,n). Theo-
rem 4.2 of this paper states that cut-elimination holds for GLy and implies
the full subformula property, since GLy does not allow (B-A) and (B-V).
Hence logic G Ly is contradiction-free, which together with (2.2) implies that
logic GLy, is also contradiction-free.

The above cut-elimination theorem does not rely on the Barcan infer-
ences. That is, Theorem 2.3 holds when we prohibit one or both of (B-A)
and (B-Y). When we prohibit both (B-A) and (B-V), a cut-free proof satisfies
the full subformula property. Using this fact, we can prove that the asser-
tion of Lemma 2.4 of Part I, i.e., C(A) — K;(C(A)), could not necessarily

2A subformula of a given formula A is defined in the standard inductive manner, but
note the step for quantification that if VxB(z) and JzB(x) are subformulae of A, then
B(t) is a subformula of A for any term ¢.
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be provable in GL,, without (B-A) and (B-V). This will be discussed more
in a separate paper.

When we restrict our attention to the finitary propositional fragment of
our logic, the Barcan inferences (B-A) and (B-V) become unnecessary, as
was already stated. Therefore a cut-free proof in the finitary propositional
fragment of GL,, has the full subformula property.

2.2 Variations of GL,

The sequent calculus formulation of G L, is obtained from G L, by replacing
(K — K) by the following (K — K),:

r—-06
K;(T') — K;(©)

(K = K)y,

where |©| < 1. Logic GL,,, is weaker than GL,, e.g., K;(A) — K;K;(A) is
not necessarily provable in GL,,, but is provable in GL,,. Cut-elimination
as well as the other metatheorems of Section 3 hold for G L,,. In this sense,
GL,p, has a status similar to GL,. However, the epistemic axiomatiza-
tion of Nash equilibrium needs some modification in GL,,, i.e., the com-
mon knowledge formula should be modified by using U,,,., Kp(m) instead of
Um<w K(m). Recall that K,(m) = {K;,...K;,, : each K;, is one of K1, ..., K;, }
and K(m) = {Kj,...K;, :each Kj, is one of K, ..., K,, with i; # i;41 for
t =1,..,m—1}. In game theory applications, extensions of KD/ seem more
natural than those of KD or K, which would become clearer only by working
more on game theoretical applications.

Among others, the infinitary predicate extension of modal logic S4 is of
special interest. The sequent calculus of the infinitary predicate extension
of S4 is obtained from GL, by replacing (K — K) by the following two
inferences:

rA—©0

Ro(0) = Ki(A) |

(K —) — K).

We denote this system by GL  g;. The cut-elimination theorem for GL g v is
obtained by modifying the proot for GL,, given in Section 5. One important
consequence is that a cut-free proof in the finitary propositional fragment of
GL,g v satisfies the full subformula property.

In the full predicate calculus GL ¢ 4 the Barcan inference (B-A) is
needed to prove C(A) — K;(C(A)). In this case, (B-A) and also (B-V)
become obstacles in applying the cut-elimination theorem in that (2.1) does
not hold. Therefore we do not obtain the results in Section 3 for GL g 7
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3. Applications of the Cut-Elimination Theorem

In this section, we assume the cut-elimination theorem (Theorem 2.3), whose
proof will be given in Sections 4 and 5, and will prove several theorems. From
them, we will obtain the term existence theorem (Theorem 3.5) used for the
undecidability results in Part I.

3.1 Term Existence Theorems and Separation Theorem

In this subsection, we will give some results on G L, all of whose proofs will
be given in the next subsection.
The first result is term existence for an individual player.

THEOREM 3.1. [Term Ezistence I] If +, K;(I') — Fzi..32,.K;(A(xy, ...,
xp)), then =y, K;(T) — K;(A(t1, ..., te)) for some terms tq, ..., t;.

When the system has closed terms and no free variables occur in I' and
in 3z,...3x¢K;(A(z1,...,2¢)), we can assert that ¢y, ..., ¢, are closed terms.

It follows from Theorem 3.1 that K;(3zA(x)) — 3z K;(A(x)) is not neces-
sarily provable. Indeed, suppose that the system has a unary predicate P(-)
and F,, K;(32Vy(P(y) D P(x))) = FzK;(Vy(P(y) D P(z))). Then it follows
from Theorem 3.1 that -, K;(3xVy(P(y) D P(x))) — K;(Vy(P(y) D P(t)))
for some term ¢. By (2.2), we have ¢ JzVy(P(y) DO P(z)) — VYy(P(y) D
P(t)). Since F¢g — JzVy(P(y) D P(x)), we have g — Vy(P(y) D P(t)). By
the cut-elimination theorem for G Ly, however, this is not provable. Hence
K;(32Vy(P(y) D P(z))) — 3zK;(Vy(P(y) D P(z))) is not provable.

An assertion parallel to Theorem 3.1 holds for a disjunctive formula:

(3.1) If F, K;(T') —>VacaKi(A), then F, K;(T")— K;(A) for some A€ P,

which is also proved in the same way as Theorem 3.1. Using this fact, we
find that K;(AV B) — K;(A) V K;(B) is not necessarily provable. Hence
the statements of Proposition 3.1 of Part I are, indeed, unparalleled.

A result similar to the above term existence (and disjunctive property)
theorem is known for intuitionistic logic, cf., Harrop [2] and [3] (see also van
Dalen [7]). From the view point of formal systems, logic GL,, has the restric-
tion of the succedents of the upper and lower sequents of (K — K) to contain
at most one formula, while intuitionistic logic has the same restriction on
any sequent (cf., Gentzen [1]). In fact, to prove the above theorem, we will
modify the Barcan inference so that this restriction holds for all sequents in
the trunk of the cut-free proof of K;(I') — Jz;...3z,K;(A(z1, ..., xz¢)), which
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will be stated in Lemma 3.2. Thus Theorem 3.1 is based on the property of
our logic similar to that of intuitionistic logic.

To state Lemma 3.2 and to prove Theorem 3.1, we use the following,
slightly different formulations of (B-A) and (B-V):

(0> 0,Ki(A): Acd}  Ki(A®),A— A

T.ASO.A (B-A)',
I' 5 0,K;(A(a)) K;(VzA(z)),A — A (BY)*
[,A— ©,A e

where @ is an allowable set and the free variable ¢ must not occur in
K;(VzA(z)), ;A — O,A of (B-Y)*. When we have (th), (B-A) and (B-
V) are equivalent to (B-A)* and (B-V)*, respectively, in that provability .,
as well as the cut-elimination theorem, is not affected by the use of (B-A)*
and (B-V)* instead of (B-A) and (B-V). Nevertheless, (B-A)* and (B-V)* are
more convenient in proving Theorem 3.1, and the original ones are more for
other purposes.

LEMMA 3.2. Suppose F, K;(I') = 3z1...32,K;(A(z1, ...,z¢)). Then there is
a cut-free proof P of K;(T') — Jx1...32,K;(A(z1, ..., xp)) such that the succe-
dent of each sequent in the trunk of P has at most one formula.

