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Abstract. In order to capture the concept of common knowledge, various extensions
of multi-modal epistemic logics, such as fixed-point ones and infinitary ones, have been
proposed. Although we have now a good list of such proposed extensions, the relationships
among them are still unclear. The purpose of this paper is to draw a map showing the
relationships among them. In the propositional case, these extensions turn out to be
all Kripke complete and can be comparable in a meaningful manner. F. Wolter showed
that the predicate extension of the Halpern-Moses fixed-point type common knowledge
logic is Kripke incomplete. However, if we go further to an infinitary extension, Kripke
completeness would be recovered. Thus there is some gap in the predicate case. In drawing
the map, we focus on what is happening around the gap in the predicate case. The map
enables us to better understand the common knowledge logics as a whole.

Keywords: epistemic propositional and predicate logics, common knowledge extension,
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embedding theorem.

1. Introduction

Multi-agent epistemic logics have been developed for investigations of in-
teractions of agents such as game theoretical problems. In such situations,
common knowledge is important in discussing knowledge (or beliefs) shared
among agents. Various extensions of mutli-agent logics have been proposed
in order to capture the concept of common knowledge. These extensions
are divided into two types: the fized-point approach, e.g., Halpern-Moses
[5], and the infinitary approach, e.g., Kaneko-Nagashima [10, 11]. Some
of them are given as propositional logics and some others as predicate log-
ics. Also, some are considered from the model-theoretic viewpoint and some
others from the proof-theoretic viewpoint. Now, we have a good list of ex-
tensions of epistemic logics, but their mutual relationships are yet unclear.
The purpose of this paper is to draw a map showing the relationships among
those extensions.
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Finitar . . .
Base L(}),gic Finitary  Infinitary
Propositional KD4" HM GL,
Predicate QKD4" QHM QGL,,
Diagram 1.

In the propositional case, these extensions turn out to be all Kripke
complete, and are directly comparable in the sense that either two logics
are deductively equivalent or if one is an extension of another, it is also
a conservative extension. Here, conservativeness means that the extension
adds no superfluous properties as far as the formulae in the original logic
are concerned.

In contrast, Wolter [24] proved in the predicate case that the set of valid
formulae in the Kripke semantics is not recursively enumerable in the pres-
ence of common knowledge. This implies the Kripke-incompleteness theorem
that any finitary predicate extension of the Halpern-Moses type common
knowledge logic cannot capture the Kripke semantics with common knowl-
edge. In other words, the latter has no finitary proof theory. Nevertheless,
it is also known from Tanaka-Ono [22] and Tanaka [19] that this difficulty
does not occur in the infinitary approach. Thus, the predicate case has some
great difference between the fixed-point and infinitary approaches. In draw-
ing a map of common knowledge logics, we will focus especially on what this
difference is.

Diagram 1 gives some extant extensions of multi-agent epistemic logics.
Since we discuss a variety of common knowledge extensions, we make a
particular choice of basic epistemic axioms on belief operators. We adopt
KD4-type axioms, starting with the propositional multi-agent epistemic logic
KD4", where n is the number of agents. The prefix Q means the predicate
extension of a propositional logic together with the Barcan axiom. The
logic HM is the fixed-point type extension of KD4" due to Halpern-Moses
[6], where the common knowledge of a formula is determined by adding
one axiom and one inference rule to KD4". The game logic GL, is an
infinitary extension of KD4", and QGL,, is its predicate extension, due to
Kaneko-Nagashima [10] and [11], where the common knowledge of a formula
is expressed as an infinitary conjunctive formula.!

The Kripke completeness of KD4" and that of QKD4" are known as
variants of the completeness results given in the modal logic literature (cf.,

! We may find some other approach such as Segerberg [16]. Tanaka [20] discussed
completeness of such logics in the predicate case from the viewpoints of noncompact logics.
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Hughes-Cresswell [7]). It is also known from Halpern-Moses [5] (see also
Lismont-Mongin [14], Fagin, et al.[1] and Meyer-van der Hoek [15]) that
HM is Kripke complete. It follows from Tanaka-Ono [22] that GL,, is also
Kripke complete. These completeness results in the propositional case imply
that if one logic is an extension of another, then it is a conservative extension.

On the other hand, it is known in the predicate case that there is a gap
between QHM and QGL,,. As already mentioned, the Kripke completeness
of QKD4" is known, and that of QGL,, could be expected from Tanaka-Ono
[22] and Tanaka [21]. However, we have Wolter’s Kripke-incompleteness
theorem for QHM.

From the syntactical point of view, the distance between QHM and
QGL,, is large in that QGL,, allows infinitary conjunctions and disjunctions
as well as infinitary proofs. To consider the question of where the gap occurs,
we provide two other logics, propositional CX and CY, and their predicate
extensions QCX and QCY. These new logics are intermediate between HM,
QHM and GL,,, QGL,, in that they have the set of finitary formulae in the
same way as HM and QHM but admit infinitary proofs similar to GL,, and
QGL,,.

In the propositional case, both CX and CY are shown to be deductively
equivalent to HM. In the predicate case, QCY is Kripke complete, which
is shown in Tanaka [19]. This result together with Wolter’s incompleteness
theorem implies that QCY is deductively different from QHM. The complete-
ness of QCX remains open, though QCX looks more natural as a common
knowledge logic than QCY.

The deductive equivalence of HM, CX and CY to GL,, as far as relevant
formulae are concerned, are shown by proving that HM, CX and CY are
faithfully embedded into GL,. In the predicate case, only QCY is faith-
fully embedded into to QGL,,. The faithful embedding of QCX into QGL,,
remains also open.

In another attempt to avoid the incompleteness of QHM, Sturm-Wolter-
Zakharyaschev [18] considered a fragment of QHM rather than an extension
of it. They considered the monodic (not monadic) fragment of QHM with no
function symbols and no equality, and proved its Kripke completeness. This
fragment is located between HM and QHM. Thus, the gap we are considering
occurs after the monodic fragment of QHM.

The Kripke completeness of the logic QCY is crucial for comparisons of
logics in this paper. Tanaka [19] considered the behavior of QCY in details
as well as its Kripke completeness in the case of no function symbols. The
original motivation for predicate common knowledge logics is to consider the-
ories with interactions between agents such as game theoretical problems (cf.,
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Kaneko-Nagashima [10]). Hence, it is preferable to include function symbols
as well as equality in such a first-order theory. A proof of the complete-
ness theorem for QCY with function symbols can be obtained by modifying
Tanaka’s [19] proof of the completeness of QCY without function symbols.

This paper is organized as follows: In Section 2, we formulate the base
logics KD4", QKD4" and the Kripke semantics. We state the soundness-
completeness theorems for these logics. In Section 3, we formulate HM
and QHM and state the soundness-completeness theorem for HM. We also
mention Wolter’s [24] incompleteness theorem for QHM. In Section 4, we
provide new logics CX, QCX, and CY, QCY. We show that CX and CY are
deductively equivalent to HM, which relies upon the completeness result for
HM. Then we state the soundness-completeness theorem for QCY shown by
Tanaka [19]. In Section 5, we compare the provabilities of these logics for
various types of formulae. In Section 6, we show the embedding theorems
for CY, QCY into GL,, QGL,,. In Section 7, we will draw a precise map of
common knowledge logics from the results in the preceding sections, which
will be given as Diagram 2.

2. Logics KD4" and QKD4"

In this section, we formulate the propositional KD4" and predicate QKD4"
so that they are directly comparable. Common knowledge logics will be
defined as extensions of these logics. In contrast with the diversity of syn-
tactical systems, the Kripke semantics is uniquely defined and enables us to
make comparisons of various syntactical systems. As stated in Section 1, we
will make the choice of KD4-type logical axioms throughout this paper.

