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also an alternative sequent calculus formulation of GL!: The corresponding

cut-elimination theorem will be provided, which will be proved in Section 5.

In Section 3, we prove the term existence theorem in sequent calculus

GL!; using the cut-elimination theorem. As steps to this result, we provide

a more basic term existence theorem and another result which we call a

separation theorem. These two results hold, in fact, in GLm for any m:

We will �nd that the separation theorem manifests cognitive relativism

in that the epistemic world of each player is separated from the others'. This

enables us to prove the results of Section 3. These results fail to hold for the

S4-type extension, in which knowledge must be always true relative to the

thinker and ultimately relative to the investigator.

In our sequent calculus, the Barcan rules, ^Ki(�) � Ki(^�) for an al-

lowable set � and 8xKi(A(x)) � Ki(8xA(x)); are formulated as inference

rules, (B-^) and (B-8); which violate the subformula property. Hence the

cut-elimination theorem for GLm does not give a proof with the full subfor-

mula property. Nevertheless, this is not an obstacle in obtaining the term

existence theorem. For other applications, unfortunately, those inferences

become obstacles. A �nal remark is that since the Barcan rules are not

needed in the �nitary propositional fragment of GL!; the cut-elimination

theorem for the �nitary propositional fragment of GL! provides a cut-free

proof with the full subformula property.

2. Sequent Calculus GL! and its Variations

2.1 Sequent Calculus GL! and the Cut-Elimination Theorem

We work on the same language P! as in Part I, and prepare an auxiliary

symbol!. We call the expression �! � a sequent i� � and � are �nite sets

of formulae. The sets � and � are called the antecedent and succedent of the

sequent �! �. The expression �;�! �;� is used to denote �[�! �[�.

We omit the set-theoretical bracket fAg, for example, fAg;� ! �; fBg is

denoted as A;�! �; B.

Our sequent calculus GL! is de�ned as follows:

Initial Sequents: An initial sequent is of the form A ! A for any

formula A.

Inference Rules: We have three kinds of inference rules: structural, oper-

ational and K-inference rules.
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Structural Inferences:

�! �

�;�! �;�
(th)

�! �;M M;�! �

�;�! �;�
(M) (cut);

where M is called the cut-formula.

Operational Inferences:

A;�! �

^�;�! �
(^ !) (A 2 �)

f�! �; A : A 2 �g

�! �;^�
(! ^)

fA;�! � : A 2 �g

_�;�! �
(_ !)

�! �; A

�! �;_�
(! _) (A 2 �)

�! �; A B;�! �

A � B;�! �
(�!)

A;�! �; B

�! �; A � B
(!�)

�! �; A

:A;�! �
(: !)

A;�! �

�! �;:A
(! :)

A(t);�! �

8xA(x);�! �
(8 !)

�! �; A(a)

�! �;8xA(x)
(! 8)

A(a);�! �

9xA(x);�! �
(9 !)

�! �; A(t)

�! �;9xA(x)
(! 9);

where � is an allowable set, t is a term, and a is a free variable which must

not occur in the lower sequents of (! 8) and (9 !):

In an operational inference, the formulae to be changed in the upper

sequents are called the side formulae, and the formula newly created in the

lower sequent is called the principal formula. The free variable a in (! 8)

and (9 !) is called an eigenvariable.

The following two inference rules are speci�c to our system.

K-Inferences:
�;Ki(�)! �

Ki(�;�)! Ki(�)
(K ! K);

where j�j ; the cardinality of �; is at most one. Recall that Ki(�) denotes

the set fKi(A) : A 2 �g and Ki(�;�) is Ki(� [�):
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The last inference rules are as follows:

f�! �;Ki(A) : A 2 �g Ki(^�);�! �

�! �
(B-^);

�! �;Ki(A(a)) Ki(8xA(x));�! �

�! �
(B-8);

where � is an allowable set and the free variable a must not occur in

Ki(8xA(x));�! � of (B-8). We call these the Barcan inferences. The side

formulae of (B-^) (and (B-8)) are Ki(A) (A 2 �) and Ki(^�) (Ki(A(a))

and Ki(8xA(x)); respectively): We need these to derive the Barcan sequents

^Ki(�)! Ki(^�) and 8xKi(A(x))! Ki(8xA(x)).

In a similar manner to in Part I, a proof is de�ned to be a countable

tree with the following properties: (i) every path from the root is �nite;

(ii) a sequent is associated with each node, and the sequent associated with

each leaf is an initial sequent; and (iii) adjoining nodes together with the

associated sequents form an instance of the above inference rules; and (iv)

all formulae occuring in the proof belongs to Pt for some t < !.1 A sequent

� ! � is said to be provable in GL!, denoted by `! � ! �; i� there is a

proof such that �! � is associated with its root. This �! � is called the

endsequent of the proof.

Without K-inferences, the above system is an in�nitary extension of

Gentzen's LK: If we restrict the system to the �nitary propositional frag-

ment, then it is the sequent calculus formulation of KD4 with n knowl-

edge operators. Ohnishi-Matsumoto [5] and [6] �rst formulated some modal

propositional logics including propositional T, S4 and S5, in sequential cal-

culi. Ours is an in�nitary predicate extension of KD4 with the Barcan rules

along this line of research. We will discuss the extensions of some other

systems later.

We use the same notations GL! and `! as in Part I. This is due to the

following theorem.

Theorem 2.1. Let � be an allowable set of closed formulae and A a for-

mula. Then `! ^�! A if and only if � `! A in the sense of Part I.

The following lemma together with the deduction theorem (Lemma 2.1)

of Part I implies Theorem 2.1.

Lemma 2.2. 1): If `! A in the sense of Part I, then `! ! A:

1Condition (iv) is used only for the equivalence between game logics between the Hilbert

and Gentzen styles.



Game logic: : : 277

2): If `! � ! �; then `! ^� � _� in the sense of Part I, where ^� (and

_� ) is interpreted as :A_A (and :A^A) when � (and �; respectively) is

empty.

Assertion (1) is proved inductively on the structure of a proof of A in the

Hilbert Style. Assertion (2) is proved inductively on the structure of a proof

of � ! �: For example, (PIi): Ki(A) � KiKi(A) is proved in the sequent

calculus as follows:

Ki(A)! Ki(A)

Ki(A)! KiKi(A)
(K ! K);

which implies `! ! Ki(A) � KiKi(A) by (!�): Conversely, let us prove

that (K ! K) is allowed in the Hilbert style formulation: Suppose `!
(^�)^(^Ki(�)) � _�: By Lemma 3.3.1) of Part I and (MPi), `! Ki((^�)^

(^Ki(�))) � Ki(_�): Using `! ^Ki(�) � Ki(^�) for any �nite set � and

also (PIi), we have `! ^Ki(�;�) � Ki(_�): Since j�j � 1; `! ^Ki(�;�) �

_Ki(�):

In GL!; the sequent ^Ki(�) ! Ki(^�) is provable for any allowable

set �, using (B-^): For any A 2 �; `! ^Ki(�) ! Ki(A); which implies

`! ^Ki(�)! Ki(^�);Ki(A) by (th): Hence

f^Ki(�)! Ki(^�);Ki(A) : A 2 �g Ki(^�)! Ki(^�)

^Ki(�)! Ki(^�)
(B-^):

In the case of �nite �, ^Ki(�)! Ki(^�) is provable without (B-^).

In the same way, we can show `! 8xKi(A(x))! Ki(8xA(x)):

Note that Lemma 2.2.2) could not hold without assuming the Barcan

axioms for the Hilbert style formulation and the Barcan inferences for the

Genzten style formulation.

In Section 4, we will give an alternative formulation of GL! and prove

the cut-elimination theorem for it in Section 5. From this cut-elimination

theorem, we will prove the following in Section 4.

Theorem 2.3. [Cut-Elimination for GL!] If `! �! �; there is a cut-free

proof of �! � in GL!.

In GL!; if the Barcan inference (B-^) or (B-8) occurs in a proof, some

formulae of the form Ki(�) occur in the upper sequent but not in the lower

sequent of the inference. Hence the above cut-elimination theorem does

not imply the full subformula property that every formula occurring in a
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cut-free proof is a subformula of a formula occurring in its endsequent.2

Nevertheless, the subformula property holds for the other kinds of formulae.

This partial violation of the subformula property is sometimes an obstacle

and sometimes not. Fortunately, it does not prevent us from proving the

term existence theorem, which is the present primary purpose of Part II.