To prove the term existence theorem stated in Part I, i.e., Theorem 3.5
in the following, we need one more theorem. A formula A is said to be
indecomposable iff A is atomic or the outermost symbol of A is K; for some
g = 1,...,n. We say that for 7+ = 1,...,n, a formula A is a K;-formula iff
the outermost symbol of every maximal indecomposable subformula of A
is K;; and that A is a K_;-formula iff K; occurs only in the scope of K;
for some j # 4. These two notions are mutually exclusive. For example,
Kl(KQ(A) D) B) D) Kl(B) is a K;-formula, Kg(Kl(A) D) B) D) Kg(B) a
K_i-formula, and K;(K3(A) D B) D Ks(B) is neither a K;-formula nor a
K_-formula.

THEOREM 3.3. [Separation Theorem] Let T';, ©; be finite sets of
Ki-formulae, and T'_;,©_; finite sets of K_;-formulae (i = 1,...,n). If I,
r,r_; — @i, 6—17 then -, I’ = ©; ork, I'_; = ©_;.

This theorem is proved based on the following lemma.

LEmMA 3.4. Let T';, ©; be finite sets of K;-formulae, and I'_;, ©_; finite sets
of K_j-formulae (i = 1,...,n). Let P be a cut-free proof of I';,I'_; — ©;,0_;.
Then every formula occurring in the trunk of P is either a K;-formula or a
K_;-formula.
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Using Theorem 3.3 repeatedly, we have a refinement: Let I';, ©; be finite
sets of K;-formulae for 7+ = 0,1,...,n, where 'y and ©( are finite sets of
nonepistemic formulae. Then

If +, [y, T'y,..., T — @0,@1, ...,@n,

(3:2) then +, I'; = ©; for some i =0,1,...,n,

Now we can state the term existence theorem used in Part I.

THEOREM 3.5. [Term Existence II] Let I be a finite set of nonepistemic
formulae, and A a nonepistemic formula. Ift,, C(T') — 3z1...32,C(A(z, ...,
xy)), then =, C(T') — C(A(ty1,...,tg)) for some terms tq, ..., ty.

Theorems 3.1 and 3.3 can be obtained for GL,, and GLy,, (m < w) as
well as for their finitary fragments. However, they fail to hold for the S4-
type extensions. For example, F g, K (3zK,(P(z))) — JzK;(P(x)), but
Theorem 3.1 does not hold for this sequent in GL g 4 where P(.) is a unary
predicate. Also, S K,(P(a)), K2(=P(a)) = , but Theorem 3.3 does not
hold for this sequent in GL g 7 Nevertheless, it still remains open whether
Theorem 3.5 holds in GLwSA

Theorem 3.3 manifests cognitive relativism in GL,, in that the epistemic
world of each player (even in the mind of another player) is separated from
the others’. In contrast, the S4-type extension GL g 4 does not permit this
separation as was mentioned above, but assumes that knowledge must be
true relative to the thinker and ultimately relative to the investigator. In
GL,,, cognitive relativism manifested as the separation of epistemic worlds
enables us to obtain our results.

3.2 Proofs of the Results of Section 3.1

Recall that we use (B-A)* and (B-V)* instead of (B-A) and (B-V) in the
proofs of Lemma 3.2 and Theorem 3.1.

Proor oF LEMMA 3.2.

Let P be a cut-free proof of K;(I') — 3Jxy..3z,K;(A(x1,...,x¢)) in GL,,.

Consider the trunk of P. By the form of the endsequent and (2.1), the trunk

has only four types of inferences, (th), (— 3), (B-A)* and (B-V)*, and each

boundary is either an initial sequent or the lower sequent of inference (K —
We prove that for any sequent A — © in the trunk of P, there is a

sequent A — ©* with its cut-free proof P’ such that

(i): O is a subset of O;
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ii): the succedent of any se uent in the trunk of P, has at most
q
one formula.

Of course, ©* must have at most one formula. If this is done, we have a
cut-free proof of K;(I") — Jzy...32,K;(A(x1,...,z¢)) with the property (ii).
We prove this assertion by induction on the tree structure of the trunk of P
from each boundary.

First, consider a boundary of the trunk of P. Then A — © is an initial
sequent or the lower sequent of inference (K — K). Thus © has at most one
formula. Therefore the subproof of A — © in P is a cut-free proof with the
properties (i) and (ii).

Next, consider a sequent A — W in the trunk of P which is not a bound-
ary. The induction hypothesis is now that for any sequent A — © immedi-
ately above A — W, there is a cut-free proof of A — ©* with the properties
(i) and (ii). We consider the three possible cases, (th), (— 3),(B-A)* and
(B-V)*. That is, A — © and A — ¥ are upper and lower sequents of one of
these inferences.

Consider (th). The upper sequent A — © of (th) satisfies A C A and
© C V. By the induction hypothesis, there is a cut-free proof of A — O*
with (i) and (ii). Define ¥* to be ©*. Adding (th) to the proof of A — ©*,
we have a cut-free proof of A — U* with (i) and (ii).

Consider (— 3). This (— 3J) is represented as

A— 6,7 ElylzlykKl(A(tayb 7yk))
A— 6,7 ElyaylzlykKZ(A(nyla Jyk)) ’

where A — U is A — ©', yIy;... 3y K (A(y, y1, ---, Yk ))- The induction hy-
pothesis states that there is a cut-free proof P’ of A — ©* with the properties
(i), i.e., ©* C O'U{Ty;... 3y Ki(A(t, y1, ..., yx)) }, and (ii). If ©* does not con-
tain Jy;... yp K;(A(t,y1, ..., yk)), we conclude that the proof P’ of A — O*
is the desired one. If ©* consists of Jy;...y K;(A(t, y1, ..., yx)), we add the
following step to the proof P’, which is the desired one:

A — ElylzlykKZ(A(tayla 7yk))
A — Fy3yi.. 3y Ki(A(y, v, s i)

Consider (B-A)*:

(— 3).

{X > 5,K;(B): Be®} Kj(A®),Il > T
S E,T ’

where A — V¥ is X, II — Z, T. By the induction hypothesis, for each B € ¢
we have a cut-free proof Pg of ¥ — ZEp with the properties (i), i.e., Eg C ZU
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{K;(B)}, and (ii), and also we have a cut-free proof P' of K;(A®),II — T*
with (i), i.e., T* C T, and (ii).

If 25 does not contain K;(B) for some B € ®, then it is a subset of
E. Hence we obtain a proof of ¥,II — Ep by adding a (th) to the proof
Pg, which has the properties (i) and (ii). Now consider the case where Ep
consists of K;(B) for any B € ®. Then we have a proof of ¥,II — T*
combining proofs Pg (B € ®) and P’ in the following way:

{(¥ = K;(B):Be®} K;jA®),Il = T*
X1 — T

(B-N)*.
This cut-free proof of ¥, IT — T* satisfies (i) and (ii).
Finally, consider (B-V)*:

Y = 5, K;(Bla)) K;(VzA(z)),ll - T
S0 &, T ’

where A — W is X, IT — =, T. By the induction hypothesis, we have a cut-
free proof P' of ¥ — E* with the properties (i), i.e., 2* C ZU {K;(B(a))},
and (ii), and also we have a cut-free proof P of K;(VzA(z)),II — T* with
(i), i.e., T* C T, and (ii).