2.1. Language
We use the following list of symbols:

Free variables: ag, a; ...; Bound variables: xq, X1, ...;
Logical connectives: — (not), D (implies), A (and), V (or);
Quantifiers: V (for all), 3 (exists);

Function symbols: 1y, f1, ...; Predicate symbols: Pqy, Py, ...;
Unary belief operator symbols: By, ..., By;

Unary common knowledge operator symbol: C;

Parentheses: (, ).

The subscripts 1, ..., n of By, ..., B, are the names of agents. We denote
the set of agents {1,2,...,n} by N. In the following, we consider the case
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of n > 2. We denote the set of all free variables by F'V. We assume that
there are countably infinite numbers of free variables and bound variables.
We follow the tradition of using distinct letters for free and bound variables.
This distinction eases some steps of our developments, especially, the infini-
tary approach, though some other steps look more complicated. Each fi is
assumed to be an l-ary function symbol for some [ > 0, and each Py is an
l-ary predicate symbol for some [ > 0. When | = 0, f} is a constant symbol
and Py, is a propositional variable. We denote the list of these function and
predicate symbols by £ = [fy,f1,...;Pg,P1,...]. We assume that there is at
least one 0-ary predicate symbol but there may be no function symbols.

We define terms inductively as follows: free variables are terms; and
if i, is an [-ary function symbol (I > 0) and if ¢;, ..., ¢; are terms, then
fi(t1,...,t;) is a term. A constant symbol is a term by the second step. We
call Pg(t1, ..., t;) an atomic formula iff Py is an [-ary predicate symbol and ¢4,
..., t; are terms. Then formulae are defined in the standard finitary manner.
We denote the set of all formulae by P. We denote, by P_c, the set of
formulae in P that have no occurrences of C, and by P_g, the set of formulae
in P which have no occurrences of By, ..., B,,. The set of formulae containing
neither C nor By, ..., B, is P_gc = P_g N P_c. We say that a formula A
(or a term t) is closed iff no free variable occurs in A (respectively, in t).

We define the propositional fragment P_q of P to be the set of formulae
generated from the 0O-ary predicate symbols without quantifiers. We also
denote P_c NP_q and P_pc N P-q by P_cq and P_pcq. The set P_cq
is the propositional fragment containing no common knowledge operator C,
and is used to define KD4".

Since the concept of a subformula is slightly subtle in our treatment, it
would be better to write down its explicit definition. For any A € P, we
define the set Sub(A) of subformulae of A inductively as follows:

QzA(z)) = U, is a term SUb(A(2)) U {QzA(z)}, where Q is V or J;

) = Sub(A) U {B;(A)} for i € N;

= Sub(4) U{C(4)}.

We call B a subformula of A iff B € Sub(A). The set P_g is subformula-

closed, i.e., if A € P_g and B is a subformula of A, then B € P_p. The sets
P_c, P-c and P_q are also subformula-closed.
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In the above definition of a subformula, the subtle step is (3) and the
others are standard. This is made so as to be coherent to our language
of having both free and bound variables as well as to our formal systems,
specifically, the axiom schemata L6 and L7 in the next subsection.

2.2. KD4" and QKD4"

We give the following seven axiom schemata and five inference rules: For
any formulae A, B, C, and term ¢,

Ll: AD(BDA);

L2: (AD(BDC))D((ADB)D(ADC0));
L3: (wAD-B)D ((~ADB)DA);

L4: AABDAand AANB D B;

L5: ADAVBand BD AV B;

L6: VzA(z) D A(t);

L7: A(t) D 3zA(z),

and ASB A
D
ADB ADC ADC BDOC
_ —Rul

ASBAg  (NRule) AvBoCc  (VRue

A D B(a) A(e) D B

Eialalitiind St AN A2 Y 22 (3_Rul

A VaB(z) R wA(z) 5 B 0 Rule),

where the free variable a does not occur in the lower formulae of V-Rule and
3-Rule.

The above logical axioms and inference rules form the classical logic. We
designate the set of L1-L5 and MP, A-Rule and V-Rule by PCL, and the
set of all axioms and inference rules by QCL. In fact, the choice of a set of
formulae is still needed to determine a logic. In the following, the classical
propositional logic is understood to be PCL within P_gcq, and the classical
predicate logic is QCL within P_pc.

The following are axiom schemata and inference rule for belief operators
B;fori=1,...,n:

K: B;(4DC) D (Bi(4) D Bi(0));
D: -B;(-AAA);
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4:  B;(A) D B; Bi(A);
V-B:  VzB;(A(z)) D B;(VzA(z));

and
A
Bi(4)

In the literature of epistemic logics, 4 and V-B are called, respectively,
the Positive Introspection axiom and Barcan axiom. Throughout this paper,
we assume the Barcan axiom, V-B, in the predicate case. See Remark 2.6 for
the case without the Barcan axiom. The necessitation rule is abbreviated as
Nec.

We define the propositional KD4™ and predicate QKD4" as follows:

KD4": PCL + (K + D + 4 + Nec) within P_cq;
QKD4™: QCL + (K + D + 4 + V-B + Nec) within P_c.

Necessitation:

In KD4", all formulae in the axioms and inference rules are restricted to
P_cq- On the other hand, in QKD4", those are restricted to P_c. When we
employ P_cq, the axioms L6, L7, V-Rule, 3-Rule and V-B are automatically
excluded, but when we do P_c, these reappear.

A proof in these logics is defined in the standard manner. In QKD4",
for example, a proof of A in P_¢ is a finite tree satisfying the following
properties: (1) a formula in P_c is associated with each node of the tree
and A is associated with the root; (2) the formula associated with each leaf
is an instance of the axiom schemata of QKD4"; and (3) adjoining nodes
together with the associated formulae form an instance of the inference rules
of QKD4". We remark that a proof is a finite tree here, but that we will
allow infinite proofs after Section 3.

We say that A is provable in KD4" iff there is a proof of A in KD4",
which is denoted by Fgps» A. Similarly, we define the provability relation
Fqkpar for QKD4™. Since all the instances of the axiom schemata for KD4"
are allowed as axioms for QKD4", it holds that for any A in P_cq,

l_KD4" A lmplleS |_QKD4" A. (21)
In fact, the converse also holds, which will be mentioned as Corollary 2.4.

2.3. Kripke semantics with constant domains

Contrary to the diversity of syntactical systems to be discussed in this paper,
it suffices to consider only one semantics. This common semantics together
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with the (soundness-) completeness result for each system enables us to make
direct comparisons of those syntactical systems. The common semantics is
the Kripke semantics with constant domains.

Recall that the list of function and predicate symbols is given as £ =
(o, f1,...;Po, P1,...]. Let M be a nonempty set. A classical interpretation
[fo, F1, . Bo, Py, ...] on M consists of interpretations fi and Py, of f;, and Py,
respectively, given by:

F1: the interpretation fk of each l-ary f}, is a function from M' to M;
F2: the interpretation P, of each l-ary P} is a function from M' to {T,1}
(when [ = 0, Py is simply either T or ).
A Kripke frame F = (W;Ry,...,R,; M) is an (n + 2)-tuple of a set of
possible worlds W, accessibility relations Ry, ..., R, over W and a set M of
individuals. We assume the following conditions:

K1: W is an arbitrary nonempty set;
K2: R;isasubset of W xW fori=1, ..., n;
K3: M is an arbitrary nonempty set.

An interpretation Z is a function which assigns to each w € W a classical
interpretation Z(w) = [fo, f1, ...;156” ,P¥ ..] on M with the property that
only the interpretations 15,;" of predicate symbols P may depend upon w
but the interpretation fi of each function symbol f;, is constant over W. A
Kripke model M is a pair (F,Z) of a Kripke frame F and an interpretation
Z. Since we restrict our attentions to KD4-type logics, we assume throughout
this paper that each accessibility relation R; is serial and transitive.

We interpret free variables as independent of a possible world. Hence, we
have the following simple definition of an assignment: A function o: FV —
M is called an assignment. One assignment o is applied to all possible worlds
in W.