In logic GL!, we give a special attention to a part of a cut-free proof,

where the violation of the subformula property is kept minimal. Consider a

proof P: In the path from the root to a leaf, the lower sequent of the lowest

occurrence of (K ! K) is called a boundary. If the path does not have

such an inference, the boundary is the initial sequent. The part of P from

the endsequent to all boundaries is called the trunk of P: In the trunk of a

cut-free proof, there is no occurrence of inference (K ! K). Since the side

formulae of inference (B-^) or (B-8) are of the form Kj(B) for some j and

B, the following holds for a cut-free proof P :

any formula occurring in the trunk of P is

a subformula of some formula occurring in the endsequent

or has the outermost symbol Kj for some j.

(2.1)

This property will be used in proving the term existence theorem in Section

3.

When we prohibit the use of (K ! K); (B-^) and (B-8); the system

is essentially the same as Gentzen's LK with the in�nitary modi�cation,

which corresponds to the base logic GL0 de�ned in Part I. We denote the

provability in GL0 by `0 : Then it is shown as Proposition 4.1 of Part I that

`! �! � implies `0 ��! ��:(2.2)

Recall that �� is obtained from � by eliminating all Kj (j = 1; :::; n): Theo-

rem 4.2 of this paper states that cut-elimination holds for GL0 and implies

the full subformula property, since GL0 does not allow (B-^) and (B-8).

Hence logic GL0 is contradiction-free, which together with (2.2) implies that

logic GL! is also contradiction-free.

The above cut-elimination theorem does not rely on the Barcan infer-

ences. That is, Theorem 2.3 holds when we prohibit one or both of (B-^)

and (B-8):When we prohibit both (B-^) and (B-8); a cut-free proof satis�es

the full subformula property. Using this fact, we can prove that the asser-

tion of Lemma 2.4 of Part I, i.e., C(A) ! Ki(C(A)); could not necessarily

2A subformula of a given formula A is de�ned in the standard inductive manner, but

note the step for quanti�cation that if 8xB(x) and 9xB(x) are subformulae of A; then

B(t) is a subformula of A for any term t.
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be provable in GL! without (B-^) and (B-8): This will be discussed more

in a separate paper.

When we restrict our attention to the �nitary propositional fragment of

our logic, the Barcan inferences (B-^) and (B-8) become unnecessary, as

was already stated. Therefore a cut-free proof in the �nitary propositional

fragment of GL! has the full subformula property.

2.2 Variations of GL!

The sequent calculus formulation of GL!p is obtained from GL! by replacing

(K ! K) by the following (K ! K)p:

�! �

Ki(�)! Ki(�)
(K ! K)p;

where j�j � 1: Logic GL!p is weaker than GL!; e.g., Ki(A) ! KiKi(A) is

not necessarily provable in GL!p, but is provable in GL!: Cut-elimination

as well as the other metatheorems of Section 3 hold for GL!p: In this sense,

GL!p has a status similar to GL!. However, the epistemic axiomatiza-

tion of Nash equilibrium needs some modi�cation in GL!p; i.e., the com-

mon knowledge formula should be modi�ed by using
S
m<! Kp(m) instead ofS

m<! K(m). Recall that Kp(m) = fKi1 :::Kim : each Kit is one of K1; :::;Kng

and K(m) = fKi1 :::Kim : each Kit is one of K1; :::;Kn with it 6= it+1 for

t = 1; :::;m� 1g: In game theory applications, extensions of KD4 seem more

natural than those of KD or K, which would become clearer only by working

more on game theoretical applications.

Among others, the in�nitary predicate extension of modal logic S4 is of

special interest. The sequent calculus of the in�nitary predicate extension

of S4 is obtained from GL! by replacing (K ! K) by the following two

inferences:

�;�! �

Ki(�);�! �
(K !)

Ki(�)! A

Ki(�)! Ki(A)
(! K):

We denote this system by GL
!S4. The cut-elimination theorem for GL

!S4 is

obtained by modifying the proof for GLm given in Section 5. One important

consequence is that a cut-free proof in the �nitary propositional fragment of

GL
!S4 satis�es the full subformula property.

In the full predicate calculus GL
!S4; the Barcan inference (B-^) is

needed to prove C(A) ! Ki(C(A)): In this case, (B-^) and also (B-8)

become obstacles in applying the cut-elimination theorem in that (2.1) does

not hold. Therefore we do not obtain the results in Section 3 for GL
!S4:



280 M. Kaneko, T. Nagashima

3. Applications of the Cut-Elimination Theorem

In this section, we assume the cut-elimination theorem (Theorem 2.3), whose

proof will be given in Sections 4 and 5, and will prove several theorems. From

them, we will obtain the term existence theorem (Theorem 3.5) used for the

undecidability results in Part I.

3.1 Term Existence Theorems and Separation Theorem

In this subsection, we will give some results on GL!; all of whose proofs will

be given in the next subsection.

The �rst result is term existence for an individual player.

Theorem 3.1. [Term Existence I] If `! Ki(�) ! 9x1:::9x`Ki(A(x1; :::;

x`)); then `! Ki(�)! Ki(A(t1; :::; t`)) for some terms t1; :::; t`:

When the system has closed terms and no free variables occur in � and

in 9x1:::9x`Ki(A(x1; :::; x`)), we can assert that t1; :::; t` are closed terms.

It follows from Theorem 3.1 thatKi(9xA(x))! 9xKi(A(x)) is not neces-

sarily provable. Indeed, suppose that the system has a unary predicate P (�)

and `! Ki(9x8y(P (y) � P (x)))! 9xKi(8y(P (y) � P (x))): Then it follows

from Theorem 3.1 that `! Ki(9x8y(P (y) � P (x)))! Ki(8y(P (y) � P (t)))

for some term t. By (2.2), we have `0 9x8y(P (y) � P (x)) ! 8y(P (y) �

P (t)): Since `0 ! 9x8y(P (y) � P (x)); we have `0 ! 8y(P (y) � P (t)): By

the cut-elimination theorem for GL0; however, this is not provable. Hence

Ki(9x8y(P (y) � P (x)))! 9xKi(8y(P (y) � P (x))) is not provable.

An assertion parallel to Theorem 3.1 holds for a disjunctive formula:

If `!Ki(�)!_A2�Ki(A); then `!Ki(�)!Ki(A) for some A2�;(3.1)

which is also proved in the same way as Theorem 3.1. Using this fact, we

�nd that Ki(A _ B) ! Ki(A) _Ki(B) is not necessarily provable. Hence

the statements of Proposition 3.1 of Part I are, indeed, unparalleled.

A result similar to the above term existence (and disjunctive property)

theorem is known for intuitionistic logic, cf., Harrop [2] and [3] (see also van

Dalen [7]). From the view point of formal systems, logic GL! has the restric-

tion of the succedents of the upper and lower sequents of (K ! K) to contain

at most one formula, while intuitionistic logic has the same restriction on

any sequent (cf., Gentzen [1]). In fact, to prove the above theorem, we will

modify the Barcan inference so that this restriction holds for all sequents in

the trunk of the cut-free proof of Ki(�)! 9x1:::9x`Ki(A(x1; :::; x`)); which
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will be stated in Lemma 3.2. Thus Theorem 3.1 is based on the property of

our logic similar to that of intuitionistic logic.

To state Lemma 3.2 and to prove Theorem 3.1, we use the following,

slightly di�erent formulations of (B-^) and (B-8):

f�! �;Ki(A) : A 2 �g Ki(^�);�! �

�;�! �;�
(B-^)�;

�! �;Ki(A(a)) Ki(8xA(x));�! �

�;�! �;�
(B-8)�;

where � is an allowable set and the free variable a must not occur in

Ki(8xA(x));�;� ! �;� of (B-8)�. When we have (th); (B-^) and (B-

8) are equivalent to (B-^)� and (B-8)�, respectively, in that provability `!;

as well as the cut-elimination theorem, is not a�ected by the use of (B-^)�

and (B-8)� instead of (B-^) and (B-8): Nevertheless, (B-^)� and (B-8)� are

more convenient in proving Theorem 3.1, and the original ones are more for

other purposes.

Lemma 3.2. Suppose `! Ki(�) ! 9x1:::9x`Ki(A(x1; :::; x`)): Then there is

a cut-free proof P of Ki(�)! 9x1:::9x`Ki(A(x1; :::; x`)) such that the succe-

dent of each sequent in the trunk of P has at most one formula.

