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Abstract

From the Ex Ante point of view, an axiomatization of decision making in a game with pure
strategies is given, while considering its epistemic aspects in propositional game (epistemic) logic.
Our axiomatization consists of four base axioms for predicted final decisions. One of them is an
epistemic requirement, which together with the others leads to an infinite regress of the knowledge
of these axioms. The resulting outcome of this regress is expressed as the common knowledge of
the base axioms. We give meta-theoretical evaluations of the derivation of this infinite regress, and
consider its implications in solvable and unsolvable games. For a solvable game, it determines
predicted decisions to be the common knowledge of a Nash equilibrium, and for an unsolvable
game, it is the common knowledge of a subsolution in Nash's sense. The latter result needs the
common knowledge of the additional information of which subsolution would be played. We give
also meta-theoretical evaluations of these results. [0 1999 Elsevier Science BV. All rights
reserved.
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1. Game logic approach and meta-theoretic evaluations of some game theoretic
consider ations

In this paper, decision making in a game is considered from the Ex Ante point of view
in an axiomatic manner. For such decision making, players knowledge and thinking on
the game situation are essential. To describe these epistemic aspects as well as the game
situation, we will use the propositional fragment of game logic developed in Kaneko-
Nagashima (1996) and (19973). In the framework of game logic, Kaneko-Nagashima
(1991, 1996) presented base axioms for decision making, and showed that these base
axioms lead to an infinite regress of the knowledge of the axioms themselves, the result
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of which is expressed as the common knowledge of the axioms. Then they solved this
infinite regress in the sense that the common knowledge of the axioms determines the
final decisions to be the common knowledge of a Nash equilibrium under the common
knowledge assumption of interchangeability of Nash equilibria. The objectives of this
paper are to evaluate the derivation of the infinite regress in a meta-theoretic manner,
which means to consider whether or not a player can prove certain propositions related
to the derivation. We aso give a full consideration of decision making in an unsolvable
game as well as meta-theoretic evaluations of it.

In Ex Ante decision making, since each player makes a strategy choice before the
actual play of a game, the knowledge of the structure of the game as well as predictions
on the other players strategy choices may be needed. In the literature of game theory,
the Bayesian approach to this problem has been dominant. In the Bayesian approach, the
players knowledge is described by means of a subjective probability on possible types
of each player, and classical game theory is treated as a trivial case — games with
complete information. A game with complete information itself is, however, not trivial
in that it has at least the description of the constituents of a game. Although the Bayesian
approach has been shown to be quite rich in capturing various economic problems, it is
incapable of treating players logical and mathematical abilities as well as ther
knowledge of the descriptions of a game in a direct manner. This leads us to the
development of the game logic framework.

Kaneko-Nagashima (1996) and (1997a) developed a hierarchy of logics, GL,, GL,,...,
GL,,... ; and GL_, where the nesting depths of the knowledge of players' logical and
introspective abilities are bounded by min GL,,, and they are unbounded in GL . They
are predicate logics for the purpose of describing real number theory in its scope, since
classical game theory often relies upon real number theory. They are also infinitary to
discuss common knowledge, but the limit logic GL , is required for the full discussion of
the problem of common knowledge. The objectives of Kaneko-Nagashima, (1996) and
(199738 were to develop the new framework and to show some possible applications.
The purpose of this paper is to give fuller discussions on the epistemic axiomatization of
the Ex Ante decision making in a game. For this purpose, we confine ourselves to finite
games with pure strategies, for which the propositional fragment of GL, suffices, but
any GL,, (m< w) is insufficient for our arguments.

Now we describe our game theoretical problems. We meet two kinds of basic
problems arising in the Ex Ante decision making:

(i): solution-theoretic problems;
(ii): existence-playability problems.

The first is the problem of how strategy choices are made; and the other is the existence
and playability of the solution concept obtained in (i). These problems interact with each
other. In this paper, we give the solution-theoretic consideration of the Ex Ante decision
making problem for a finite game with pure strategies, and will give also some results on
the playability problem.

When we restrict our attention to games with pure strategies, some games might not
be playable in the sense that there are no Nash equilibria in pure strategies. When we
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allow mixed strategies, existence is obtained, but some form of real number theory is
involved and is assumed to be known to players, which is a stringent requirement. If a
game has a Nash equilibrium in pure strategies, playability is not so serious as in the
case with mixed strategies, though some playability problems may remain for such a
game. From the viewpoint of playability, the cases with and without mixed strategies are
totally different. From the solution-theoretic point of view, however, they do not make
much differences. The solution-theoretic considerations given in this paper can be
carried over to the case with mixed strategies. The existence-playability of a game with
mixed strategies is discussed fully in Kaneko (19973). In this paper, we restrict our
attention to games with pure strategies, which enables us to use the propositional
fragment of game logic.