Let a pair (Z,0) of an interpretation Z and an assignment o be given.
The valuation V (-, (Z,0)) is the function from the set of terms to M defined
inductively by

T1: V(ag, (Z,0)) = o(ag) for all ay € FV;
T2: V(f(t1, ..., t1), (Z,0)) = fe(V(t1,(Z,0)),.... V(t1, (Z,0))).

For any free variable a, we write o = o', o(b) = o/ (b) for allb € FV —{a}.
Also, we denote the set of finite sequen‘(z:es (i1,...,4m) in N by N*.2 Note that

% For a different purpose, it would be more convenient to adopt N** = {(i1, ..., im) €
N*:d¢ #4gqq1 for t =1,...,m — 1} than N*.
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the null sequence € belongs to N*. We say that u € W is reachable from
w in a Kripke frame F = (W; Ry, ..., Ry; M) iff there is a finite sequence
(Wi, .oy W) (M > 1) in W and (41, ..., im—1) € N* such that w = wy, u = wy,
and (wg,wiq1) € Ry, for t = 1,...,m — 1. Note that w is reachable from w
itself.

Let M = (F,ZI) be a Kripke model. Then we define the valuation relation
(M, o,w) E inductively as follows:

EQ: for any atomic formula P(t4, ..., t;),
(M, o,w) EPg(t1,....t) < P,;“(V(tl, (Z,0)),...,V(t,(Z,0))) =T;

El: M,o0,w) E A <= (M,o,w) ¥ 4;

E2: (M,o0,w) FAD B <= (M,o,w) ¥ Aor (M,o,w) F B;

E3: M,0,w) F AANB <= (M,o0,w) F A and (M,0o,w) E B;

E4: M,o0,w) F AV B <= (M,o0,w) E Aor (M,o,w) E B;

E5: (M,0,w) EVzA(z) <= (M,o’,w) F A(a) for all ¢’ = o;

E6: (M,0,w) F 3zA(z) <= (M,o’,w) F A(a) for some ¢’ = o}

E7: (M,0,w) E Bij(4) <= (M, 0,v) E A for any v with (w,v) € R;;

E8: (M,0,w) F C(4) < (M,o,u) F A for all u reachable from w,

where a is the first variable not occurring in Yz A(z) (or 3zA(z)) in E5 (or
E6, respectively). We write M F A iff (M, 0, w) E A for all assignments o
and worlds w € W.

We note that the semantic valuation relation (M, o, w) F A for each A
is completely determined by the valuations of subformulae of A. This note
will be relevant for the consideration of the conservativeness of an extension
of a logic, e.g., Corollary 2.4.

It is known that E8 has the following equivalent formulation:

LEMMA 2.1. In the definition of (M,o,w) E, E8 can be replaced by
8*: (M,o0,w) F C(A) < (M, o,u) E Be(A) for all e € N*,
where Be(A) is an abbreviation of By, By, ... B;, (A) fore = (i1, ...,im) € N*.

Condition E8* describes the intuitive understanding of the common
knowledge of A that A is true, each player believes A, each believes that each
believes A, and so on. The other related concept, the common belief of A, is
defined by excluding the first sentence “A is true”. That is, A is commonly
believed but may not be true. Semantically, it is defined by assuming m > 2
for any sequent (wj,...,wy,) in the definition of reachability. Nevertheless,
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the common belief of A is defined as the formula B; C(A4) A --- A B, C(4A)
using the common knowledge operator C. See Remark 6.6 for further ex-
planations. We focus on common knowledge rather than common belief
throughout the paper.

The Barcan axiom is true in any Kripke model with a constant domain,
which is stated as (1) of the following lemma. The converse, B;(VzA(z)) D
Vz B;(A(z)), holds without the assumption of constant domains. The second
statement of the lemma is conceptually related to the Barcan axiom in that
if we regard C as an infinitary conjunction, the infinitary conjunction is
commutative with belief operator B;. See also Section 6. This is independent
of the assumption of a constant domain.

LEMMA 2.2. Let M = (F,I) = (W;Ru, ..., Rp; M), I) be a Kripke model,
o an assignment and w a world in W. Then

(1) (M,o,w) EVzB;(A(z)) D B;(VzA(x));
(2) (M,o0,w) EC(A) DB;C(A) for alli € N.

The formulae in the first statement are already adopted as an axiom
schema for QKD4", and those in the second will be adopted for our com-
mon knowledge extensions. Although we have (M,o,w) F Vz C(A(z)) D
C(VzA(z)), this is a derived property in our common knowledge extensions
(except in QS4(C) of Section 3).

The following completeness result has been known in the modal logic
literature (cf., Hughes-Cresswell [7]).

THEOREM 2.3. (1) (soundness and completeness for KD4™). Let A be a
formula in P_cq. Then Fxpsn A if and only if M E A for all Kripke
models M = (F,I).

(2) (soundness and completeness for QKD4"). Let A be a formula in P_c.
Then Fqipar A if and only if M E A for all Kripke models M.

The converse of (2.1) is a simple consequence from Theorem 2.3, which
we write down explicitly, since the same type of comparisons will be made
throughout the paper.

COROLLARY 2.4 (conservativeness of QKD4"™ upon KD4"). Let A be a for-
mula in P_CQ. Then FKDAL" A Zf and only Zf !_QKD4" A.

Before going to the next section, we state Wolter’s [24] result, which is
one of the main concerns of this paper. We write E A if M E A for all
Kripke models M.
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THEOREM 2.5 (non-recursive-enumerability). Suppose that the language £ =
[fo, 1, ...; Po, P1,...] contains at least nine unary predicate symbols. Then the
set {A € P : E A} is not recursively enumerable.

This theorem does not depend upon the particular choice of the assump-
tions of transitivity and seriality on frames. It would remain to hold even if
we strengthen the assumptions for frames to, for example, the S5-assumption
that each R; is an equivalence relation. For details, see Wolter [24].

Throughout the remaining part of this paper to avoid repetitive qual-
ifications, we assume that the language L = [fy,f1,...;Po,P1,...] has at
least nine unary predicate symbols. Wolter proved in [23] the above non-
recursive-enumerability theorem under this assumption, though Wolter [24]
gave a different proof under the assumption of an infinite countable number
of unary predicate symbols.

The set of provable formulae in QKD4" is recursively enumerable, since
QKD4" is recursively axiomatizable. Therefore, it follows from Theorem 2.3
that the set {A € P_c : F A} is recursively enumerable (and so is {A €
P_cq : F A}). Therefore, Theorem 2.5 is a phenomenon caused by intro-
ducing common knowledge into QKD4". In subsequent sections, we will
discuss more exactly when such a phenomenon occurs.

Remark 2.6 (Barcan axiom and constant domains). The completeness of
QKD4" (Theorem 2.3.(2)) remains to hold when we drop the Barcan ax-
iom V-B, and correspondingly when the assumption of constant domains is
weakened to that if (w,u) € R;, then M¥ C M", where M and M" are
the individual domains in worlds w and u. On the other hand, the present
completeness proof for the system QCY, which is the key in this paper, re-
lies upon the Barcan axiom V-B. Our present purpose is to draw a map of
common knowledge logics for better understanding of the entire situation,
but not to draw a technically detailed map of them. Therefore, we assume
the Barcan axiom V-B throughout the paper.?

3. Common knowledge logics HM and QHM

Halpern-Moses [5] extended various multi-agent propositional epistemic log-
ics to fixed-point logics in order to incorporate common knowledge. A variant
is the fixed-point extension of KD4". In this paper, since we focus on the
KD4-type logics, we give the name HM to the fixed-point extension of KD4",

3 For other problems arising from the Barcan axiom, see, for example, Fitting-
Mendelsohn [3].
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and QHM to the predicate extension of HM. In fact, it follows from Wolter’s

non-recursive enumerability theorem that QHM is Kripke incomplete. We

are going to consider how the incompleteness result may be understood.
Consider the following axiom schema and inference rule:

CA: C(A) D AAB;C(A)A---AB, C(A);
D> AABi(D)A---ABg(D)
D > C(A) '
We define the logics HM and QHM, respectively, as follows:
HM: KD4" + (CA + CI) within P_q;
QHM: QKD4" + (CA + CI) within P.