To prove the term existence theorem stated in Part I, i.e., Theorem 3.5

in the following, we need one more theorem. A formula A is said to be

indecomposable i� A is atomic or the outermost symbol of A is Kj for some

j = 1; :::; n: We say that for i = 1; :::; n; a formula A is a Ki-formula i�

the outermost symbol of every maximal indecomposable subformula of A

is Ki; and that A is a K�i-formula i� Ki occurs only in the scope of Kj

for some j 6= i: These two notions are mutually exclusive. For example,

K1(K2(A) � B) � K1(B) is a K1-formula, K2(K1(A) � B) � K3(B) a

K�1-formula, and K1(K2(A) � B) � K2(B) is neither a K1-formula nor a

K�1-formula.

Theorem 3.3. [Separation Theorem] Let �i; �i be �nite sets of

Ki-formulae; and ��i;��i �nite sets of K�i-formulae (i = 1; :::; n): If `!
�i;��i ! �i;��i; then `! �i ! �i or `! ��i ! ��i:

This theorem is proved based on the following lemma.

Lemma 3.4. Let �i;�i be �nite sets of Ki-formulae; and ��i;��i �nite sets

of K�i-formulae (i = 1; :::; n): Let P be a cut-free proof of �i;��i ! �i;��i:

Then every formula occurring in the trunk of P is either a Ki-formula or a

K�i-formula.
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Using Theorem 3.3 repeatedly, we have a re�nement: Let �i;�i be �nite

sets of Ki-formulae for i = 0; 1; :::; n; where �0 and �0 are �nite sets of

nonepistemic formulae. Then

If `! �0;�1; :::;�n ! �0;�1; :::;�n;

then `! �i ! �i for some i = 0; 1; :::; n;
(3.2)

Now we can state the term existence theorem used in Part I.

Theorem 3.5. [Term Existence II] Let � be a �nite set of nonepistemic

formulae, and A a nonepistemic formula. If `! C(�)! 9x1:::9x`C(A(x1; :::;

x`)); then `! C(�)! C(A(t1; :::; t`)) for some terms t1; :::; t`:

Theorems 3.1 and 3.3 can be obtained for GLm and GLmp (m � !) as

well as for their �nitary fragments. However, they fail to hold for the S4-

type extensions: For example, `
!S4 K1(9xK1(P (x))) ! 9xK1(P (x)); but

Theorem 3.1 does not hold for this sequent in GL
!S4; where P (:) is a unary

predicate: Also, `
!S4 K1(P (a));K2(:P (a))! ; but Theorem 3.3 does not

hold for this sequent in GL
!S4: Nevertheless, it still remains open whether

Theorem 3.5 holds in GL
!S4:

Theorem 3.3 manifests cognitive relativism in GL! in that the epistemic

world of each player (even in the mind of another player) is separated from

the others'. In contrast, the S4-type extension GL
!S4 does not permit this

separation as was mentioned above, but assumes that knowledge must be

true relative to the thinker and ultimately relative to the investigator. In

GL!; cognitive relativism manifested as the separation of epistemic worlds

enables us to obtain our results.

3.2 Proofs of the Results of Section 3.1

Recall that we use (B-^)� and (B-8)� instead of (B-^) and (B-8) in the

proofs of Lemma 3.2 and Theorem 3.1.

Proof of Lemma 3.2.

Let P be a cut-free proof of Ki(�) ! 9x1:::9x`Ki(A(x1; :::; x`)) in GL!.

Consider the trunk of P: By the form of the endsequent and (2.1), the trunk

has only four types of inferences, (th); (! 9); (B-^)� and (B-8)�; and each

boundary is either an initial sequent or the lower sequent of inference (K !

K):

We prove that for any sequent � ! � in the trunk of P , there is a

sequent �! �� with its cut-free proof P 0 such that

(i): �� is a subset of �;
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(ii): the succedent of any sequent in the trunk of P 0 has at most

one formula.

Of course, �� must have at most one formula. If this is done, we have a

cut-free proof of Ki(�) ! 9x1:::9x`Ki(A(x1; :::; x`)) with the property (ii):

We prove this assertion by induction on the tree structure of the trunk of P

from each boundary.

First, consider a boundary of the trunk of P . Then � ! � is an initial

sequent or the lower sequent of inference (K ! K): Thus � has at most one

formula. Therefore the subproof of �! � in P is a cut-free proof with the

properties (i) and (ii):

Next, consider a sequent �! 	 in the trunk of P which is not a bound-

ary. The induction hypothesis is now that for any sequent � ! � immedi-

ately above �! 	, there is a cut-free proof of �! �� with the properties

(i) and (ii): We consider the three possible cases, (th); (! 9); (B-^)� and

(B-8)�: That is, �! � and �! 	 are upper and lower sequents of one of

these inferences.

Consider (th): The upper sequent � ! � of (th) satis�es � � � and

� � 	: By the induction hypothesis, there is a cut-free proof of � ! ��

with (i) and (ii): De�ne 	� to be ��: Adding (th) to the proof of � ! ��,

we have a cut-free proof of �! 	� with (i) and (ii):

Consider (! 9): This (! 9) is represented as

�! �0;9y1:::9ykKi(A(t; y1; :::; yk))

�! �0;9y9y1:::9ykKi(A(y; y1; :::; yk))
;

where � ! 	 is � ! �0;9y9y1:::9ykKi(A(y; y1; :::; yk)): The induction hy-

pothesis states that there is a cut-free proof P 0 of �! �� with the properties

(i); i.e., �� � �0[f9y1:::9ykKi(A(t; y1; :::; yk))g; and (ii). If �
� does not con-

tain 9y1:::9ykKi(A(t; y1; :::; yk)); we conclude that the proof P
0 of � ! ��

is the desired one. If �� consists of 9y1:::9ykKi(A(t; y1; :::; yk)); we add the

following step to the proof P 0; which is the desired one:

�! 9y1:::9ykKi(A(t; y1; :::; yk))

�! 9y9y1:::9ykKi(A(y; y1; :::; yk))
(! 9):

Consider (B-^)�:

f�! �;Kj(B) : B 2 �g Kj(^�);�! �

�;�! �;�
;

where �! 	 is �;�! �;�: By the induction hypothesis, for each B 2 �

we have a cut-free proof PB of �! �B with the properties (i), i.e., �B � �[
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fKj(B)g; and (ii), and also we have a cut-free proof P 0 of Kj(^�);�! ��

with (i); i.e., �� � �; and (ii):

If �B does not contain Kj(B) for some B 2 �, then it is a subset of

�: Hence we obtain a proof of �;� ! �B by adding a (th) to the proof

PB , which has the properties (i) and (ii): Now consider the case where �B

consists of Kj(B) for any B 2 �: Then we have a proof of �;� ! ��

combining proofs PB (B 2 �) and P 0 in the following way:

f�! Kj(B) : B 2 �g Kj(^�);�! ��

�;�! ��
(B-^)�:

This cut-free proof of �;�! �� satis�es (i) and (ii):

Finally, consider (B-8)�:

�! �;Kj(B(a)) Kj(8xA(x));�! �

�;�! �;�
;

where � ! 	 is �;� ! �;�: By the induction hypothesis, we have a cut-

free proof P 0 of � ! �� with the properties (i), i.e., �� � � [ fKj(B(a))g;

and (ii), and also we have a cut-free proof P 00 of Kj(8xA(x));�! �� with

(i); i.e., �� � �; and (ii):

If �� does not contain Kj(B(a)), then it is a subset of �: Hence we

obtain a proof of �;�! �� by adding a (th) to the proof P 0, which has the

properties (i) and (ii): Now consider the case where �� consists of Kj(B(a)):

Then we have a proof of �;� ! �� combining proofs P 0 and P 00 in the

following way:

�! Kj(B(a)) Kj(8xA(x));�! ��

�;�! ��
(B-8)�:

This cut-free proof of �;�! �� satis�es (i) and (ii):

Proof of Theorem 3.1. By Lemma 3.2, there is a cut-free proof P of

Ki(�) ! 9x1:::9x`Ki(A(x1; :::; x`)) such that the succedent of any sequent

in the trunk of P has at most one formula: By induction on the structure of

the trunk of P; we prove that for any sequent �! � in the trunk,

(�) : if � is represented as f9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::; x`))g with

k � `; then `! �! Ki(A(t1; :::; t`)) for some terms tk; :::; t`:

From this, we have the conclusion that `! Ki(�)! Ki(A(t1; :::; t`)) for some

terms t1; :::; t`: As will be argued in Subsection 5.1, we can assume that for

any proof, some free variables do not occur in it:
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For a boundary � ! �, the premise of (�) does not hold, since it is an

initial sequent of the form Kj(�)! Kj(�) or the lower sequent of (K ! K).