If =% does not contain K;(B(a)), then it is a subset of =. Hence we
obtain a proof of ¥, IT — E* by adding a (th) to the proof P’, which has the
properties (i) and (ii). Now consider the case where Z* consists of K;(B(a)).
Then we have a proof of ¥,II — T* combining proofs P’ and P” in the
following way:

Y — K;j(B(a)) K;\VzA(z)),Il = T*
I — T

(B-Y)*.
This cut-free proof of ¥, II — YT* satisfies (i) and (ii). ]

PrOOF OF THEOREM 3.1. By Lemma 3.2, there is a cut-free proof P of
K;(T') = 3z1...3z¢K;(A(z1,...,z¢)) such that the succedent of any sequent
in the trunk of P has at most one formula. By induction on the structure of
the trunk of P, we prove that for any sequent A — © in the trunk,

(¥) : if © is represented as {3xy... 3z, K;(A(t1, ..., tk—1, Tk, ..., ¢)) } with
k < {,then +, A — K;(A(t1,...,t7)) for some terms t, ..., tp.

From this, we have the conclusion that -, K;(I') — K;(A(t1,...,t7)) for some
terms t1,...,t¢. As will be argued in Subsection 5.1, we can assume that for
any proof, some free variables do not occur in it.
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For a boundary A — ©, the premise of (%) does not hold, since it is an
initial sequent of the form K;(-) — K;(-) or the lower sequent of (K — K).

Consider a sequent A — © which is not a boundary in the trunk. Now the
induction hypothesis is that for any sequent immediately above A — O, (x)
holds. We assume that O is represented as {3x...3xo K;(A(t1, ..., tp—1, Thy ey
x¢))}. We will consider the following four cases, (th), (— 3), (B-A)* and (B-
V)*, depending on the last inference which is applied to get A — ©.

Consider (th). Then its upper sequent has the form A’ — ©" with A’ C A
and © C ©. If © consists of Jzk...3x K;(A(t1, ..., tk—1, Tk, .., T¢)), then
Fo A" — K;(A(ty,...,t¢)) for some tg,...,t; by the induction hypothesis,
which together with (th) implies F, A — K;(A(t1,...,t¢)). If O is empty,
then -, A — K;(A(ty,...,t¢)) for any terms t1,...,t; by (th).

Consider (— 3). Then its upper sequent is A — Jzpiq...3x, K;(A(ty, ...,
tky Tht1, .-, Tg)) for some terms ti,...,tg. If kK = ¢, the upper sequent is A —
K;(A(ty,...,tg)), which is already the assertion for the lower sequent. If k < £,
then F, A — K;(A(t1,...,t)) for some terms tg4q,...,t¢ by the induction
hypothesis, which is also the assertion.

Consider (B-A)*:

{Z—)Kj(B) : B e ®} Kj(/\<I>),A%Exk...ﬂngi(A(tl, s b1y Ty eeey L))
Z,A — ELT]C...ELT(KZ'(A(tl,...,tk_l,xk,...,xg)) '

By the induction hypothesis, F, K;j(A®),A — K;(A(t1,...,t¢)) for some
terms tg, ..., ts. Then we have a proof of ¥, A — K;(A(t1,...,t7)) by adding
the following:
{¥ = K;(B) : Be d} K;j(AD),A — Ki(A(t1, ...
YA = Ki(A(ty, ..oy tr))

Finally, consider (B-V)*:

> — KJ(B(CL)) KJ(V.’L‘A(w)), A — Ela;k...Ela;gKi(A(tl, vy b1, Tk ...,37[))
Y, A = Fxg. 3 e K (At oyt 1, Thy -y XTp)) ’

7tl)) (B—/\)*

where a must not occur in ¥, K;(VoA(x)), A, k... x Ki(A(ti, ..., tk—1,
Tk,...,x¢)). By the induction hypothesis, -, K;(VzA(z)), A = Ki(A(ti,...,
tg)) for some terms i, ...,tp. Also, there is a proof P’ of ¥ — K;(B(a)).
Then we obtain another proof P of ¥ — K;(B(b)) by substituting b for all
occurrences of a in P', where b is a new free variable not occurring in P’ and
in the right upper sequent. Then we have a proof of ¥, A — K;(A(ty,...,1¢))
by adding the following:

Yo Kj(B()  Kj(VzA(z)), A — Ki(A(ty, ..
2, A — Ki(A(tl, ...,tg))

Jtl)) (B-V)*
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In the following, we use the original (B-A) and (B-V).

PROOF OF LEMMA 3.4. As was noted in (2.1), the violation of the sub-
formula property is caused by in the occurrences of (B-A) in the trunk of
P. The side formulae of (B-A) and (B-V) are of the form Kj(-) for some
j =1,...,n; they are K;-formulae if j = ¢ or K_;-formulae if j # ¢. For any
formula of other form, the subformula property holds in the trunk. Hence
every formula occurring in the trunk must be a K;-formula or a K_;-formula,
since the endsequent consists of K;-formulae and K _;-formulae. [ ]

PrROOF OF THEOREM 3.3. Suppose +, I';,I' ; — 0;,0_;, where [';, 0,
are finite sets of K;-formulae and I'_;,®_; are finite sets of K _;-formulae.
Then there is a cut-free proof P of I';,'_; — ©;,©_; by the cut-elimination
theorem. Consider the trunk of P. Lemma 3.4 states that any sequent in the
trunk is represented as A;, A_; = A;, A_;, where A;, A; and A_;, A_; consist
of K;-formulae and K _;-formulae, respectively. We prove the following by
induction on the structure of the trunk from boundaries:

(*): Fo A = Ajor F, A, — A,

We call A; — A; and A _; — A_; the K;-part and K_;-part.

A boundary is an initial sequent or the lower sequent of (K — K). In the
first case, it is represented as A — A. Then A is either a K;-formula or K_;-
formula by Lemma 3.4. In the second case, it is of the form K;(A) — K;(A),
and hence the formulae are K;-formulae if j is 4, or are K_;-formulae if j is
not i. Thus the assertion (x) holds.

Consider a sequent A — A in the trunk which is not a boundary. Now
the induction hypothesis is that every sequent immediately above A — A
satisfies (*). There are three cases we have to consider: A — A is the lower
sequent of (th), some operational inference, and (B-A) or (B-V).