The axiom schema CA is often called the fized-point property (with respect
to A). This consists of the formulae of Lemma 2.2.(2) as well as C(A) D A.
Once this axiom schema is added to QKD4" (or KD4"), it follows that
C(A) implies B.(4) = B;, ...B;,,(A) for all e = (i1,...,4,) € N*, which is
explicitly written as Lemma 3.1. That is, the formulae derived show the
intended meaning of the “common knowledge of A”. The inference rule
CI means that if a formula D has the fixed-point property with respect to
A, then D implies C(A). In other words, C(A) is the deductively weakest
formula having the fixed-point property. The inference rule CI is called the
fized-point rule. The logics HM and QHM are defined by the addition to the
same axiom schema and inference rules to KD4" within P_q and to QKD4"
within P.

Our main concern is to consider the predicate extension QHM, but not
HM. Therefore, we will mention properties mainly on QHM, but talk about
HM when necessary.

LEMMA 3.1. FQHM C(A) D BE(A) for alle € N*.

CI:

The completeness theorem was proved for HM by Halpern-Moses [5].

THEOREM 3.2 (soundness and completeness for HM). For any A € P_q,
Fum A if and only if E A.

Let us return to the predicate QHM. It is straightforward to see that
QHM is sound with respect to the Kripke semantics. However, it is in-
complete, which is an implication of Wolter’s non-recursive enumerability
theorem (Theorem 2.5). Indeed, since CA and CI as well as the other ax-
ioms and inference rules for QKD4" are finitary, the set {A € P : Fqum A}
is recursively enumerable. However, the set {A € P : F A} is not by Theo-
rem 2.5. We summarize these results as the following theorem.
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THEOREM 3.3. (1) (soundness). For any A € P, if Fquwm A, then F A.

(2) (incompleteness). There exists a formula A € P such that F A but
J"QHM A.

We may see the difference between the above theorems from two points
of view.

First, let us see the above two theorems from the finitary point of view.
As stated in Section 2, both KD4™ and QKD4" are Kripke complete and
have recursively enumerable sets of provable formulae. In the propositional
case, HM is complete and {A € P_q : F A} is also recursively enumerable,
while in the predicate case, QHM is incomplete and {A € P : F A} is not
recursively enumerable. Although HM and QHM are obtained from KD4"
and QKD4", respectively, by adding both finitary axiom schema CA and
inference rule CI, only the logic QHM turns out to be incomplete. In this
sense, this incompleteness seems to be an unexpected jump.

Second, let us see the above two theorems from the infinitary point of
view. In the infinitary approach, various completeness results are known,
which will be discussed in Sections 4 and 6. Indeed, Kripke completeness
is recovered in the sense that the strengthened provability in an infinitary
approach captures {A € P : E A}. In the propositional case, Kaneko [8]
proved that HM can be regarded as a fragment of infinitary propositional
epistemic logics. Hence we can regard HM as well as QHM as having already
an infinitary aspect in part. The non-recursive-enumerability of {A € P :
E A} is better understood from this point of view. In this sense, from
the infinitary point of view, we may regard the completeness of HM as an
unexpected result, rather than the incompleteness of QHM.

In order to consider those views, we relate QHM and HM to other log-
ical systems. Here, we mention two lemmas on QHM and HM. The first
motivates us to introduce the two other common knowledge logics given in
Section 4. The second will be used to consider the C-fragment of QHM,
which is closely related to the predicate extension of the unimodal S4.

The first lemma, is stated as a derived inference rule for the semantic
validity F. We omit the proof of the lemma.

LEMMA 3.4. If E D D Be(A) for all e € N*, then E D D C(A).

By the soundness and completeness for HM (Theorem 3.3), we restate
this lemma as follows: for A,D € P_q,

(Ogm): if Fav D D Be(A) for all e € N*, then by D D C(A).
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We look at this claim together with Lemma 3.1. We regard the “common
knowledge of A” as a formula having the content {B.(4) : e € N*}. From
this point of view, the instances in Lemma 3.1 and the statement O are the
required properties for the common knowledge A. Therefore, it looks natural
to define a common knowledge logic by adding these to KD4"™ and QKD4".
However, since the infinite conjunction is implicit in the common knowledge
operator C, we have a problem with the formulae: C(A4) D B; C(4) fori =1,
..., n. By analogy with the Barcan axiom V-B, we call C(4) D B; C(A) the
C-Barcan axiom for each i € N. In the propositional case, we would obtain
a logic equivalent to HM by adding, to KD4", the instances in Lemma 3.1,
the inference rule Ogy and C-Barcan axiom. In the predicate case, we need
stronger inference rules than Ogy;. These are the subjects of the next section.

The following lemma will be useful in considering the question of what
kind of formulae make a discrepancy between the provability Fquwm and
validity F. It enables us to make comparisons of the C-fragment of QHM
with the predicate extension QS4(C) of the unimodal S4 with its modal
operator C.

LEMMA 3.5. (1) Fqum C(A D B) D (C(4) D C(B));
(2) Fqum C(4) D A;
(3) Faqum C(4) D CC(4);

(4) if Fqum A, then Fqouum C(A);
(5) Fqum Vz C(A(z)) D C(VzA(z)).

PRrROOF. We prove (1), (4) and (5).

(1) It suffices to prove Fqum C(A D B) A C(4) D C(B). Since Fqum
C(A D> B)AC(A) D B and Fqgum C(A D B)AC(A) D B;(C(A D B)AC(A))
for all € N by CA, we have, by CI, Fqum C(4 D B) A C(A) D C(B).

(4) Suppose Fqum A. Then Fqmu Bi(A) for all i € N by Nec for B;.
Hence Fqum AAB1(A)A--- ABp(A), which implies FquMm ADAABi(A)A
-+ ABp(A4). By CI, Fqum A D C(A). Hence Fqum C(A).

(5) Since Fqum C(A(a)) D A(a) AB1 C(A(a)) A--- ABn C(A(a)) by CA,
we have Fqum Vz C(A(z)) D VzA(z) AV By C(A(z)) A--- AVz By C(A(x)).
By V-B;, we have Fqum Yz C(A(z)) D VzA(z) A B1(Vz C(A(z))) A --- A
B, (Vz C(A(z))). Regarding this as the upper formula of CI, we have Fqum
Vz C(A(z)) D C(VzA(x)). |

Lemma 3.5.(5) is the Barcan formula for C with respect to V.
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Let QS4(C) be the predicate extension of the unimodal S4 with the
Barcan axiom with respect to V, i.e., it is the logic within the set of for-
mulae P_p defined by the axioms and inference rules of the classical logic
and the formulae (1)—(3), (5), the inference rule (4) of Lemma 3.5 for the
modal operator C. The provability relation of QS4(C) is denoted by Fqs4(c)-
Lemma 3.5 implies that for any A € P_p, if Fqg4c) 4, then Foum A. In
fact, the converse also holds, which will be discussed in Section 5.

4. Common knowledge logics CX, QCX and CY, QCY

As stated before, no finitary extensions of QKD4" capture the semantic
validity F. In this section, we present extensions CX, CY and QCX, QCY
of KD4™ and QKD4", respectively. These logics keep the sets P_q and P
of finitary formulae, but admit infinitary proofs. In the propositional case,
both CX and CY turn out to be equivalent to HM. In the predicate case,
QCY is Kripke complete, and thus differs from QHM, but QCX is not known
to be equivalent to QHM, QCY or neither.

4.1. Logics CX and QCX

To define CX and QCX, we adopt the formulae in Lemma 3.1 as an axiom
schema and the inference rule corresponding to Lemma 3.4:
CA*:  C(A) D B(A), where e € N*;
{D D Be(A):e€ N*}
D > C(A)

The axiom CA* means that C(A) contains the “common knowledge of A” in
the sense of {B.(A) : e € N*}. The inference rule CIj states that if D has the
“common knowledge of A” in the same sense, then D contains C(A). In other
words, C(A) is the deductively weakest formula having the “common knowl-
edge of A”. In this sense, CI} is regarded as the dual of the axiom CA*.?