Consider a sequent �! � which is not a boundary in the trunk. Now the

induction hypothesis is that for any sequent immediately above �! �; (�)

holds. We assume that � is represented as f9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::;

x`))g: We will consider the following four cases, (th); (! 9); (B-^)� and (B-

8)�; depending on the last inference which is applied to get �! �:

Consider (th). Then its upper sequent has the form �0 ! �0 with �0 � �

and �0 � �. If �0 consists of 9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::; x`)); then

`! �0 ! Ki(A(t1; :::; t`)) for some tk; :::; t` by the induction hypothesis,

which together with (th) implies `! � ! Ki(A(t1; :::; t`)): If �
0 is empty,

then `! �! Ki(A(t1; :::; t`)) for any terms t1; :::; t` by (th):

Consider (! 9): Then its upper sequent is � ! 9xk+1:::9x`Ki(A(t1; :::;

tk; xk+1; :::; x`)) for some terms t1; :::; tk: If k = `; the upper sequent is �!

Ki(A(t1; :::; t`)); which is already the assertion for the lower sequent. If k < `;

then `! � ! Ki(A(t1; :::; t`)) for some terms tk+1; :::; t` by the induction

hypothesis, which is also the assertion.

Consider (B-^)�:

f�!Kj(B) : B 2 �g Kj(^�);�!9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::; x`))

�;�! 9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::; x`))
:

By the induction hypothesis, `! Kj(^�);� ! Ki(A(t1; :::; t`)) for some

terms tk; :::; t`: Then we have a proof of �;� ! Ki(A(t1; :::; t`)) by adding

the following:

f�! Kj(B) : B 2 �g Kj(^�);�! Ki(A(t1; :::; t`))

�;�! Ki(A(t1; :::; t`))
(B-^)�:

Finally, consider (B-8)�:

�! Kj(B(a)) Kj(8xA(x));�! 9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::; x`))

�;�! 9xk:::9x`Ki(A(t1; :::; tk�1; xk; :::; x`))
;

where a must not occur in �;Kj(8xA(x));�;9xk:::9x`Ki(A(t1; :::; tk�1;

xk; :::; x`)). By the induction hypothesis, `! Kj(8xA(x));� ! Ki(A(t1; :::;

t`)) for some terms tk; :::; t`: Also, there is a proof P 0 of � ! Kj(B(a)):

Then we obtain another proof P 00 of �! Kj(B(b)) by substituting b for all

occurrences of a in P
0

; where b is a new free variable not occurring in P 0 and

in the right upper sequent: Then we have a proof of �;�! Ki(A(t1; :::; t`))

by adding the following:

�! Kj(B(b)) Kj(8xA(x));�! Ki(A(t1; :::; t`))

�;�! Ki(A(t1; :::; t`))
(B-8)�:
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In the following, we use the original (B-^) and (B-8):

Proof of Lemma 3.4. As was noted in (2.1), the violation of the sub-

formula property is caused by in the occurrences of (B-^) in the trunk of

P . The side formulae of (B-^) and (B-8) are of the form Kj(�) for some

j = 1; :::; n; they are Ki-formulae if j = i or K�i-formulae if j 6= i: For any

formula of other form, the subformula property holds in the trunk. Hence

every formula occurring in the trunk must be a Ki-formula or aK�i-formula,

since the endsequent consists of Ki-formulae and K�i-formulae.

Proof of Theorem 3.3. Suppose `! �i;��i ! �i;��i; where �i;�i

are �nite sets of Ki-formulae and ��i;��i are �nite sets of K�i-formulae.

Then there is a cut-free proof P of �i;��i ! �i;��i by the cut-elimination

theorem. Consider the trunk of P: Lemma 3.4 states that any sequent in the

trunk is represented as �i;��i ! �i;��i; where �i;�i and ��i;��i consist

of Ki-formulae and K�i-formulae, respectively. We prove the following by

induction on the structure of the trunk from boundaries:

(�): `! �i ! �i or `! ��i ! ��i.

We call �i ! �i and ��i ! ��i the Ki-part and K�i-part.

A boundary is an initial sequent or the lower sequent of (K ! K). In the

�rst case, it is represented as A! A: Then A is either a Ki-formula or K�i-

formula by Lemma 3.4. In the second case, it is of the form Kj(�)! Kj(�);

and hence the formulae are Ki-formulae if j is i, or are K�i-formulae if j is

not i: Thus the assertion (�) holds.

Consider a sequent � ! � in the trunk which is not a boundary. Now

the induction hypothesis is that every sequent immediately above � ! �

satis�es (�). There are three cases we have to consider: �! � is the lower

sequent of (th); some operational inference, and (B-^) or (B-8):

(th): In this case, it follows from Lemma 3.4 that its upper and lower se-

quents are described as �0

i;�
0

�i ! �0i;�
0

�i and �i;��i ! �i;��i; where

�0

i � �i;�
0

�i � ��i;�
0

i � �i and �0
�i � ��i: By the induction hypothesis,

`! �
0

i ! �0i or `! �0

�i ! �0
�i. Thus, by (th); `! �i ! �i or `! ��i ! ��i:

(Operational Inferences): By Lemma 3.4, there are only two cases: (a)

the side formulae are Ki-formulae; and (b) they are K�i-formulae.

Consider case (a). If the K�i-part of some upper sequent is provable, the

K�i-part of the lower sequent is provable, since the K�i-parts of the upper

and lower sequents are the same. If the K�i-part is not provable for any

upper sequent, then the Ki-part of every upper sequent is provable by the
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induction hypothesis, which implies that the Ki-part of the lower sequent is

also provable.

Case (b) is parallel to case (a). Indeed, if the K�i-part of some upper

sequent is provable, the Ki-part of the lower sequent is also provable, and

if the K�i-part of every upper sequent is provable, the inference can be

directly applied to the K�i-parts of the upper sequents of the inference and

the K�i-part of the lower sequent is provable.

(B-^): Suppose that �! � is the lower sequent of (B-^): Then (B-^) has

the following form:

f�i;��i ! �i;��i;Kj(A) : A 2 �g Kj(^�);�i;��i ! �i;��i

�i;��i ! �i;��i
:

Let j = i: Then if the K�i-part of one of the upper sequents is provable,

then `! ��i ! ��i: If the Ki-parts of all upper sequents are provable, then

`! �i ! �i; since

f�i ! �i;Ki(A) : A 2 �g Ki(^�);�i ! �i

�i ! �i
(B-^):

When j 6= i; the proof is parallel. Indeed, if the Ki-part of one of the upper

sequents is provable, then `! �i ! �i; and if the K�i-parts of all upper

sequents are provable, then `! ��i ! ��i by (B-^):

An argument similar to the above is applied to the case of (B-8):

Proof of Theorem 3.5 By Lemma 2.2, `! C(�) ! 9x1:::9x`C(A(x1; :::;

x`)) is equivalent to `! ^C(�) ! 9x1:::9x`C(A(x1; :::; x`)): Since `! �;

K1(C(�)); :::;Kn(C(�))! ^C(�); we have `! �;K1(C(�)); :::;Kn(C(�))!

9x1:::9x`C(A(x1; :::; x`)): This implies `! �;K1(C(�)); :::;Kn(C(�)) !

9x1:::9x`K1(A(x1; :::; x`)): Hence it follows from (3.2) that `! �! ; `!
Kj(C(�))! for j 6= 1 or `! K1(C(�))! 9x1:::9x`K1(A(x1; :::; x`)):

In the �rst two cases, we have `0 �! by (2.2), which implies `! C(�)! :

Thus `! C(�) ! C(A(t1; :::; t`)) for any terms t1; :::; t`. In the third case,

it follows from Theorem 3.1 that `! K1(C(�)) ! K1(A(t1; :::; t`)) for some

terms t1; :::; t`: This implies `0 �! A(t1; :::; t`) by (2.2). Hence `! K(�)!

K(A(t1; :::; t`)) for any K 2
S
t<! K(t). It follows from this that `! C(�)!

K(A(t1; :::; t`)) for any K 2
S
t<! K(t). Thus `! C(�)! C(A(t1; :::; t`)):

4. Sequent Calculus GLm for m (0 � m � !)

In logic GLm for a �nite m; the logical and introspective abilities of players

are known up to the depth m in the sense of K = Ki1 :::Kim : In GL!;
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those abilities are known up to any depth, since (K ! K) can be applied

inde�nitely many times in GL!. Hence, for GLm; we need a sequent calculus

di�erent from GL! in Section 2. In this section, we present the sequent

calculus formulation of GLm: In fact, the new formulation works also for

m = !; and cut-elimination holds for all m (0 � m � !): In this sense, the

new formulation is a generalization of sequent calculus GL!:We also present

some other systems.