(th): In this case, it follows from Lemma 3.4 that its upper and lower se-
quents are described as A, A", — Al A", and Aj,A_; — A, A_;, where
AL CALGA, CA A CAjand AT, C A_;. By the induction hypothesis,
Fo AL = Alor b, A", — A’ ;. Thus, by (th), F, A; = Ajork, Ay — A,
(Operational Inferences): By Lemma 3.4, there are only two cases: (a)
the side formulae are K;-formulae; and (b) they are K_;-formulae.
Consider case (a). If the K_;-part of some upper sequent is provable, the
K_;-part of the lower sequent is provable, since the K _;-parts of the upper
and lower sequents are the same. If the K_;-part is not provable for any

upper sequent, then the K;-part of every upper sequent is provable by the
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induction hypothesis, which implies that the K;-part of the lower sequent is
also provable.

Case (b) is parallel to case (a). Indeed, if the K_;-part of some upper
sequent is provable, the K;-part of the lower sequent is also provable, and
if the K_;-part of every upper sequent is provable, the inference can be
directly applied to the K_;-parts of the upper sequents of the inference and
the K _;-part of the lower sequent is provable.

(B-A): Suppose that A — A is the lower sequent of (B-A). Then (B-A) has
the following form:
{Ai, A_; = Ay, A_Z',Kj(A) A€ (I)} Kj(/\q)), A, A — N, A_;
Aj, A — A, Ay '

Let 7 = 4. Then if the K_;-part of one of the upper sequents is provable,
then F, A_; — A_;. If the K;-parts of all upper sequents are provable, then
Fo, A; — A;, since

{Ai = Ai Ki(A) : Ae @} Ki(A®),Ai — A,

(B-N).

When j # i, the proof is parallel. Indeed, if the K;-part of one of the upper
sequents is provable, then F, A; — A;, and if the K_;-parts of all upper
sequents are provable, then F, A_; — A_; by (B-A).

An argument similar to the above is applied to the case of (B-Y). [

PROOF OF THEOREM 3.5 By Lemma 2.2, -, C(I') — Jz;...3z,C(A(xy, ...,
xp)) is equivalent to F, AC(T') — Fxi..32,C(A(x1,...,x¢)). Since F, T,
K, (CI)),...,Kp(C(I')) = AC(T"), we have F, I', K1 (C(D)), ..., K, (C(I')) —
dzy..32¢C(A(x1,...,z¢)). This implies F, I',K;(C(T)),...,K,(CT)) —
dzy.. 320 K1 (A(x1, ..., z¢)). Hence it follows from (3.2) that F, I' — y Fuw
K;(C(l)) — for j #1 or k-, Ki(C(T)) = Fz1...32, K1 (A(z1, ..., z0)).
In the first two cases, we have -9 I' = by (2.2), which implies -, C(I") — .
Thus +, C(I') = C(A(t1,...,t¢)) for any terms ti,...,t,. In the third case,
it follows from Theorem 3.1 that F, K;(C(I')) — K1(A(t1,...,t¢)) for some
terms %y, ..., tp. This implies g I' — A(%y, ..., t¢) by (2.2). Hence -, K(I") —
K (A(t1,...,t7)) for any K € [, K(t). It follows from this that -, C(I') —
K(A(ty,...,tp)) for any K € U, K(t). Thus -, C(T') = C(A(t1,...,t7)). ®

4. Sequent Calculus GL,, for m (0 < m < w)

In logic GL,, for a finite m, the logical and introspective abilities of players
are known up to the depth m in the sense of K = K; ...K; . In GL,,
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those abilities are known up to any depth, since (K — K) can be applied
indefinitely many times in GL,,. Hence, for GL,,, we need a sequent calculus
different from GL, in Section 2. In this section, we present the sequent
calculus formulation of GL,,. In fact, the new formulation works also for
m = w, and cut-elimination holds for all m (0 < m < w). In this sense, the
new formulation is a generalization of sequent calculus G L. We also present
some other systems.

4.1 Sequent Calculus GL,, and Cut-Elimination

In sequent calculus G L, each sequent has the form K[I' — O], where I" are
© are finite sets of formulae and the outer K is an element of ;.1 ,, K(%).
When K is null, K[I' — 0] is regarded as I' — ©. When m is finite, a
sequent with an outer K of at most depth m is allowed, and when m is w,
a sequent with an outer K of any depth is allowed. When K is represented
as K; K;,...K;,, , an infinitary extension of Gentzen’s LK is given to player
i, in the mind of player 4,,_1 in the mind of player ¢,,_s ... of player %;.
Sequents with different outer K and K' are connected by two inference rules
corresponding to (K — K).

Specifically, sequent calculus GL,, (0 < m < w) is formulated as follows:

Initial Sequents: An initial sequent is of the form K[A — A], where
K € Ujc14m K(t) and A is a formula.

Inference Rules: The structural and operational inference rules are the
same as those in Section 2, except the outer K € U;q,, K(f) associated
with each sequent in inferences, for example, (cut) and (A —) are given as

K[I' - 0, M] K[M,A — A]

K[[,A — 0, A] (M) (cut)
K[A,T — 0]
KT 5 0] (A=) (A € D).

The inference (K — K') is modified as follows: for any KK; € U;<1,, K(?),

K[Ki(l',A) = Ki(©)] KK[Ki(I',A) = K;i(©)]
where |©| < 1. When m = 0, these rules are not allowed, and when m =1,
the outer K is the null symbol.
The Barcan inferences take the following form: for K € {J,.,, K(t) or
K = K'K; € Upcy i K(),
{K[I' = ©6,K;(A)]: Ac ®} K[K;(A®),[' = O]
K[I' = 0]

(K—)K)c (K—)K)U,

(B'/\)u
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K[I' - 0,K;(A(a))] K[K;(VzA(z)),T — ©]
K[I' — 0]
where @ is an allowable set and the free variable a¢ must not occur in
K[K;(VxA(z)),I' — O] of (B-Y). When m = 0, these inferences are not
allowed, and when m = 1, the outer K of (B-A) (and (B-V)) is the null
symbol or is the same as the outermost K; of the side formulae of (B-A)
(and (B-V), respectively).

The two inferences (K — K)¢ and (K — K)y are needed to describe
the idea that each player has the inference ability described by (K — K)¢
as well as he knows the ability. In the cases of (B-A) and (B-Y), he can use
and also knows the Barcan rules. This knowledge is described in the case
where the innermost symbol of K coincides with the outermost symbol of
the side formulae in (B-A) and (B-Y).

When m = 0, no K-inference is allowed and the outer K is null. Thus
G Ly is simply an infinitary extension of Gentzen’s LK.

We use the same notations GL,, and t,, as in Part I. This is due to the
following theorem.

(B'V)a

THEOREM 4.1. Let ® be an allowable set of closed formulae and A a for-
mula. Then, for any m (0 < m < w), Fp, AQL — A if and only if ® F,, A in
the sense of Part I.

The proof of Theorem 4.1 is routine, so we omit the proof. On the other
hand, the next theorem will be given in Section 5.

THEOREM 4.2. [Cut-Elimination for GLy,] For any m with 0 < m < w, if
K[I' — ©] is provable in G Ly, there is a cut-free proof of K[I' — ©O].