Although the above two additions may look sufficient to determine C(A)
to be the “common knowledge of A”, it is stated in Lemma 2.2.(2) that the
Kripke semantics has the C-Barcan property, i.e., F C(4) D B; C(A) for all
i € N. Correspondingly, we assume these C-Barcan formulae as an axiom
schema:

C-B: C(A)D>B;C(A), forallie N

CIg:

4 Some reader may wonder if the assumption formula D in CIf is needed here. Probably,
C(A D B) AC(A) D C(B) could not be provable for some A and B in the system lacking
D in CI§. In this sense, D in CIj seems indispensable.
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To have the balance between the syntactical system and Kripke semantics,
the axiom C-B is indispensable. See Remark 4.3. Note that the axiom CA
given in Section 3 has C-B as part.

We define CX and QCX as follows:

CX: KD4" + (CA* + CI§ + C-B) within P_q;
QCX: QKDA4™ + (CA* + CI; + C-B) within P.

The inference rule CIj requires countably infinite numbers of upper formulae.
Accordingly, the definition of a finitary proof should be modified into a
countable tree where every path from the root is finite and a countably
infinite branching occurs with CIf. Infinitary proofs are allowed in CX and
QCX.

The logic CX is given as a sequent calculus in Kaneko [8].

Before stating the soundness-completeness result for CX, we mention the
relationship between CX, QCX and HM, QHM.

LEMMA 4.1. (1) (CA): Fqex C(4) D AAB1C(A) A--- AB, C(A).
(2) (CI).’ if I—ch DDOAN Bl(D) VANCERWAN Bn(D), then I_QCX DD C(A)
These claims hold with the replacement of QCX with CX.

PROOF. (1) follows from CA* and C-B.
(2) Suppose Fqcx D D AABi(D) A--- AByp(D). Then we can prove
Fqox D D Be(A) for all e € N*. Therefore, by CIj, Fqcx D D C(A). ]

We have the following theorem.

THEOREM 4.2. (1) (equivalence of HM and CX). For any A € P_q, Fum 4
if and only if Fox A.

(2) For any A € P, if Fqum A, then Fqox A.

PROOF. Lemma 4.1 implies (2) as well as the only-if part of (1). The if
part of (1) follows from CA and Ogy stated after Lemma 3.4. |

The completeness of CX is a by-product of Theorem 4.2.(1) and Theo-
rem 3.2. Nevertheless, since we do not have the completeness for QHM as
stated in Theorem 3.3, we cannot, at present, guarantee a parallel result in
the predicate case.

Remark 4.3. The two logics KD4™ + (CA* + CIf)) within P_q and QKD4" +

(CA* + CI}y) within P look natural. However, the following fact is known for
the propositional case: The axiom C-B is not provable in KD4"+(CA*+CIy).
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This implies that KD4" + (CA* + CIj) is Kripke incomplete which obtained
as follows: The Gentzen-style sequent formulation of KD4" + (CA* + CIj)
enjoys cut-elimination, which implies the full subformula property. Using
this subformula property, we can prove that C-B is not provable in KD4" +
(CA* + CIj). This method is not directly extended to the predicate case
because of the Barcan axiom V-B for B;.

4.2. Logics CY and QCY

The logic CX is complete as stated above, but we do not know whether or
not its predicate extension QCX is complete. Nevertheless, we would obtain
completeness if the inference rule CIj is strengthened into the following form:

{D > T(Be(A)) : e € N*}

Cr: Do T(CA)

where T'(E) is any (single) formula of the following form:
Bjk(Dk Do DBjZ(Dz Dle(Dl D) E))) (4.1)

Here D, ..., Dy are any formulae in P and that (ji,..., 1) is any sequence
in N*. Formula T'(B.(A)) is obtained from T'(E) by substituting Be¢(A) for
E. When k = 0, CI* becomes CIj.

The inference rule CI* states that if D implies T'(B¢(A)) for any e € N*,
then D implies T'(C(A)). It looses the direct duality to CA*. Although this
looks artificial, the resulting logical systems become Kripke complete in both
propositional and predicate cases. In the propositional case, the resulting
system is deductively equivalent to CX, a fortiori, HM.

We define CY and QCY as follows:

CY: KD4" + (CA* + CI*) within P_q.
QCY: QKD4" + (CA* + CI*) within P.
Proofs in these logics are defined in the similar manner as in CX and QCX.

It can be verified that CY and QCY are extensions of CX and QCX, as
follows. First, observe that CIj is a special case of CI*, as already stated.

Second, C-B is also provable in QCY. Indeed, since Fqcy C(4) D Bi(—pVp D
Be(A)) for all e € N* by CA*, we have, using CI*, Fqcy C(4) D Bi(-pVp D
C(A)), ie., Fqcy C(A) D B; C(A). We write this second fact explicitly.

LEMMA 4.4. (1) For any A € P_q, Fcy C(A) D B; C(A) for alli € N.
(2) For any A € P, Fqcy C(A) D B; C(A) for alli € N.
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This lemma together with the fact that CIj is included in CI* implies
the following.

LEMMA 4.5. (1) For any A € P_q, Fcx A implies oy A.
(2) For any A € P, Fqcx A implies Fqcy A.
We have the following soundness-completeness result for CY and QCY.

THEOREM 4.6 (soundness and completeness for CY and QCY).
(1) For any formula A € P_q, Fcy A if and only if F A.

(2) For any formula A € P, Fqcy A if and only if F A.

Since Lemma 4.5.(1) states that CY is an extension of CX, and since CX
is Kripke complete, we would obtain Theorem 4.6.(1) if CI* is sound in any
Kripke frame. This verification is straightforward. Hence, the completeness
part of Theorem 4.6.(2) is crucial here. Tanaka [19] discusses this com-
pleteness. His proof is given under the language with no function symbols.
Although function symbols are unavoidable for future applications, a proof
of (2) for the language with function symbols can be obtained by modifying
Tanaka’s [19] proof.® See also Section 7.2.

Since {A € P : F A} is not recursively enumerable by Theorem 2.5,
Theorem 4.6.(2) implies that the set {A € P : Fqcy A} is also not recursively
enumerable. This non-recursive-enumerability may be regarded as caused by
infinitary proofs. On the other hand, since {A € P_q : Fcy A} coincides
with

{AeP q:FA}={AcP_q: Fram A} ={A € P_q: Fex A},

the set {A € P_q : Fcy A} remains recursively enumerable, even though
we allow infinitary proofs in CY. Therefore, an infinitary proof is not solely
a cause for the non-recursive-enumerability of {A € P : Fqcy A}.

In sum, completeness holds for QKD4", becomes unavailable for QHM,
and recovers again for QCY. In contrast to the predicate case, there are no
such gaps in the propositional case. Now, we have an entire map of common
knowledge logics except the infinitary ones. In the next section, we look at
more detailed relationship between these logics.

We mention one corollary from Theorem 4.6.

COROLLARY 4.7 (conservativeness of QCY upon CY).
For any A € P_q, Fcy A if and only if Fqcy A.

% A proof in the case with functions symbols is given in the discussion paper version of
this paper. A copy would be provided on request.
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5. Comparisons of common knowledge logics

In this section, we make comparisons of the logics QKD4", QHM, QCX,
QCY and QS4(C) as well as their propositional fragments. It will be known
from these comparisons except with QCX that if one is an extension of
another, the extension is conservative upon the other. In addition to this, we
will get a good but still partial answer to the question of what the difference
between QHM and QCY is. It remains open whether QCX coincides with
QHM or QCY (or neither). We obtain also the result from these comparisons
that any formula that is valid but is not provable in QHM contains a belief
operator B;, the common knowledge operator C as well as a quantifier.