A merit of the game logic approach is not only to describe the epistemic aspects of
decison making in an explicit manner, but also to enables us to evaluate such
descriptions and resulting outcomes from them in a meta-theoretic manner, that is, we
can evaluate what the players can or cannot prove. The undecidability result given in
Kaneko-Nagashima (1996), that the existence of a unique Nash equilibrium is common
knowledge (in mixed strategies) but the players cannot know what the Nash equilibrium
is specificaly, is an example of such meta-theoretical evaluations. The main contribu-
tions of this paper are meta-theoretical evaluations of the axiomatization and of the
resulting outcomes from it.

Our axiomatization consists of four base axioms for predicted final decisions:

D1: Best Response to Predicted Decisions — each player’s decision is a best response
to his predictions on the other players decisions;

D2: Identical Predictions — each has identical predictions;

D3: Knowledge of Predictions — each knows his own decision and predictions;
D4: Interchangeability of Predicted Decisions — each treats the players as in-
dependent decision makers.

The first two axioms simply induce Nash equilibrium, but they together with the third
and fourth axioms go much further. The third is an epistemic requirement, and the fourth
is a requirement of independent decision making. These two additiona requirements
differentiate substantially our theory from classical Nash equilibrium theory.

The third axiom together with the second leads to an infinite regress of the knowledge
of these four axioms, the result of which is expressed as the common knowledge of
those axioms. We will evaluate this derivation in a meta-theoretical manner. The
evaluation states that to complete the axiomatization, we meet necessarily the infinite
regress. The introduction of an epistemic structure also enables us to demarcate
playability from the mere knowledge of the existence of a Nash equilibrium, which will
be discussed in Subsection 5.2. One result differentiates the case where the players have
abstract knowledge of a game from the case where they have the concrete knowledge of
it.

The fourth axiom demarcates between the solvable and unsolvable games in Nash's
(1951) sense. For a solvable game, a predicted decision profile is determined to be the
common knowledge of a Nash equilibrium. For an unsolvable game, it becomes the
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common knowledge of a subsolution, which is defined also by Nash himself. In this
case, the players need to share some information of which subsolution would or not be
played. We will prove that without such additional information, the game is not playable.
Here we emphasize that although Nash equilibrium plays a central role in our axiomatic
consideration, our concern is individual decision-making in a game situation but not an
axiomatization of Nash equilibrium. From this point of view, the fourth axiom is
indispensable and plays a crucia role in our considerations. In Section 7, the role of
each axiom in our axiomatization is considered.

Our axiomatization looks related to Johansen’s (1982) informal argument on Nash
equilibrium. The seemingly self-referential nature of his argument may be regarded as
corresponding to our infinite regress of the base axioms. His claim that his postulates
determine a Nash equilibrium for a game with a unique Nash equilibrium is consistent
with our results. In this paper, however, we will consider epistemic aspects explicitly
and also treat unsolvable games. The comparison between his and ours will be given in
Subsection 7.2. This paper is related also to Aumann-Brandenberger (1995) in its
objectives. These authors considered some epistemic conditions for Nash equilibrium in
a Bayesian framework. The difference is that they concern necessary conditions for Nash
equilibrium, while our concern is the complete characterization of predicted final
decisions with meta-theoretical evaluations (the direct comparisons are difficult since the
frameworks are different)

As already stated, the logic GL,, we use is a propositional fragment of game logic of
Kaneko-Nagashima (1996) and (19973). In fact, it is shown in Kaneko (1996) that
common knowledge logic developed in Halpern-Moses (1992) and Lismont-Mongin
(1994) can be faithfully embedded into our logic (with a slight restriction on our logic).
This implies that the results obtained in this paper are al trandated into common
knowledge logic.

A final remark on GL , is that we assume the Veridicality Axiom T,:K;(A) D A, while
Axiom D;:=K,(=AOA) is adopted in Kaneko-Nagashima, (1996) and (1997a). Thus, we
adopt here the $A-type game logic for our presentational purposes, instead of the
KD4-type game logic of Kaneko-Nagashima, (1996) and (19978). However, since the
SA-type logic can be faithfully embedded into the KD4-type game logic, the whole
argument of this paper can be done in the KD4-type. Finally, we remark that we do not
need Axiom 5,: =K, (A) D K;(=K;(A)), caled the Negative Introspection, which is often
an obstacle for proof-theoretic arguments.