4.1 Sequent Calculus GLm and Cut-Elimination

In sequent calculus GLm; each sequent has the form K[�! �]; where � are

� are �nite sets of formulae and the outer K is an element of
S
t<1+m K(t):

When K is null, K[� ! �] is regarded as � ! �: When m is �nite, a

sequent with an outer K of at most depth m is allowed, and when m is !;

a sequent with an outer K of any depth is allowed. When K is represented

as Ki1Ki2 :::Kim ; an in�nitary extension of Gentzen's LK is given to player

im in the mind of player im�1 in the mind of player im�2 ... of player i1:

Sequents with di�erent outer K and K 0 are connected by two inference rules

corresponding to (K ! K):

Speci�cally, sequent calculus GLm (0 � m � !) is formulated as follows:

Initial Sequents: An initial sequent is of the form K[A ! A]; where

K 2
S
t<1+m K(t) and A is a formula.

Inference Rules: The structural and operational inference rules are the

same as those in Section 2, except the outer K 2
S
t<1+m K(t) associated

with each sequent in inferences, for example, (cut) and (^ !) are given as

K[�! �;M ] K[M;�! �]

K[�;�! �;�]
(M) (cut)

K[A;�! �]

K[^�;�! �]
(^ !) (A 2 �):

The inference (K!K) is modi�ed as follows: for any KKi 2
S
t<1+m K(t);

KKi[�;Ki(�)! �]

K[Ki(�;�)! Ki(�)]
(K!K)C

KKi[�;Ki(�)! �]

KKi[Ki(�;�)! Ki(�)]
(K!K)U ;

where j�j � 1: When m = 0; these rules are not allowed, and when m = 1;

the outer K is the null symbol.

The Barcan inferences take the following form: for K 2
S
t<m K(t) or

K = K 0Ki 2
S
t<1+m K(t);

fK[�! �;Ki(A)] : A 2 �g K[Ki(^�);�! �]

K[�! �]
(B-^);
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K[�! �;Ki(A(a))] K[Ki(8xA(x));�! �]

K[�! �]
(B-8);

where � is an allowable set and the free variable a must not occur in

K[Ki(8xA(x));� ! �] of (B-8). When m = 0, these inferences are not

allowed, and when m = 1; the outer K of (B-^) (and (B-8)) is the null

symbol or is the same as the outermost Ki of the side formulae of (B-^)

(and (B-8); respectively).

The two inferences (K ! K)C and (K ! K)U are needed to describe

the idea that each player has the inference ability described by (K ! K)C

as well as he knows the ability. In the cases of (B-^) and (B-8); he can use

and also knows the Barcan rules. This knowledge is described in the case

where the innermost symbol of K coincides with the outermost symbol of

the side formulae in (B-^) and (B-8):

When m = 0; no K-inference is allowed and the outer K is null. Thus

GL0 is simply an in�nitary extension of Gentzen's LK.

We use the same notations GLm and `m as in Part I. This is due to the

following theorem.

Theorem 4.1. Let � be an allowable set of closed formulae and A a for-

mula. Then, for any m (0 � m � !); `m ^�! A if and only if � `m A in

the sense of Part I.

The proof of Theorem 4.1 is routine, so we omit the proof. On the other

hand, the next theorem will be given in Section 5.

Theorem 4.2. [Cut-Elimination for GLm] For any m with 0 � m � !; if

K[�! �] is provable in GLm; there is a cut-free proof of K[�! �]:

In logic GLm for m � 1; when (B-^) and (B-8) occur in a cut-free proof,

the cut-free proof does not satisfy the full subformula property as in GL!
of Section 2. In GL0; however, since (B-^) and (B-8) are not allowed, the

cut-elimination theorem ensures the full subformula property for a cut-free

proof.

The relationship between the sequent calculus GL! in this section and

that in Section 2 is given by the following proposition.

Proposition 4.3. A sequent � ! � is provable (without cut respectively)

in the present GL! if and only if it is provable (without cut) in the GL! of

Section 2.

Proof. Suppose that P is a proof of � ! � in GL! in the sense of

this section: In the proof P; changing every sequent K[� ! �] to � ! �
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by removing the outer K; we obtain a proof of � ! � in GL! in the sense

of Section 2.

Conversely, suppose that P is a proof of � ! � in GL! in the sense of

Section 2: We associate an outer K with each sequent by induction from the

endsequent as follows. We associate the null symbol with the endsequent.

Consider an inference (�) in P; and assume that K is associated with the

lower sequent of (�). If (�) is not (K ! K); we associate the same K with

every upper sequent of (�): Suppose that (�) is (K ! K) and introduces Ki:

Then we associate K with the upper sequent of (�) if the innermost symbol

of K is Ki; and associate KKi with it otherwise. Then we have a proof P 0

of �! � in the present GL!:

Note that the proof obtained in each of the above paragraphs is cut-free

if the original proof is cut-free.

The proof of Proposition 4.3 associates a proof in the present formulation

of GL! with one in GL! in the sense of Section 2. The associated proofs

have the same structures of inference rules. Therefore, the cut-elimination

theorem for GL! in the present formulation provides a cut-free proof in GL!
in the sense of Section 2, and vice versa. In Section 5, we prove the cut-

elimination theorem (Theorem 4.2) for GLm (0 � m � !); which implies

Theorem 2.3.

Remark 4.4. In logicGLm (0 � m � !); the trunk of a proof can be de�ned

in the same way as in Section 2 and then (2.1) holds for it. Consequently,

the proofs of Theorems 3.1 and 3.3 for GL! in Section 3 work almost directly

in GLm for any �nite m: Hence we have these two theorems for GLm for

any �nite m: However, Theorem 3.5 is speci�c to the case m = !:

4.2 Logics GLmp (1 � m � !)

First, recall that logic GLmp which is de�ned by the axiom set �mp =

fK(A) : A 2
Sn
i=1�ip and K 2

S
t<m Kp(t)g: Recall that �ip is the set

of axioms describing the logical ability of player i; except (PIi); which was

given in Subsection 2.2 of Part I. The sequent calculus formulation of logic

GLmp is obtained from GLm with the following modi�cations: An outer K

of each sequent in initial sequents, structural and operational inferences is

taken from
S
t<1+m Kp(t) instead of

S
t<1+m K(t): We replace (K ! K)C ;

(K ! K)U , (B-^) and (B-8) by the following: for any K 2
S
t<m Kp(t);

KKi[�! �]

K[Ki(�)! Ki(�)]
(K ! K)p; where j�j � 1;
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fK[�! �;Ki(A)] : A 2 �g K[Ki(^�);�! �]

K[�! �]
(B-^)p

K[�! �;Ki(A(a))] K[Ki(8xA(x));�! �]

K[�! �]
(B-8)p;

where the free variable a must not occur in K[Ki(8xA(x));� ! �] of (B-

8)p: If the additional condition j�j � 1 for (K ! K)p is replaced by j�j = 1;

then the system is denoted by GLmK ; which corresponds to the logic de�ned

by �0 without (PIi) and (?i):

Cut-elimination is obtained for GLmp as well as for GLmK from the proof

given in Section 5 with the desired modi�cations.

When m = !; again, we do not need outer K and KKi in the infer-

ence rules as in GL!: Logics GL!p and GL!K are the in�nitary predicate

extensions of modal logics KD and K.

Proposition 2.2 (Faithful Representation) of Part I is a special case of

the following proposition.

Proposition 4.5. [Faithful Representation] For a �nite m; `(m+1)p Ki(�)!