First, we compare the provabilities of our logics for propositional formu-
lae. We remark that the semantical validity F A can be added to the list of
the provability statements in the following theorems.

THEOREM 5.1 (propositional formulae). For any formula A € P_q, the
following siz statements are all equivalent: (1) Fum A; (1q) Fqum 4; (2)
}‘cx A; (2Q) |_QCX A,' and (3) f—cy A,‘ (3Q) I_QCY A.

If A is C-free, then we can add (0) Fgpsr A and (0Q) FqQkpar A to the
above list.

PROOF. By the definition of each logic, we have (1) = (1g), (2q) = (3q)
and (2) = (3). Theorem 4.2.(2) states (1q) = (2q). Corollary 4.7 states
(3) © (3q)- Theorem 4.2.(1) states (1) < (2). These are described as follows:

HFamA & 2Fcx4d = (B)kcv 4

\ 4

(1Q) }"QHM A = (2Q) }"QCX A = (3Q) *_QCY A
Finally, we get (1) < (3) from Theorems 3.2 and 4.6.(1). Thus, we have the
equivalences of all the six claims. [ |

It is an implication of Theorem 5.1 that QHM, QCX, QCY and their
propositional fragments are all conservative extensions of KD4".
Next, we compare the provabilities of these logics for C-free formulae.

THEOREM 5.2 (C—free formulae). For any A € P_c, the following four are
equivalent: (1) Fqipar A; (2) Fqum 4; (3) Fqox 45 and (4) Fqcy A.

PROOF. By definitions, we have (1) = (2) and (3) = (4). By Theo-
rem 4.2.(2), (2) = (3) holds. Conversely, suppose (4). By Theorem 4.6.(2),
we have F A. Since A does not contain C, the completeness for QKD4"
(Theorem 2.3.(2)) implies Fqrpar A. Thus, (1), (2), (3) and (4) are all
equivalent. [ |
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Although QHM is incomplete, Theorems 5.1 and 5.2 imply that QHM is
- a conservative extension of HM and KD4". Of course, QCY is a conservative
extension of CY and also of QKD4".

Next, consider B-free formulae. That is, we consider the provabilities of
formulae containing no By, ..., B, but, maybe, C in our predicate extensions
of KD4". In this consideration, we focus on the predicate extension QS4(C)
of the unimodal S4, since comparisons with it give good hints to understand
common knowledge extensions of KD4".

In fact, the provabilities of QHM, QCX and QCY for B-free formulae
collapse into that of the predicate extension QS4(C) of unimodal S4, whose
modality is C.

THEOREM 5.3 (B-free formulae). For any formula A € P_p, the following
four statements are all equivalent: (1) Fqum A4; (2) Fqox 45 (3) Fqey A4
and (4) '_QS4(C) A.

A proof of this theorem will be given below.

In the propositional case, we have the parallel result to Theorem 5.3: for
any formula A € P_gq, (1-q) Fum 4; (2_q) Fcx 4; (3—q@) Fcy 4; and
(4-q) Fs4(c)y A as well as (1)—(4) of Theorem 5.3 are all equivalent.

To prove Theorem 5.3, we introduce the translator : P — P_p to as-
sociate with each A the formula 1)(A) obtained from A by replacing all oc-
currences By, ..., B, in A by C. For example, ¥(C(4) D B;, ...B;,,(4)) =
C(ypA) D C...C(ypA). Note pA = A for any A € P_p.

LEMMA 5.4. For any A € P, if bqoy A, then Fqgac) ¥(4).

PROOF. It suffices to prove that -qg4(c) (D) for all axioms D for QCY, and
that the inference rules translated by 1 from those for QCY are admissible
in QS4(C). If D is an instance of L1-L7, then Fqgy(c) %(D). Let D be an
instance of the axiom K, i.e., B;(A D B) D (Bi(A) D B;(B)). Then (D) =
C(ypA D ¥B) D (C(vA) D C(¢B))), which is an instance of an axiom in
QS4(C). In the same manner, if D is an instance of the axiom D or 4, we have
Fqsa(c) ¥(D). Consider the Barcan axiom Yz B;(A(z)) D Bi(VzA(z)). The
translation is (Vz B;(A(z)) D Bi(VzA(z))) = Vo C(vA(z)) D C(VzpA(x)),
which is an instance of the Barcan axiom for the operator C. Consider an
instance of CA*: C(A) D Be(A), where e = (i1, ...,%,). Then ¥(C(4) D
Be(A4)) = C(ypA) D C...C(ypA). This is provable in QS4(C).

Regarding the inference rules, we consider only Nec and CI*.

Nec: Let Fqgyc) ¥(A). Then Fqgycy C(¥A), which is equivalent to

Fqsacc) ¥(Bi(4)).
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CI*. Suppose Fqgyc)y ¥(D D T(Be(A))) for all e € N*. Recall that
T is any formula of the form (4.1). Consider the specific one Fqgy(c)
(D D T(B1(4))). Since (D D T(B1(A4))) is ¥(D) D T (B1(A4)), and
since ’l,bT(Bl(A)) = ’g/)(Bjm(Dm D) ...Bj2(D2 D) le(Dl D Bl(A))))) =
C(¢Dy, O ...C(¢D2 D C(¢D; D C(pA)))...) = ’(/)Bjm(Dm D ...sz(Dz D
Bj, (D1 D C(4)))...)) = ¢T(C(A4)), we have Fqgqc) (D D T(C(4))). =

PROOF OF THEOREM 5.3. By Theorem 4.2.(2), we have (1) = (2). By
definition, (2) = (3). By Lemma 5.4, we have (3) = (4). Suppose (4).
Then there is a proof of A in QS4(C). It suffices to show that the logical
axioms and inference rules in QS4(C) are admissible in QHM. These are
stated in Lemma 3.3. ]

As stated in the beginning of this section, we can add the semantic
validity F A to the list in the above three theorems. Since these theorems
imply that all the sets {A € P_q: F A}, {AcPp:FA}and {A€P_c:
A} are recursively enumerable, their union {4 € P_qUP_pUP_c: F A}
is also recursively enumerable.

Let Pqr be the set of all quantifier-free formulae in P. We define the
quantifier-free fragments KD4%r, HMqr, CXqr and CYqr in the same man-
ners as KD4", HM, CX and CY by adopting Pqr rather than P_qg. Then all
the theorems for the propositional fragments remain true for KD4g, HMqr,
CXqr and CYqr. The last conclusion of the above paragraph becomes that
{A € PqrUP_BUP_c : F A} is recursively enumerable. Note that Fqum A
holds for any formula A in {A € Pqr UP_gUP_c : F A}. Hence, we have
the following theorem.

THEOREM 5.5 (difference between QCY and QHM). (1) For any A € P, if
Fqcy 4, a fortiori, F A, but ¥quwm A, then A contains a belief operator B;
for at least one i, the common knowledge operator C and a quantifier.

(2) The set {A € P :tqcy A and Fqum A} is not recursively enumerable.

It is an important open problem to find a particular formula for (1). After
all, such a formula contains B; for some i, C as well as V (or 3). Conversely,
for other formulae, the provability Fqcy coincides with Fqmv. Although
we have met quite complicated formulae containing C and quantifiers in the
game theoretical applications in Kaneko-Nagashima [10] and [11], they are
not ones for (1).

6 Tanaka [19] showed that the occurrence of C in A must be positive, by applying the
method of tree-sequent calculus.



78 M. Kaneko, T. Nagashima, N.-Y. Suzuki, Y. Tanaka

We have been focussed on extensions of QHM rather than on its frag-
ments. On the other hand, Sturm-Wolter-Zakharyaschev [18] considered the
monodic fragment of QHM under the assumption that the language has no
m-ary function symbols for m > 1. We say that a formula A is monodic iff
each of any subformulae Bj(D) (j € N) and C(D) of A contains at most
one free variable. Without the assumption of no m-ary function symbols
with m > 1, the formula obtained from a monodic formula by substitution
of a term may not be monodic. They proved the Kripke completeness of
the monodic fragment of QHM under the assumption of no m-ary function
symbols with m > 1. This fragment is located between HM and QHM. The
gap between QHM and QCY occurs after the monodic fragment of QHM.