In logic GLy, for m > 1, when (B-A) and (B-V) occur in a cut-free proof,
the cut-free proof does not satisfy the full subformula property as in GL,,
of Section 2. In GLy, however, since (B-A) and (B-Y) are not allowed, the
cut-elimination theorem ensures the full subformula property for a cut-free
proof.

The relationship between the sequent calculus GL,, in this section and
that in Section 2 is given by the following proposition.

PROPOSITION 4.3. A sequent I' — © is provable (without cut respectively)
in the present G Ly, if and only if it is provable (without cut) in the GL,, of
Section 2.

PROOF. Suppose that P is a proof of I' — © in GL, in the sense of
this section. In the proof P, changing every sequent K[A — A] to A — A
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by removing the outer K, we obtain a proof of ' = © in GL,, in the sense
of Section 2.

Conversely, suppose that P is a proof of ' = © in GL,, in the sense of
Section 2. We associate an outer K with each sequent by induction from the
endsequent as follows. We associate the null symbol with the endsequent.
Consider an inference (n) in P, and assume that K is associated with the
lower sequent of (). If (n) is not (K — K), we associate the same K with
every upper sequent of (7). Suppose that (n) is (K — K) and introduces K.
Then we associate K with the upper sequent of () if the innermost symbol
of K is K;, and associate K K; with it otherwise. Then we have a proof P’
of I' — © in the present GL,,.

Note that the proof obtained in each of the above paragraphs is cut-free
if the original proof is cut-free. [ |

The proof of Proposition 4.3 associates a proof in the present formulation
of GL,, with one in GL, in the sense of Section 2. The associated proofs
have the same structures of inference rules. Therefore, the cut-elimination
theorem for GL,, in the present formulation provides a cut-free proof in GL,,
in the sense of Section 2, and wice versa. In Section 5, we prove the cut-
elimination theorem (Theorem 4.2) for GL,, (0 < m < w), which implies
Theorem 2.3.

REMARK 4.4. Inlogic GL,, (0 < m < w), the trunk of a proof can be defined
in the same way as in Section 2 and then (2.1) holds for it. Consequently,
the proofs of Theorems 3.1 and 3.3 for GL,, in Section 3 work almost directly
in GL,, for any finite m. Hence we have these two theorems for GL,, for
any finite m. However, Theorem 3.5 is specific to the case m = w.

4.2 Logics GLy, (1 <m <w)

First, recall that logic GLy,, which is defined by the axiom set Ap,, =
{K(A) : A € UL, Ajp and K € J;,,, Kp(t)}. Recall that Ay, is the set
of axioms describing the logical ability of player 4, except (PI;), which was
given in Subsection 2.2 of Part I. The sequent calculus formulation of logic
G Ly, is obtained from G L, with the following modifications: An outer K
of each sequent in initial sequents, structural and operational inferences is
taken from ;.1 Kp(t) instead of U;.1,, K(t). We replace (K — K)c,
(K = K)y, (B-A) and (B-V) by the following: for any K € J,.,, Ky(?),

KK — O]
K[K;(l') = K;(©)]

(K — K)p, where |0| <1,
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(K[T —» 0,K;(A)]: A d}  K[Ki(A®),T — O]

KT — 0] (B-N)p
K[I' = 0,Ki(A(a))]  K[Ki(VzA(z)),I' = ©]
K[ — 0] (B,

where the free variable a must not occur in K[K;(VzA(z)),I' — O] of (B-
V)p- If the additional condition |©| < 1 for (K — K), is replaced by |©] =1,
then the system is denoted by G Ly, x, which corresponds to the logic defined
by A without (PI;) and (L;).

Cut-elimination is obtained for G L,,, as well as for G L, from the proof
given in Section 5 with the desired modifications.

When m = w, again, we do not need outer K and KKj; in the infer-
ence rules as in GL,. Logics GL,, and GL,k are the infinitary predicate
extensions of modal logics KD and K.

Proposition 2.2 (Faithful Representation) of Part I is a special case of
the following proposition.

PROPOSITION 4.5. [Faithful Representation] For a finite m, by, 11y Ki(I') —
K;(©) if and only if Fp,p T' — O.

PrROOF. It is enough to show the only-if part. Let P be a proof of
K;(T') = K;(©) in GL(y41),- We can define boundaries and the trunk of P
in the same way as in G L,,. In the trunk, by the form of the endsequent, every
formula has the form K;(B) for some j and B, and only inferences (th), (B-
A)p and (B-Y), may occur. We prove by induction on the tree structure of
the trunk from boundaries to the root that A# — A# is provable in G Ly,
for any sequent A — A in the trunk of P, where A# A# are obtained from
A, A by eliminating the outermost K; (5 = 1,...,n) of each formula in A, A.

A boundary A — A is either an initial sequent or the lower sequent of
(K = K)p. If A — A is an initial sequent, it has the form K;(A4) — K;(A).
Then A — A is provable in GL,,,. Next suppose that a boundary is the
lower sequent of (K — K),, which is expressed as

K;j(%) = K;(B)

All sequents above this inference (K — K), have the outermost symbol
Kj, ie., K;K'[- — -], where K’ may be the null symbol. We eliminate this
outermost K of each sequent in the proof of K;[¥ — =] and obtain a proof
of ¥ = Ein GLyy.

Now consider inferences (th), (B-A), and (B-V),. The induction hypoth-
esis is that for every upper sequent A — A of (th) or (B-A),, A% — A# is
provable in G L,,,. We consider only (B-A),.
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Counsider (B-A)y:

(S5 U, Kj(A):Acd} K;(AD),S > T
PN/} '

By the induction hypothesis, the sequent ©# — U#, A is provable for any
A € ® and A®,X# — T# is also provable in GL,,p. Hence »H# 5 U# s
provable in G L,,, since

{S# 5 U# A Ac )}

(= A) A @, B# — U
»H# o U#F AP

SE S OF (cut).

5. Proof of the Cut-Elimination Theorem for GL,,

5.1 Preliminaries

Our proof of the cut-elimination theorem GL,, (0 < m < w) is based on
the original proof of Gentzen [1]. There are several differences between
Gentzen’s LK and our GL,,. We have additional inference rules (K — K)¢,
(K — K)y, (B-N),(B-Y), and also our system is infinitary. We have to give
careful attentions to these differences.

As in Gentzen [1], we focus our attention to a proof P having a (cut)
only at the last inference:

K[I' - 0, M] K[M,A — A

(5:1) K[l A — 0,4]

(M)(cut).

Then we show that

x): for any proof with a (cut) only at the last inference, there is
y y
a cut-free proof with the same endsequent.

If this is done, we can eliminate every (cut) from an arbitrary proof by
induction on the tree structure of a proof from initial sequents.

To prove the assertion (x), we use triple induction. For this purpose, we
define the “grade”, the “left rank” and “right rank” of the (cut).