Ki(�) if and only if `mp �! �:

Proof. It is enough to show the only-if part. Let P be a proof of

Ki(�)! Ki(�) in GL(m+1)p: We can de�ne boundaries and the trunk of P

in the same way as inGL!: In the trunk, by the form of the endsequent, every

formula has the form Kj(B) for some j and B, and only inferences (th); (B-

^)p and (B-8)p may occur. We prove by induction on the tree structure of

the trunk from boundaries to the root that �# ! �# is provable in GLmp
for any sequent �! � in the trunk of P , where �#;�# are obtained from

�;� by eliminating the outermost Kj (j = 1; :::; n) of each formula in �;�:

A boundary � ! � is either an initial sequent or the lower sequent of

(K ! K)p. If �! � is an initial sequent, it has the form Kj(A)! Kj(A):

Then A ! A is provable in GLmp. Next suppose that a boundary is the

lower sequent of (K ! K)p; which is expressed as

Kj [�! �]

Kj(�)! Kj(�)
:

All sequents above this inference (K ! K)p have the outermost symbol

Kj , i.e., KjK
0[� ! �], where K 0 may be the null symbol. We eliminate this

outermost Kj of each sequent in the proof of Kj [�! �] and obtain a proof

of �! � in GLmp:

Now consider inferences (th); (B-^)p and (B-8)p: The induction hypoth-

esis is that for every upper sequent � ! � of (th) or (B-^)p, �
# ! �# is

provable in GLmp: We consider only (B-^)p:
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Consider (B-^)p:

f�! 	;Kj(A) : A 2 �g Kj(^�);�! 	

�! 	
:

By the induction hypothesis, the sequent �# ! 	#; A is provable for any

A 2 � and ^�;�# ! 	# is also provable in GLmp: Hence �# ! 	# is

provable in GLmp since

f�# ! 	#; A : A 2 �g

�# ! 	#;^�
(! ^) ^ �;�# ! 	#

�# ! 	#
(cut):

5. Proof of the Cut-Elimination Theorem for GLm

5.1 Preliminaries

Our proof of the cut-elimination theorem GLm (0 � m � !) is based on

the original proof of Gentzen [1]. There are several di�erences between

Gentzen's LK and our GLm: We have additional inference rules (K ! K)C ,

(K ! K)U ; (B-^); (B-8); and also our system is in�nitary. We have to give

careful attentions to these di�erences.

As in Gentzen [1], we focus our attention to a proof P having a (cut)

only at the last inference:

K[�! �;M ] K[M;�! �]

K[�;�! �;�]
(M)(cut):(5.1)

Then we show that

(�): for any proof with a (cut) only at the last inference, there is

a cut-free proof with the same endsequent.

If this is done, we can eliminate every (cut) from an arbitrary proof by

induction on the tree structure of a proof from initial sequents.

To prove the assertion (�); we use triple induction. For this purpose, we

de�ne the \grade", the \left rank" and \right rank" of the (cut):

We assign to each formula A an ordinal number, gr(A), called the grade

of formula A. The grade gr(A) is de�ned by induction on the structure of a

formula as follows:

(1): gr(A) = 0 for every atomic formula A;
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(2): gr(:A) = gr(A) + 1;

(3): gr(A � B) = max(gr(A);gr(B)) + 1;

(4): gr(8xA(x)) = gr(A) + 1;

(5): gr(9xA(x)) = gr(A) + 1;

(6): gr(Ki(A)) = gr(A) + 2 for i = 1; :::; n;

(7): gr(^�) = supfgr(A) : A 2 �g+ 1;

(8): gr(_�) = supfgr(A) : A 2 �g+ 1:

Here �+ � is the standard sum of two ordinal numbers �; �:3 The grade of

the (cut) of (5.1) with outer K = Ki1 :::Ki` , denoted by 
; is de�ned by


 =

�
gr(M) + ` if the outermost symbol of M is Ki`

gr(M) + `+ 1 otherwise.
(5.2)

Thus, the grade of the (cut) is the sum of the grade of the cut-formula and

the depth of the outer K if the outermost symbol of M coincides with the

innermost symbol of K: We count the depth of K as ` + 1 if they do not

coincide. The second case is applied if ` = 0.

We also associate other two ordinal numbers, called the left and right

ranks, with the cut-formula M in (5.1). The left rank is de�ned as follows.

Let P be a proof of the form (5.1) with the cut-formula M . We will de�ne

�`(�) inductively for each sequent � in P in the following. For an initial

sequent �; we de�ne

�`(�) =

�
1 if � has the form K 0[M !M ] for some outer K 0;

0 otherwise.
(5.3)

Now let � be the lower sequent of some occurrence (J) of an inference in P;

and suppose that the left rank �`(�) of M at each upper sequent � of (J) is

already de�ned. Then

�`(�) =

8<
:
supf�`(�) : � is an upper sequent of (J)g+ 1

if the succedent of � contains M ;

0 otherwise.

(5.4)

The left rank �` of the (cut) of the proof of (5.1) is the left rank of M at the

left upper sequent K[�! �;M ] of (5.1). The right rank �r of the proof of

the (cut) of (5.1) is de�ned in the dual manner.

3Any formula in the space P!; which was de�ned in Part I and we are now working on,

has a grade smaller than !2: More precisely, it can be veri�ed that gr(A) < !(t+ 1) for

any A 2 Pt and t (0 � t < !);which implies gr(A) < !2 for any A 2 P!:
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To prove the assertion (�); we carry out three inductions:

Induction Step 1 (Subsection 5.2.1): Under the induction hypothesis that

(�) holds for any proof where the grade of the (cut) is less than 
, we prove

(�) for any proof where the grade is 
; the left rank is one and the right rank

is also one.

Induction Step 2 (Subsection 5.2.2): Under the induction hypothesis that

(�) holds for any proof where the grade is 
, the left rank is one and the

right rank is less than �r; we prove (�) for any proof where the grade is 
;

the left rank is one and the right rank is �r.

Induction Step 3 (Subsection 5.2.3): Under the induction hypothesis that

(�) holds for any proof where the grade is 
; the left rank is less than �` and

the right rank is �r; we prove (�) for any proof where the grade is 
; the left

rank is �` and the right rank is �r.

Before going to the main body of the proof, we mention certain lemmata

about the substitution of free variables.

Lemma 5.1. Let `m K[� ! �]: Then there is a proof P of K[� ! �] in

GLm such that there remain an in�nite number of free variables not occur-

ring in P:

Proof. Let P 0 be a proof of K[� ! �]: Since �;� are �nite sets and

each formula has at most �nite number of free variables as noted in Part I,

they contain only a �nite number of free variables. Denote the set of free

variables not occurring in K[� ! �] by fb0; b1; :::g: We substitute the free

variable b2t for each free variable at in P
0 but not in K[�! �] (t = 0; 1; :::):

The new tree is denoted by P: Then we can prove, by induction on the proof

P 0; that P is a proof of K[�! �]: There remain an in�nite number of free

variables not occurring in P:

From this lemma, we can always assume that there remain an in�nite

number of free variables not occurring in a proof.

Lemma 5.2. Let P be a proof of K[�(a)! �(a)] in GLm:

(1): Let b be a free variable not occurring in P: The tree P 0 obtained from P

by substituting b for every occurrence of a is a proof of K[�(b)! �(b)]:

(2): Let t be a term. Then there is a proof P 0 of K[�(t) ! �(t)] which

is obtained from P by substituting free variables not occurring in P

for some �nite number of free variables in P and by substituting t for

every occurrence of a:
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In (1) and (2), P
0

is cut-free whenever P is cut-free.

Proof. (1): By induction on the proof P:

(2): This assertion can be proved in the same way as (1) under the assump-

tion that every eigenvariable occurring in P is neither the free variable a

nor is included in t: When P does not satisfy the assumption, we change

the proof P into another one with the same endsequent so that it satis�es

this assumption as follows. Let b be a free variable occurring as an eigen-

variable in P; and suppose that b is a itself or is included in the term t:

We substitute a new free variable not occurring in P for every occurrence

of b above the inference whose eigenvariable is b: This new tree P � is also a

proof of K[�(a) ! �(a)] and does not include b as an eigenvariable. Since

the number of such free variables is at most �nite, repeating this process

�nite times, we obtain a proof P �� of K[�(a) ! �(a)] which satis�es the

assumption. Then we obtain a proof P 0 by substituting the term t for all

occurrences of the free variable a: This is a proof of K[�(t)! �(t)] desired.

5.2 Reductions

In the following, we consider a proof P whose last inference is of the form

(5.1).

1) Suppose that M belongs to at least one of �;�;�;�.

1.1) When M 2 �; we change the last part of the proof into

K[M;�! �]

K[�;�! �;�]
(th):

The upper sequent of this inference is the right upper sequent of (5.1). Thus

we simply eliminate the (cut):

1.2) When M 2 �;� or �; we can eliminate the (cut) in a similar way.