6. Game logics GL, and QGL,: Infinitary approach

Since the common knowledge C(A) of A is naturally understood as the con-
junction of the infinite set {B¢(4) : e € N*}, it would be a direct ap-
proach than the fixed-point one to consider an infinitary extension of KD4".
Kaneko-Nagashima [10] and [11] took this approach and provided the infini-
tary epistemic logics GL,, and QGL,,, where common knowledge is explicitly
formulated as an infinitary conjunctive formula. They developed these sys-
tems from the proof-theoretic point of view, which are now expected to be
Kripke-complete from the results of Tanaka-Ono [22] and Tanaka [21]. In the
propositional case, Kaneko [8] showed that HM is faithfully embedded into
GL, (with a slight restriction).” In this section, we will give a connection
from the logics CY and QCY given in Section 4 to GL,, and QGL,,.

First, we add the new conjunction and disjunction symbols A and \/ to
the list of primitive symbols in Section 2.1. These are applied to infinite sets
of formulae.

Let Q be a given set of formulae. We define £(Q) as follows:

IF1: @ = QU{(A &),(V @) : 9 is a countably infinite subset of Q contain-
ing at most a finite number of free variables};

IF2: £(Q) is the set of formulae defined from Q' by the standard induction,
that is, (1): any expression in Q' belongs to £(Q); (2): if A, B € £(Q),
then (-A), (AAB), (AV B), (A D B) and B1(4), ..., Bp(A) belong
to £(Q); and (3): if A(a) € £(Q), then (VzA(z)) and (3zA(z)) belong
to £(Q).

7 Heifetz [6] discussed the infinitary approach and fixed-point approach in the propo-

sitional case, by unifying these approaches into one system and proving its Kripke com-
pleteness.
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By replacing Q by £(Q), we define £2(Q) = £(£(Q)), and E™(Q) =
E(E™(Q)) for any nonnegative integer m. We adopt the set of formulae
EY(P-c) := Upmcw E™(P-c), taking P_c as Q. In the following, we call ¢
an allowable set iff @ is a countably infinite set of formulae in £™(P_¢) for
some m < w and contains a finite number of free variables. We denote the
propositional fragment of £“(P_c) by €2 (P-cq)-

The large conjunction and disjunction symbols A, \/ are applied only
to allowable sets of formulae. The set of formulae £¥(P_c) are closed with
respect to =, A, V, D and A\, V. Since {B¢(4) : e € N*} is an allowable
set for any A € £Y(P_c), this set £¥(P_¢) is sufficiently large to discuss
the problem of common knowledge. The restriction that each allowable set
has only a finite number of free variables is not restrictive for our purpose
of incorporating common knowledge into a first-order theory.

In the above construction of the sets of formulae, we do not include the
common knowledge operator symbol C, since common knowledge is now
expressed as an infinitary conjunctive formula, that is,

A{B.(4) : e € N*}, (6.2)

which we denote by Cy(A).
We add the modifications of the axioms L4, L5 and inference rules A-
Rule, V-Rule: For any allowable set @ of formulae,
L4,: A9 DA, where A € &;
L5,: ADV &, where Ac &

and

{ADB:Be€ ¢}
ADNO

{ADB:Ae€ &}
VOB

(A -Rule) (V -Rule).

We denote the union of the axioms for QKD4™ and L4, L5,, A-Rule, /-

Rule by QKDA4%. The propositional fragment of QKD4(, is denoted by KD4f.
Since an allowable set & is infinite, we need also the Barcan property on

each belief operator B; with respect to A: For any allowable set &,

A-B:  ABi(2) D Bi(A 2),

where B;(®) := {B;(A4) : A € ¢}. In A B;(9), player i believes every formula
in @, and in B;(/\ @), he believes additionally the entirety of @¢. Hence, the
latter is stronger than the former. Indeed, this is provable in QKD4[), but
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the converse, \-B, is not necessarily.® To make direct comparisons with
QCY, we need the axiom A-B.
We define GL,, and QGL,, by

GLy:  KD4] + A-B within €4 (P-cq);
QGL,: QKD4” + A-B within £(P_c).

Recall that £ (P-cq) is the propositional fragment of £¥(P_c).

A proof in QGL,, is defined to be a countable tree in the same manner as
in QCX. We write Fq, A iff there is a proof of A in QGL,,. The provability
relation of GL,, is denoted by F,.

First, we show that the operator Cy(-) in QGL,, has the same properties
as C in QCY. The same assertions hold in GL,.

LEMMA 6.1. (1) Fqu Co(A) D Be(A) for alle € N*.

(2) If FQuw D D T'(Be(A)) for all e € N*, then Fq, D D T(Co(A)), where
T(E) is any formula, in E“(P_c), of the form (4.1).

PRrROOF. (1) follows from the definition of Cy(A).

Consider (2). We prove by induction on the structure of T' that Fq,,
AT (Be(A4)) : e € N*} D T(Co(A)). When T is the null symbol, the
assertion holds.

Let T'(Be(A)) be written as Bj, (Dm DO ...Bj(D2 D Bj (D1 D
Be(A)))...). Suppose Fqu A{T(Be(A4)) : e € N*} D T(Co(A)). Then
o Dinis > MIBA) ¢ € W'D D Dy 3 T(CH(A)). Tonce
Fu Bings (Dmt1 > AT (Be(A)) : ¢ € N}) > By, (Dy,0  T(Co(4).
On the other hand, since Fqu A{Bj,11(Dmt+1 D T(Be (A))) e € N*} D

By i1 (Dm41 D /\{T( e(4)) : e € N*}), we have Fqu /\{BJmH( mt+1 D
T(Be(A))) : e € N*} D By, (Dm+1 D T(Co(4))). =

The semantic valuation (M, o, w) F of Section 2.3 can be applied to any
formula in £“(P_c) just by modifying E3 and E4 into the following manner:
for any allowable sets @,

E3,: M,o0,w)ENP? < (M,o,w)E Afor all A€ &
E4,: M,o0,w)EV ® < (M,o0,w) F A for some A € 9.

8 Exactly speaking, we have a proof of the unprovability of the converse in the propo-
sitional case KD4;, and in the predicate case QKD4, without the axiom V-B. See also
Remark 4.3.
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Then we have the following soundness-completeness result, which is ob-
tained by modifying the proof of the completeness result for QCY. See Sec-
tion 7 for a remark on its proof.

THEOREM 6.2 (soundness and completeness for GL,, and QGLy,).
(1) For any A € £24(P-cq), Fw A if and only if M F A for all models M.

(2) For any A € E“(P—c), Fqu A if and only if M E A for all models M.

Now, we compare the infinitary approach with the finitary one. In the
comparisons, the following formulae in £¥(P_¢) are essential. We call a
formula A in EY(P_¢) a cc-formula iff (1) no infinitary disjunctions occur
in A and (2) if A\ @ is a subformula of A, then A & is expressed as Cy(B)
for some B.

We obtain cc-formulae by translating a formula in P by replacing C(-)
with Cy(+). By this translation, P is embedded into £¥(P_c). We define the
translator ¢ : P — £Y(P—_c) inductively as follows:

TO:
T1:

c(A) = A for all atomic A4;
C(_‘A) Pc(4);
T2: tc(A ) = 1pc(4) D c(B);
T3: 9c(A A B) = ¢c(A4) Apc(B); and ¢c(AV B) = hc(A) V ¢c(B);
(
(
(

<

T4: +c VwA(ﬂ«')) = VWC( (z)); and Yo (FzA(z)) = Izgo(A(z));
T5: 9c(Bi(4)) = Bi(¢c(4));
T6: 9c(C(A)) = A{Be(tbc(4)) : e € N*} (= Co(ihc(A))).