We assign to each formula A an ordinal number, gr(A), called the grade
of formula A. The grade gr(A) is defined by induction on the structure of a
formula as follows:

(1): gr(A) =0 for every atomic formula A;
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2): gr(—A) =gr(4) + 1;
3):
: gr(VzA(z)) = gr(4) + 1;

(2): er(

(3): gr(A D B) = max(gr(A),gr(B)) +1;
(4): er(
(5): gr(3zA(z)) = gr(4) +1;
(6): er(
(7): er(
(8): er(

a3

4

6): gr(K;(A)) =gr(A)+2 fori=1,...,n

a3

7): gr(A®) =sup{gr(A): Ae &} + 1;

8): gr(V®) =sup{gr(A4): Ae &} + 1.

Here « + 3 is the standard sum of two ordinal numbers «, 3.2 The grade of
the (cut) of (5.1) with outer K = K, ...K;,, denoted by -, is defined by

r(M)+ ¢ if the outermost symbol of M is K;
(52) y=1{8 ‘
~ legr(M)+£+1 otherwise.

Thus, the grade of the (cut) is the sum of the grade of the cut-formula and
the depth of the outer K if the outermost symbol of M coincides with the
innermost symbol of K. We count the depth of K as ¢ 4 1 if they do not
coincide. The second case is applied if £ = 0.

We also associate other two ordinal numbers, called the left and right
ranks, with the cut-formula M in (5.1). The left rank is defined as follows.
Let P be a proof of the form (5.1) with the cut-formula M. We will define
pe(n) inductively for each sequent 1 in P in the following. For an initial
sequent 7, we define

(5.3) peln) = { 1 ifyp has,: the form K'[M — M] for some outer K';
0 otherwise.

Now let i be the lower sequent of some occurrence (J) of an inference in P,
and suppose that the left rank py(¢) of M at each upper sequent ¢ of (J) is
already defined. Then

sup{p¢(&€) : & is an upper sequent of (J)} + 1
(5.4)  pe(n) = if the succedent of n contains M,
0 otherwise.

The left rank py of the (cut) of the proof of (5.1) is the left rank of M at the
left upper sequent K[I' — ©, M| of (5.1). The right rank p, of the proof of
the (cut) of (5.1) is defined in the dual manner.

3 Any formula in the space P,,, which was defined in Part I and we are now working on,
has a grade smaller than w?. More precisely, it can be verified that gr(A4) < w(t + 1) for
any A € P; and t (0 < t < w),which implies gr(4) < w? for any A € P,.
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To prove the assertion (x), we carry out three inductions:

Induction Step 1 (Subsection 5.2.1): Under the induction hypothesis that
(%) holds for any proof where the grade of the (cut) is less than -y, we prove
(%) for any proof where the grade is -y, the left rank is one and the right rank
is also one.

Induction Step 2 (Subsection 5.2.2): Under the induction hypothesis that
() holds for any proof where the grade is 7, the left rank is one and the
right rank is less than p,, we prove (x) for any proof where the grade is 7,
the left rank is one and the right rank is p,.

Induction Step 3 (Subsection 5.2.3): Under the induction hypothesis that
(%) holds for any proof where the grade is -y, the left rank is less than p, and
the right rank is p,, we prove (x) for any proof where the grade is 7, the left
rank is py and the right rank is p,.

Before going to the main body of the proof, we mention certain lemmata
about the substitution of free variables.

LEMMA 5.1. Let b, K[[' — ©]. Then there is a proof P of K[I' — O] in
G L., such that there remain an infinite number of free variables not occur-
ring in P.

PROOF. Let P’ be a proof of K[I' — 0]. Since I', © are finite sets and
each formula has at most finite number of free variables as noted in Part I,
they contain only a finite number of free variables. Denote the set of free
variables not occurring in K[I' — ©] by {bo, b1,...}. We substitute the free
variable by for each free variable a; in P’ but not in K[I' — ©] (¢ = 0,1, ...).
The new tree is denoted by P. Then we can prove, by induction on the proof
P’ that P is a proof of K[I' — ©]. There remain an infinite number of free
variables not occurring in P. [ |

From this lemma, we can always assume that there remain an infinite
number of free variables not occurring in a proof.

LEMMA 5.2. Let P be a proof of K[I'(a) — ©(a)] in GLy,.

(1): Let b be a free variable not occurring in P. The tree P' obtained from P
by substituting b for every occurrence of a is a proof of K[I'(b) — ©(b)].

(2): Let t be a term. Then there is a proof P' of K[['(t) — ©(t)] which
15 obtained from P by substituting free variables not occurring in P
for some finite number of free variables in P and by substituting t for
every occurrence of a.



Game logic. .. 295

In (1) and (2), P’ is cut-free whenever P is cut-free.

PROOF. (1): By induction on the proof P.

(2): This assertion can be proved in the same way as (1) under the assump-
tion that every eigenvariable occurring in P is neither the free variable a
nor is included in £. When P does not satisfy the assumption, we change
the proof P into another one with the same endsequent so that it satisfies
this assumption as follows. Let b be a free variable occurring as an eigen-
variable in P, and suppose that b is a itself or is included in the term ft.
We substitute a new free variable not occurring in P for every occurrence
of b above the inference whose eigenvariable is b. This new tree P* is also a
proof of K[I'(a) — ©(a)] and does not include b as an eigenvariable. Since
the number of such free variables is at most finite, repeating this process
finite times, we obtain a proof P** of K[['(a) — ©(a)] which satisfies the
assumption. Then we obtain a proof P’ by substituting the term ¢ for all
occurrences of the free variable a. This is a proof of K[I'(t) — ©O(t)] desired.

|

5.2 Reductions

In the following, we consider a proof P whose last inference is of the form
(5.1).

1) Suppose that M belongs to at least one of I', A, O, A.

1.1) When M € I', we change the last part of the proof into

K[M,A — A]
KA 5 oA W

The upper sequent of this inference is the right upper sequent of (5.1). Thus
we simply eliminate the (cut).

1.2) When M € ©,A or A, we can eliminate the (cut) in a similar way.

From 1.1) and 1.2), we can assume M ¢ I'UO©UAUA. This assumption
is made throughout the remaining part of Subsection 5.2. Then neither of
the upper sequents of (5.1) is an initial sequent, i.e., each is the lower sequent
of some inference. That is, the last part has the following form:

o o o (Il) o o o (12)
K[I' - 0, M] K[M,A — A]
K[['A — 0,A]

(M) (cut).

We consider every case according to inferences (I;) and ([2) for the upper
sequents of the (cut).
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5.2.1. Induction Step 1

Consider a proof of the form (5.1) with grade v and p; = p, = 1. We show
by induction that we can find a cut-free proof with the same endsequent.
The induction hypothesis is:

for any proof of the form (5.1) with the grade smaller than -,

(55) we can find a cut-free proof with the same endsequent.

2) Suppose that at least one of (I7) and (I3) is (th).
2.1) When (1;) is (th), the last part of the proof is expressed as

K[I'" - o] (th)
K[I' - ©,M] K[M,A — A
K[I')A — ©,A]

(M)(cut),

where I' C T',0' C © and M ¢ ©O. Then we can eliminate the (cut) as
follows:
K[I'" — 0]
K[I')A — 0, 4]

2.2) When (I2) is (th), we can eliminate the (cut) in the dual manner.