From 1.1) and 1.2), we can assume M =2 �[�[�[�. This assumption

is made throughout the remaining part of Subsection 5.2. Then neither of

the upper sequents of (5.1) is an initial sequent, i.e., each is the lower sequent

of some inference. That is, the last part has the following form:

� � �

K[�! �;M ]
(I1)

� � �

K[M;�! �]
(I2)

K[�;�! �;�]
(M) (cut):

We consider every case according to inferences (I1) and (I2) for the upper

sequents of the (cut):
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5.2.1. Induction Step 1

Consider a proof of the form (5.1) with grade 
 and �` = �r = 1: We show

by induction that we can �nd a cut-free proof with the same endsequent.

The induction hypothesis is:

for any proof of the form (5.1) with the grade smaller than 
;

we can �nd a cut-free proof with the same endsequent.
(5.5)

2) Suppose that at least one of (I1) and (I2) is (th):

2.1) When (I1) is (th); the last part of the proof is expressed as

K[�0 ! �0]

K[�! �;M ]
(th)

K[M;�! �]

K[�;�! �;�]
(M)(cut);

where �0 � �;�0 � � and M =2 �: Then we can eliminate the (cut) as

follows:
K[�0 ! �0]

K[�;�! �;�]
(th):

2.2) When (I2) is (th), we can eliminate the (cut) in the dual manner.

Therefore we assume in the remaining of Subsection 5.2.1 that neither

(I1) nor (I2) is (th): Hence M is the principal formula of (I1) as well as

of (I2): Also, neither (I1) nor (I2) is (B-^) and also neither is (B-8); since

�` = �r = 1: Thus we have the following cases.

(a): When M is of the form :A, (I1) and (I2) are (! :) and (: !):

(b): When M is of the form A � B, (I1) and (I2) are (!�) and (�!):

(c): When M is of the form 8xA(x), (I1) and (I2) are (! 8) and (8 !);

respectively; and similarly when M is of the form 9xA(x), (I1) and

(I2) are (! 9) and (9 !); respectively.

(d): When M is of the form ^�, (I1) and (I2) are (! ^) and (^ !): When

M is of the form _�, (I1) and (I2) are (! _) and (_ !):

(e): When M is of the form Ki(A); there are two cases based on the in-

nermost symbol of the outer K of the lower sequents of (I1) and (I2):

If the innermost symbol is not Ki; both (I1) and (I2) are (K ! K)C ;

and otherwise, both are (K ! K)U :
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3) Suppose that (I1) and (I2) are operational inferences whose principal

formulae are M: In these cases, the reductions are similar to the original

ones in Gentzen [1]. Nevertheless, since the evaluations of grades are speci�c

here, we give full reduction steps in the cases of ^ and 8:

3.1) When the outermost symbol of M is ^; the last part of the proof is

fK[�! �; B] : B 2 �g

K[�! �;^�]
(! ^)

K[A;�! �]

K[ ^ �;�! �]
(^ !)

K[�;�! �;�]
(^�) (cut);

where A 2 � and � is an allowable set. The grade of this (cut) is 
 =

gr(^�) + `+ 1: This last part is reduced into

K[�! �; A] K[A;�! �]

K[�;�! �;�]
(A) (cut):

If the outermost symbol of A is the innermost symbol Kj` of K; the grade

of the new (cut) is gr(A) + `; and otherwise, it is gr(A) + ` + 1: In either

case, the grade of this (cut) is smaller than 
 = gr(^�) + ` + 1: Hence we

can eliminate this (cut) by the induction hypothesis.

3.2) When the outermost logical connective of M is 8; the last part is:

K[�! �; A(a)]

K[�! �;8xA(x)]
(! 8)

K[A(t);�! �]

K[8xA(x);�! �]
(8 !)

K[�;�! �;�]
(8xA(x)) (cut):

Let P 0 be the subproof of K[� ! �; A(a)] in P: Lemma 5.2.2 ensures that

there is a proof P
00

of K[�! �; A(t)] which is obtained from P 0 by substi-

tuting new free variables for some free variables in P 0 and substituting t for

a: Then we can reduce the last part into

K[�! �; A(t)] K[A(t);�! �]

K[�;�! �;�]
(A(t)) (cut):

Since the grade of the new (cut) is gr(A(t)) + ` + 1 or gr(A(t)) + `; it is

smaller than the grade of the original (cut); gr(8xA(x)) + ` + 1: Hence we

can �nd a cut-free proof of K[�;�! �;�] by the induction hypothesis.

Note that Lemma 5.2.2 is used in the case of 9; too.

4) Suppose that (I1) and (I2) are K-inferences. Recall that neither (I1) nor

(I2) is (B-^) and also neither is (B-8): We have to consider the following

two cases: both (I1) and (I2) are (K ! K)C or both are (K ! K)U :
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4.1) When M is of the form Ki(A) for some A and Ki is not the innermost

symbol of K; the last part of the proof is:

KKi[�; Ki(�)! A]

K[Ki(�;�)! Ki(A)]
(K ! K)C

KKi[A;�; Ki(�)! �]

K[Ki(A);Ki(�;�)! Ki(�)]
(K ! K)C

K[Ki(�;�;�;�)! Ki(�)]
(cut):

The grade of this (cut) is 
 = gr(A) + `+ 3 by the de�nition of grades.

The last part is reduced into

KKi[�;Ki(�)! A] KKi[A;�;Ki(�)! �]

KKi[�;�;Ki(�;�)! �]

K[Ki(�;�;�;�)! Ki(�)]
(K ! K)C :

(cut)

The grade of this new (cut) is gr(A)+ `+2 or gr(A)+ `+1; which is smaller

than 
 = gr(A) + ` + 3: Thus we can eliminate this (cut) by the induction

hypothesis.

4.2) Suppose thatM is of the formKi(A) for some A andKi is the innermost

symbol of K: The last part of the proof is di�erent from that in 4.1) only in

that the outerKKi should be simplyK in the uppermost sequents in the last

part and accordingly, two (K ! K)C 's should be replaced by (K ! K)U :

Here the grade of the (cut) is 
 = gr(A) + ` + 2: This last part is reduced

into
K[�;Ki(�)! A] K[A;�;Ki(�)! �]

K[�;�;Ki(�;�)! �]

K[Ki(�;�;�;�)! Ki(�)]
(K ! K)U :

(cut)

The grade of this new (cut) is gr(A) + ` or gr(A) + ` + 1 by (5.2), and is

smaller 
: Hence we can eliminate this (cut) by the induction hypothesis.

5.2.2. Induction Step 2

Consider a proof of the form (5.1) where the grade is 
; the left rank �` is 1

and the right rank is �r > 1: We prove by induction that there is a cut-free

proof with the same endsequent. The induction hypothesis is:

for any proof of the form (5.1) with the grade 
,

the left rank equal to 1 and the right rank lower than �r;

we can �nd a cut-free proof with the same endsequent.

(5.6)

5) When (I2) is (th), we can change the proof into one with a lower right

rank. Then we can eliminate the (cut) by the induction hypothesis.
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When (I1) is (th); the (cut) is eliminated in the same manner as in 2.1)

since �` = 1: Hence we can assume in the remaining of Subsection 5.2.2 that

(I1) is not (th).

In the following reduction steps except for 7.3), the outer K and the

cut-formula M remain unchanged. Hence the grade of the (cut) remains

unchanged.

6) Suppose that (I2) is an operational inference.

6.1) When (I2) is (�!); the last part of the proof is

K[�! �;M ]

K[M;�0 ! �; A] K[B;M;�0 ! �]

K[A � B;M;�0 ! �]
(�!)

K[�; [A � B];�0 ! �;�]
(cut);

where [A � B] is A � B and � is �0 [ fA � Bg if M is not A � B; and

[A � B] is empty and � is �0 if M is A � B:

6.1.1) When M is not A � B, the last part is reduced into

K[�! �;M ] K[M;�0 ! �; A]

K[�;�0 ! �;�; A]
(cut)

K[�! �;M ] K[M;B;�0 ! �]

K[B;�;�0 ! �;�]
(cut)

K[A � B;�;�0 ! �;�]
(�!):

Since these (cut)'s have lower right ranks than �r; we can eliminate them by

the induction hypothesis. Note that even when M is A � B; this reduction

is legitimate.

6.1.2) WhenM is A � B; we have a cut-free proof ofK [A � B;�;�! �;�]

by 6.1.1) and continue

K[�! �;M ] K[A � B;�;�! �;�]

K[�;�! �;�]
(cut):

Since the right and left ranks of this (cut) are 1, we can eliminate this (cut)

by the induction hypothesis.

6.2) When (I2) is (_ !); the last part of the proof is

K[�! �;M ]

fK[M;A;�
0

! �] : A 2 �g

K[M;_�;�
0

! �]
(_ !)