It is easy to see that ¥c(A) is a cc-formula for any A € P. We can prove
also the following lemmas.

LEMMA 6.3. ¥c is a bijection from P to the set of all cc-formulae.
LEMMA 6.4. For any A € P, E A if and only if F ¢¥c(A).

These lemmas hold also in the propositional case. The translation ¢
embeds CY and QCY into GL, and QGL,,.

THEOREM 6.5 (faithful embedding). (1) For any A € P_q, Fcy A if and
only if Fu Ye(A).

(2) For any A € P, Fqcy A if and only if Fqu ¥c(A).



82 M. Kaneko, T. Nagashima, N.-Y. Suzuki, Y. Tanaka

PROOF. We consider only (2). Suppose Fqcy A. Note that g, 9c(B) for
any instance B of the axioms for QCY, CA* and CI* are already verified in
Lemma 6.1, and the classical inference rules translated by 1¢ are admissible
in QGL,,. Thus, a proof of A in QCY is translated into that of 9)c(A) in
QGL,,. Therefore, Fq, ¥c(A).

Suppose Fqu ¥c(A). By Theorem 6.2, we have F 1)c(A). This is equiv-
alent to F A by Lemma 6.4. Hence Fqcy A by the completeness for QCY
(Theorem 4.6). |

The assertion (1) of this theorem is an improvement of the embedding
theorem obtained in Kaneko [8] in that no restriction on the axiom A-B is
needed here, while the axiom A-B is restricted only to the cc-formulae in [8].

In the propositional case, HM, CX and CY are all equivalent. It follows
from this fact and Theorem 6.5.(1) that HM and CX are also faithfully
embedded into GL,,. Hence, the set

{A € E2(P-cq) : Ais a cc-formula and I, A}

is recursively enumerable, even though GL,, is an infinitary logic.

The predicate case differs considerably from the propositional case. The
set {A € £(P—c) : Fqu A and A is a cc-formula} is not recursively enu-
merable, since {A € P : Fqcy A} is not recursively enumerable by Wolter’s
result and the soundness-completeness result for QCY. This result may look
natural since QGL,, is already an infinitary logic. Thus, there is a great
difference between the propositional and predicate cases.

The above faithful embedding theorem does not hold between QHM and
QGL,, since {A € P : Fqum A} C {4 € P : Fqcy A} and QCY is faithfully
embedded into QGL,. We do not know whether or not it holds between
QCX and QGL,. Nevertheless, when we restrict our attention to C—free

formulae or B-free formulae, the faithful embedding theorem recovers for
QHM and QCX to QGL,,.

Remark 6.6 (relation between common knowledge and common belief).

In the infinitary logic GL,, (or QGL,,), the common belief of A is formulated
as AN{Be(A4) : e € N* and e # €}. That is, it is defined by excluding A =
B¢(A) from the common knowledge formula Cy(A4). In GL,, this common
belief formula is equivalent to

By Co(A) A+ A By Co(A).

Using the above embedding theorem (Theorem 6.5), this formula is trans-
lated into By C(ypg*A) A -+ A B, C(¢pg' A) in CY. Since HM and CY are
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deductively equivalent, the common belief of proposition A € P_q is formu-
lated as B; C(4) A--- A B, C(A) in HM.

Another way around is to start with new common belief operator Cp
as a primitive, and modify the logic HM into the common belief logic by
replacing the axiom CA and inference rule CI by

CpA: Cpg(A) DB1(AACB(A)A---ABL(AACg(A));
DDO>Bi(AAD)A---ABr(AAD)
D > Cp(4)

Correspondingly, E8 of Section 2 is modified by assuming that reachability is
defined by a sequence of length of at least 2. Then this common belief logic
is also Kripke complete (see Halpern-Moses [5]). In this logic, the common
knowledge is defined Cp(A) A A. This procedure can be done in all the
constructs, e.g., HM, QHM and others in this paper.

In this sense, we can start either common knowledge or common belief,
and then the other is defined as a derived concept.

Cgl:

Remark 6.7. The final remark is on a larger infinitary logics than GL,, and
QGL,. Possible candidates are Ly, ,(QKD4") and QL. (KD4"), which is
more standard in the literature of infinitary logics (cf., Karp [13]). As far
as we assume proper Barcan axioms, we would have the same embedding
theorems. For larger sets of formulae create no further difficulties. In this
sense, GL, and QGL,, are the smallest choices of infinitary extensions so
that all of CY (and HM, CX) and QCY are faithfully embedded.

7. Conclusions

7.1. Map

From the considerations in Section 2 through Section 6, we draw Diagram 2.
The map has four rows: The above two give the logics considered in the
propositional and predicate cases. The two additional rows explain the
characteristics of each logic, e.g., QHM has finitary formulae and finitary
proofs, while QCX has finitary formulae but infinitary proofs. The arrow —
denotes the relationship of deductive strength and ~~ that of being faithfully
embedded.

No serious problems remain in the propositional case. All the logics
from KD4" to GL,, are Kripke complete, and HM, CX, CY are deductively
equivalent. They can be faithfully embedded into GL,. Also, GL, is a
conservative extension of KD4™. On the other hand, we have met various
problems in the predicate case. The logics QKD4", QCY and QGL,, are
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KD4" - HM ¢+— CX +— CY ~ GL,

\ 1 { 1 1
QKD4" — QHM — QCX — QCY ~ QGL,
formulae finitary finitary finitary infinitary
proofs finitary finitary infinitary infinitary
Diagram 2.

Kripke complete, but QHM is Kripke incomplete. The Kripke completeness
of QCX remains open. The logic QCY is faithfully embedded into QGL,,,
and QGL,, is a conservative extension of QKD4". Though QHM is embedded
into QGL,,, its faithfulness does not hold. The logic QCX is embedded into
QGL,, but faithfulness remains also open.

In Diagram 2, the gap exists around QHM and QCX. There is a formula
that is valid in the Kripke semantics but is not provable in QHM. Theo-
rem 5.5 states that such a formula contains quantifiers, belief operators and
the common knowledge operator. Nevertheless, it is also an open problem
to find a concrete one.

7.2. Other remarks

(1) We have chosen KD4" as the base logic, and have considered various
extensions of it keeping the KD4-basic axioms. The choice of KD4" is made
because KD4™ (or KD") seems to be central for concrete applications such
as game theoretical ones. For example, the distinction between true and
false beliefs is possible by dropping the axiom T (truthfulness axiom), which
could be crucial for future game theoretical applications (cf., Kaneko [9] and
Kaneko-Suzuki [12]). Also, each S4-type logic is treated inside the corre-
sponding KD4-type logic with the well known translation: B*(4) = B(A)AA.
As far as the map of common knowledge logics is concerned, almost the same
results holds for the other choice of a base logic, e.g., K", KD", 54" as well
as S5". The non-recursive-enumerability result by Wolter [24] holds also for
these logics. Only some comparisons such as Remark 4.3 may be difficult in
the case of the choice of S4™ or S5™ as the base logic.

(2) The completeness theorem for QCY (Theorem 4.6) is proved in
Tanaka [19]. The proof is based on an algebraic method along the line
of Rasiowa-Sikorski [17]. The basic strategy of the completeness proof for
QCY is standard in that when a formula is consistent in QCY, we construct
a Kripke model where the formula is true in some world. The construc-
tion of a Kripke model is made by starting with the Lindenbaum algebra
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and taking all the @Q-filters for the set of possible worlds. Here we have to
modify the definition of Q-filters suitable for QCY. Then we will use the
Rasiowa-Sikorski lemma and a lemma given in Tanaka-Ono [22] on Q-filters,
to show that the constructed Kripke model is a desired one.

The proof given in Tanaka [19] does not deal with function symbols, but
can be modified to incorporate functions symbols in the standard manner.

To prove the completeness of QGL,, (Theorem 6.2), we should modify
the completeness proof of QCY. That is, the choice of Q-filters should be
changed from those in the completeness proof for QCY.
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