(th).

Therefore we assume in the remaining of Subsection 5.2.1 that neither
(I1) nor (I2) is (th). Hence M is the principal formula of (I;) as well as
of (I3). Also, neither (I;) nor (I2) is (B-A) and also neither is (B-V), since
pe = pr = 1. Thus we have the following cases.

(a): When M is of the form —A, (I;) and ([3) are (— —) and (= —).
(b): When M is of the form A D B, (1) and (I2) are (—D) and (D—).

(c): When M is of the form VxA(z), (I1) and (I3) are (— V) and (V —),
respectively; and similarly when M is of the form JzA(z), (I;) and
(I3) are (— 3) and (3 —), respectively.

(d): When M is of the form A®, (I;) and (I2) are (— A) and (A —). When
M is of the form V®, (I;) and (I3) are (— V) and (V —).

(e): When M is of the form K;(A), there are two cases based on the in-
nermost symbol of the outer K of the lower sequents of (1) and (I3).
If the innermost symbol is not Kj;, both (1) and (I2) are (K — K)¢,
and otherwise, both are (K — K)y.
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3) Suppose that (I;) and (I3) are operational inferences whose principal
formulae are M. In these cases, the reductions are similar to the original
ones in Gentzen [1]. Nevertheless, since the evaluations of grades are specific
here, we give full reduction steps in the cases of A and V.

3.1) When the outermost symbol of M is A, the last part of the proof is

{K[I' - ©,B]: Be®} (= A) K[A,A — A
K[I' - 0,A®] K[AN®,A = A
K[['A — 0,A]

(A=)

(A®) (cut),
where A € ® and @ is an allowable set. The grade of this (cut) is v =
gr(A®) + ¢+ 1. This last part is reduced into

K[I' = ©, 4] K[A,A — A
K[I')A — ©,A]

(4) (cut).

If the outermost symbol of A is the innermost symbol Kj, of K, the grade
of the new (cut) is gr(A) + ¢, and otherwise, it is gr(A4) + ¢ + 1. In either
case, the grade of this (cut) is smaller than v = gr(A®) 4+ £ 4+ 1. Hence we
can eliminate this (cut) by the induction hypothesis.

3.2) When the outermost logical connective of M is V, the last part is:

K[I' - ©, A(a)] (= V) K[A(t),A — A] (¥ =)
K[I' - ©,VzA(z)] K[VzA(z),A — A
KIT.A 5 0.4 (VzA(z)) (cut).

Let P’ be the subproof of K[I' — 0, A(a)] in P. Lemma 5.2.2 ensures that
there is a proof P" of K[I' — ©, A(t)] which is obtained from P’ by substi-
tuting new free variables for some free variables in P’ and substituting ¢ for
a. Then we can reduce the last part into

K[I' = 0, A(t)] K[A(t),A — A]
KI'A — ©,A]

(A(t)) (cut).

Since the grade of the new (cut) is gr(A(t)) + £+ 1 or gr(A(t)) + 4, it is
smaller than the grade of the original (cut), gr(VzA(z)) + £ 4+ 1. Hence we
can find a cut-free proof of K[I'; A — ©, A] by the induction hypothesis.

Note that Lemma 5.2.2 is used in the case of 3, too.
4) Suppose that (/1) and (I3) are K-inferences. Recall that neither (I;) nor

(I2) is (B-A) and also neither is (B-V). We have to consider the following
two cases: both (I1) and (I3) are (K — K)¢ or both are (K — K)y.
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4.1) When M is of the form K;(A) for some A and K; is not the innermost
symbol of K, the last part of the proof is:

(K—) K)c

KKi[F,Ki(E) — A] (K N K)C KKZ[A,A,Kl(H) — A]
K[K;(T'E) = K;(A)] K[K;(A), K;(AII) — K;(A)]
K[Ki(F7E:A:H) - Kl( )]

(cut).

The grade of this (cut) is v = gr(A) + £ + 3 by the definition of grades.
The last part is reduced into

KKi[I',K;(E) — A] KE;[A, A K (M) = Al
KK[L, A Ki(5 1) = Al e ey
KK, (T,A,E,101) — K;(A)]

(cut)

The grade of this new (cut) is gr(A) +£+2 or gr(A) 4+ £+ 1, which is smaller
than v = gr(A) + £ + 3. Thus we can eliminate this (cut) by the induction
hypothesis.

4.2) Suppose that M is of the form K;(A) for some A and Kj is the innermost
symbol of K. The last part of the proof is different from that in 4.1) only in
that the outer K K; should be simply K in the uppermost sequents in the last
part and accordingly, two (K — K)¢’s should be replaced by (K — K)y.
Here the grade of the (cut) is v = gr(A) + ¢ + 2. This last part is reduced
into
K[ILKi(E) » A]  K[A A, Ki(IT) — A]
K[F,A,Ki(:,ﬂ) _>A] (K_)K)U .
K[K;(T',AE,1I) — K;(A)]

The grade of this new (cut) is gr(A) + ¢ or gr(A) + ¢ + 1 by (5.2), and is
smaller . Hence we can eliminate this (cut) by the induction hypothesis.

(cut)

5.2.2. Induction Step 2

Consider a proof of the form (5.1) where the grade is -y, the left rank py is 1
and the right rank is p, > 1. We prove by induction that there is a cut-free
proof with the same endsequent. The induction hypothesis is:

for any proof of the form (5.1) with the grade =,
(5.6) the left rank equal to 1 and the right rank lower than p,,
we can find a cut-free proof with the same endsequent.

5) When (I3) is (th), we can change the proof into one with a lower right
rank. Then we can eliminate the (cut) by the induction hypothesis.
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When (1;) is (th), the (cut) is eliminated in the same manner as in 2.1)
since py = 1. Hence we can assume in the remaining of Subsection 5.2.2 that
(11) is not (th).

In the following reduction steps except for 7.3), the outer K and the
cut-formula M remain unchanged. Hence the grade of the (cut) remains
unchanged.

6) Suppose that (I2) is an operational inference.
6.1) When (I3) is (D—), the last part of the proof is

K[M,A"— A, A K[B,M,A" — A

K[I' = 0, M] K[AD B,M,A" = A]
K[I,[AD B],A” = O, A]

(5—=)

(cut),

where [A D B]is AD B and Ais A'U{A D B} if M is not A D B, and
[A D B]is empty and A is A" if M is A D B.
6.1.1) When M is not A D B, the last part is reduced into

KL —0,M] KMA = AA] o KL -»0,M KMBA A
K[[,A" = ©,A, A] K[B,T,A' = ©,4]
K[AD B,T,A" = 0, A]

cut)

(>—).

Since these (cut)’s have lower right ranks than p,, we can eliminate them by
the induction hypothesis. Note that even when M is A D B, this reduction
is legitimate.