K[�;_�;�
0

! �;�]
(cut);

where � is an allowable set, and � is �
0

[f_�g. The right rank ofM at each

upper sequent of the (_ !) is lower than the right rank �r of the (cut) by

(5.4). We combine the subproof rooted at each upper sequent of the (_ !)
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with the subproof rooted at the right upper sequent of the (cut) as follows:

for each A 2 �;

K[�! �;M ] K[M;A;�
0

! �]

K[�; A;�
0

! �;�]
(cut):

Since the right rank of each of these (cut)'s is lower than the right rank �r
of the original (cut); we can �nd a cut-free proof of K [�; A;�

0

! �;�] for

each A 2 � by the induction hypothesis. Then we continue

fK[�; A;�
0

! �;�] : A 2 �g

K[�;_�;�
0

! �;�]
(_ !):

6.3) When (I2) is one of the other operational inferences, we can reduce the

proof into one with a lower right rank (see Gentzen [1] ). In the cases of

(! 8) and (9 !); we need Lemma 5.2.1.

7) Suppose that (I2) is a K-inference.

7.1) When (I2) is (B-^); the last part of the proof is

K[�! �;M ]

fK[M;�! �; Ki(A)] : A 2 �g K[Ki(^�);M;�! �]

K[M;�! �]
(B-^)

K[�;�! �;�]
(cut):

where � is an allowable set. This is reduced into�
K[�!�;M] K[M;�!�;Ki(A)]

K[�;�!�;�;Ki(A)]

�
A2�

K[�!�;M] K[M;Ki(^�);�!�]

K[Ki(^�));�;�!�;�]

K[�;�! �;�]
(B-^),

where the above inferences are (cut)'s with the cut-formula M: Since these

(cut)'s have lower right ranks than �r by (5.4), we can eliminate the (cut)'s

by the induction hypothesis.

7.2) When (I2) is (B-8); the reduction is parallel to that in 7.1), except the

use of Lemma 5.2.1.

7.3) When (I2) is (K ! K)C , the last part is, by the assumption �` = 1,

KKi[�; Ki(�)! A]

K[Ki(�;�)! Ki(A)]
(K ! K)C

KKi[�; Ki(A);Ki(�)! �]

K[Ki(A); Ki(�;�)! Ki(�)]
(K ! K)C

K[Ki(�;�;�;�)! Ki(�)]
(cut):

The grade of this (cut) is 
 = gr(A) + `+ 3: We reduce the last part into

KKi[�;Ki(�)! A]

KKi[Ki(�;�)! Ki(A)]
(K ! K)U

KKi[Ki(A);�;Ki(�)! �]

KKi[�;Ki(�;�;�)! �]

K[Ki(�;�;�;�)! Ki(�)]
(K ! K)C :

(cut)
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The grade of this new (cut) is gr(A) + `+ 3; which is the same as 
: Since

this new (cut) has a lower right rank than �r; we can eliminate the (cut) by

the induction hypothesis.

7.4) When (I2) is (K ! K)U , the last part of the proof is the same as that

in 7.3), except that the outer KKi is K in the uppermost sequents in the

last part and both (I1) and (I2) are (K ! K)U . In this case, the innermost

symbol of K is Ki: The grade of this (cut) is 
 = gr(A) + ` + 2: The last

part is reduced into

K[�;Ki(�)! A]

K[Ki(�;�)! Ki(A)]
(K ! K)U

K[Ki(A);�;Ki(�)! �]

K[�;Ki(�;�;�)! �]

K[Ki(�;�;�;�)! Ki(�)]
(K ! K)U

:

(cut)

The grade of this (cut) is the same as 
 = gr(A) + `+2; and this new (cut)

has a lower right rank than �r: By the induction hypothesis, we can eliminate

the (cut).

5.2.3. Induction Step 3

Now we consider a proof of the form (5.1) where the grade is 
; the left rank

is �` > 1 and the right rank is �r: In this case, the succedent of at least one

upper sequent of the inference (I1) has M: The induction hypothesis is:

for any proof of the form (5.1) with the grade 
,

the left rank lower than �` and the right rank equal to �r;

we can �nd a cut-free proof with the same endsequent.

(5.7)

8) When (I1) is (th), it is easy to reduce the proof into one with a lower left

rank. By the induction hypothesis, we can eliminate the (cut).

In the following reduction steps, the outer K and the cut-formula M

remain unchanged. Hence the grade of the (cut) remains the same, too.

9) Suppose that (I1) is an operational inference.

9.1) When (I1) is (�!); the last part of the proof is

K[�0 ! �;M;A] K[B;�0 ! �;M ]

K[A � B;�0 ! �;M ]
(�!)

K[M;�! �]

K[A � B;�0;�! �;�]
(cut);

where � is �0 [fA � Bg and A � B =2 �0: We have to consider the following

three cases: (a) neither A nor B is M ; (b) A is M ; and (c) B is M: In
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either case, we can reduce, in the standard manner, the above last part into

a derivation having (cut)'s with the grade 
; lower left ranks and the right

rank �r: For example, in case (c), the last part is reduced into

K[�0 ! �;M;A] K[M;�! �]

K[�0;�! �;�; A]
(cut)

K[M;�! �]

K[B;�0;�! �;�]
(th)

K[A � B;�
0

;�! �;�]
(�!):

Hence we can �nd a cut-free proof of K[A � B;�0;�! �;�] by the induc-

tion hypothesis.

9.2) We omit the other cases of operational inferences for (I1): Note that

Lemma 5.2.1 is needed for the cases of (! 8) and (9 !):

10) Suppose that (I1) is a K-Inference.

10.1) The inference (I1) can be neither (K ! K)C nor (K ! K)U ; since

�` > 1:

10.2) When (I1) is (B-^); the proof is

fK[�! �;M;Ki(A)] : A 2 �g K[Ki(^�);�! �;M ]

K[�! �;M ]
(B-^)

K[M;�! �]

K[�;�! �;�]
(cut);

where � is an allowable set. This is reduced into�
K[�!�;Ki(A);M] K[M;�!�]

K[�;�!�;�;Ki(A)]

�
A2�

K[Ki(^�);�!�;M] K[M;�!�]

K[Ki(^�);�;�!�;�]

K[�;�! �;�]
(B-^);

where the above inferences are (cut)'s with the cut-formula M: Since each

(cut) has a lower left rank than �`; we can eliminate these (cut)'s.

10.3) When (I1) is (B-8); the reduction is similar to 10.2), except the use of

Lemma 5.2.1.

Remark 5.3. In each reduction step, the order of (B-^) or (B-8) and (K !

K)C or (K ! K)U remains unchanged. Using this fact, we can prove the

following: Consider a proof P of K[�! �] in GLm: If no Barcan inferences

(B-^) and (B-8) occur in the trunk of P; then there is a cut-free proof of P
0

of K[�! �] such that no (B-^) and (B-8) occur in the trunk of P
0

:

References

[1] Gentzen, G., 1935, `Untersuchungen �uber das logische Schliessen', Mathematische

Zeitschrift 39, 176-210, 405-431. English translation, `Investigations into Logical De-

duction', The Collected Papers of Gerhard Gentzen, 1969.



Game logic: : : 303

[2] Harrop, R., 1956, `On Disjunctions and Existential Statements in Intuitionistic

Systems of Logic', Math. Annalen 132, 247{361.

[3] Harrop, R., 1960, `Concerning Formulas of the Types A! B _ C, A! (Ex)B(x)

in Intuitionistic Formal System', J. Symbolic Logic 25, 247{361.

[4] Kaneko, M. and T. Nagashima, 1996, `Game Logic and its Applications I', To

appear in Studia Logica 57.

[5] Ohnishi, M., and K. Matsumoto, 1957, `Gentzen Method in Modal Calculi. I',

Osaka Math. J. 9, 113{130.

[6] Ohnishi, M., and K. Matsumoto, 1959, `Gentzen Method in Modal Calculi. II',

Osaka Math. J. 11, 115-120.

[7] van Dalen, D., 1986, `Intuitionistic Logic', Handbook of Philosophical Logic

(III), eds. D. Gabbay and F. Guenthner, Reidel, 225{339.

Mamoru Kaneko

Institute of Socio-Economic

Planning, University of Tsukuba

Ibaraki 305, Japan

e-mail: kaneko@shako.sk.tsukuba.ac.jp

Takashi Nagashima

Department of Mathematics

Hitotsubashi University

Kunitachi, Tokyo 186, Japan

e-mail: nagasima@math.hit-u.ac.jp

Studia Logica 58, 2 (1997)