6.1.2) When M is A D B, we have a cut-free proof of K [A D B,I', A — 0, A]
by 6.1.1) and continue

K[l -©,M] K[ADB,T,A—0,A]
K[I')A — 0,A]

(cut).

Since the right and left ranks of this (cut) are 1, we can eliminate this (cut)
by the induction hypothesis.

6.2) When (I2) is (V —), the last part of the proof is
{K[M,A,A" = A]: Aec ®}

K[I' = 0, M] K[M,v®,A" — A]
K[[,V®,A" — 0, A]

(V=)

(cut),

where @ is an allowable set, and A is A'U{V®}. The right rank of M at each
upper sequent of the (V —) is lower than the right rank p, of the (cut) by
(5.4). We combine the subproof rooted at each upper sequent of the (V —)
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with the subproof rooted at the right upper sequent of the (cut) as follows:
for each A € @,

K[I' = 0, M] MMAA%M(t)
K[, A,A — 0,4] cut)-

Since the right rank of each of these (cut)’s is lower than the right rank p,
of the original (cut), we can find a cut-free proof of K [I', A, A" — O, A] for
each A € ® by the induction hypothesis. Then we continue

{KI[,A,A" - ©,A]: Ac @} v =)
K[[,Vv®, A" — 0,A] '

6.3) When (I3) is one of the other operational inferences, we can reduce the
proof into one with a lower right rank (see Gentzen [1] ). In the cases of
(= V) and (3 —), we need Lemma 5.2.1.

7) Suppose that (I2) is a K-inference.
7.1) When (I3) is (B-A), the last part of the proof is

(KM, A= A Ki(A)]: A€ ) K[Ki(A8), M, A = A] (4

K[I' - 0, M] K[M,A — A] (cut)
K[T,A — 0,4] cus)-
where @ is an allowable set. This is reduced into
K[r-o,M] K[MA-AK(A)] K[P=0,M]  K[M,K;(A®),A—A]
K[I,A—0,A,K;(A)] Acd K[Ki(A®)),[,A—0,A] (B-7)
-A),

K[I')A = ©,A]

where the above inferences are (cut)’s with the cut-formula M. Since these

(cut)’s have lower right ranks than p, by (5.4), we can eliminate the (cut)’s

by the induction hypothesis.

7.2) When (I3) is (B-Y), the reduction is parallel to that in 7.1), except the

use of Lemma 5.2.1.

7.3) When (1) is (K — K)¢, the last part is, by the assumption p, = 1,
KKGDKi(®) 5 A] oo KA, Ki(4), Ki(ID) - A

K[K;(T,E) = Ki(4)] K[K;(A), K;(ATI) — K;(A)]
K[K;(I',E,AII) — K;(A)]

(K —)K)C

(cut).

The grade of this (cut) is v = gr(A) 4+ £ 4+ 3. We reduce the last part into
KKZ[F,Kl(E)%A] (K—)K)U
KK;[Ki(I', E) = Ki(A)] KK;[Ki(A), A, K;(II) = A]
K[K;(T',E,A,1I) — K;(A)]

(cut)
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The grade of this new (cut) is gr(A) + ¢+ 3, which is the same as -y. Since
this new (cut) has a lower right rank than p,, we can eliminate the (cut) by
the induction hypothesis.

7.4) When (I) is (K — K)y, the last part of the proof is the same as that
in 7.3), except that the outer KK; is K in the uppermost sequents in the
last part and both (I;) and (I2) are (K — K)y. In this case, the innermost
symbol of K is K;. The grade of this (cut) is v = gr(A) + £ + 2. The last
part is reduced into

KN K@ = A 5 5o,
K[K;(I',E) = K;i(4)] K[K;(A),A, K;(Il) — A]
KA KTED A 0 o0

K[K;(I'E,A,II) — K;(A)] .

(cut)

The grade of this (cut) is the same as v = gr(A) + £ + 2, and this new (cut)
has a lower right rank than p,. By the induction hypothesis, we can eliminate
the (cut).

5.2.3. Induction Step 3

Now we consider a proof of the form (5.1) where the grade is v, the left rank
is p¢ > 1 and the right rank is p,. In this case, the succedent of at least one
upper sequent of the inference (I7) has M. The induction hypothesis is:

for any proof of the form (5.1) with the grade =,
(5.7)  the left rank lower than py and the right rank equal to p,,
we can find a cut-free proof with the same endsequent.

8) When (1) is (th), it is easy to reduce the proof into one with a lower left
rank. By the induction hypothesis, we can eliminate the (cut).

In the following reduction steps, the outer K and the cut-formula M
remain unchanged. Hence the grade of the (cut) remains the same, too.

9) Suppose that (1) is an operational inference.
9.1) When (I) is (D—), the last part of the proof is

MF%QMA]KBF%QWHDﬂ

K[A> B,T' - 0, M] KIMA =]
K[A>B,I",A > 0, A] ut),

where I"is Y U{A D B} and A D B ¢ I'". We have to consider the following
three cases: (a) neither A nor B is M; (b) A is M; and (¢) B is M. In
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either case, we can reduce, in the standard manner, the above last part into
a derivation having (cut)’s with the grade v, lower left ranks and the right
rank p,. For example, in case (c), the last part is reduced into

K[I' = ©,M,A] K[M,A — A] (cuty _ KM A = A]
K[I";A — ©,A, 4] K[B,I",A — 0,A]
K[ADB,I",A - 0,4]

(th)

(D—).

Hence we can find a cut-free proof of K[A D B,I",A — O, A] by the induc-
tion hypothesis.

9.2) We omit the other cases of operational inferences for (I7). Note that
Lemma 5.2.1 is needed for the cases of (— V) and (3 —).

10) Suppose that (1) is a K-Inference.
10.1) The inference (I;) can be neither (K — K)¢ nor (K — K)y, since
pe > 1.
10.2) When (1) is (B-A), the proof is
(K[ = ©,M,Ki(4)]: A€ @} K[K(A8).T =0, M] 5 )
K[I' - ©, M] K[M,A — A]
K[[,A — 0, 4]

(Cut),

where ® is an allowable set. This is reduced into

K[P—0,Ki(A),M] K[M,A—A] K[K;(A®)'—»0,M]  K[M,A—A]
K[, A—0,A,K;(A)] Acd K[Ki(A®),[,A—0,A]

(B'/\)a
K[[,A — 0, 4]

where the above inferences are (cut)’s with the cut-formula M. Since each
(cut) has a lower left rank than py, we can eliminate these (cut)’s.

10.3) When (1) is (B-Y), the reduction is similar to 10.2), except the use of
Lemma 5.2.1. m

REMARK 5.3. In each reduction step, the order of (B-A) or (B-Y) and (K —
K)¢ or (K — K)y remains unchanged. Using this fact, we can prove the
following: Consider a proof P of K[I' = O] in G Ly,. If no Barcan inferences
(B-A) and (B-V) occur in the trunk of P, then there is a cut-free proof of P’
of K[I' = O] such that no (B-A) and (B-Y) occur in the trunk of P'.
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