We will repeat some results given in Kaneko-Nagashima (1991) and (1996), but give
proofs to some of them for completeness. We distinguish the results aready given by
putting * from new ones.

'Bacharach (1987) is the seminal paper aong the line of the research of this paper. Nevertheless, his
framework is not sufficient to facilitate the considerations of the epistemic aspects — for example, common
knowledge is not formulated in his framework explicitly.
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2. Preliminaries

In Subsection 2.1 we give basic game theoretical concepts in the nonformalized
language, and in Subsection 2.2, we give formalized language 2“ and game logic GL .
In Subsection 2.3, we redescribe game theoretical concepts in the formalized language
P

2.1. Game theoretical concepts in the nonformalized language

Consider an n-person finite noncooperative game g in strategic form. The players are
denoted by 1,...,n, and each player i has ¢ pure strategies with (£ = 2). We assume that
the players do not play mixed strategies. Player i's strategy space is denoted by 3:: =
{S 1,8}, and his payoff function is a real-valued function g, on 3: =3, X - - - X X,
for i =1,..,n. We call an element in 3 a strategy profile.

A srategy profile a=(a,,...,.a,) is caled a Nash equilibrium iff for i=1,...,n,
g@=g(;a_,) for dl bes, whee a_,=(@,,...a_.,a,4,.,8,) and (b;a_;)=
(@y,-s®_1,05,8 4 1,.-,@,). We denote the set of Nash equilibria of game g by E,.

Consider a maximal nonempty subset E of E, which satisfies the interchangeability
condition:

abeEandi=1,..,nimply (a;b_,) €E. (2.1)

This is equivalent to that a*,...,a" € E implies (aj,....a )E E, which states that if each
player i independently choos% his equilibrium strategy a!, the resulting profile (ay,...,al))
is also an equilibrium. We call such a maximal set a subsolution, which was introduced
by Nash (1951). Each Nash equilibrium belongs to at least one subsolution. We denote
the subsolutions of game g by Eg, +Eg4- We dtipulate that when E; is empty, o=0.
When E; is nonempty, o =1. When o =1, game g is said to be solvable

The game (Battle of the Sexes) of Table 1 has E; —E UE = {(541,54)} U
{(s,,:5,,)}, and is not solvable. The game of Table 2 is not solvable either and has
E,= Eé U ES = {(510:520)(511:522)t U {(511,521),(512,521)}- Here (syy,5,,) belongs to both

Table 1

521 s22
S (21)* (0,0)
S1 (0,0) (1,2

?Zero-sum two-person games are solvable if they have Nash equilibria. Other sufficient conditions for
solvability are found in Kats-Thisse (1992). A study of subsolutions is found in Jansen (1981) (see dso its
references).
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Table 2

S2]. S22
s, (2 (L2)*
Si2 2" (0,0)

subsolutions. The games of Tables 3 (Prisoner’'s Dilemma) and 4 have the same
equilibrium sets E; = {(s,,,S,,)} and are solvable.

In the next subsection, we give a formal logic in which a game as well as such other
epistemic congtituents are described.

2.2. Game logic GL,,

In the following, we use some notions of predicate logic. Since, however, we use
neither variables nor quantifiers, the following logic is essentially propositional.

We start with the following list of symbols:

constant symbols: Sy;,....S14; Sa111824,1 +++3 ShareeiSne,

binary predicate symbols: =;

2n-ary predicate symbols: R,,...,R

n-ary predicate symbols: D,,.....D,, ;

knowledge operator symbols: K,...,K,, ;

logical connectives: - (not), D (implies), A (and), Vv (or) ;

parentheses: (, ).

As in Subsection 2.1, the constants S;;,....Si/; SpiiSac,; s SnirniSne, @€ the
players strategies. The binary predicate symbol = is intended to describe identity
between strategies for each single player. The 2n-ary symbol R (-:-) is used to describe
player i’s payoff function g,. The n-ary symbol D,(-) isto describe i’s prediction of the
players strategy choices, that is, D,(a,,...,a,) means that i predicts that 1,...,n could
choose a,,...,a, asfinal decisions in their ex ante decision making. Of course, a, itself is
i’s own possible decision. These D,,...,D,, will be determined by the nonlogical axioms
which will be given in Section 3. By the expression K;(A), we mean that player i knows
a formula A.

n 1

Table 3

S, S,,
S (5,5) (1,6)
Si, (6,1) (33)*
Table 4

S, S,,
S (5,5) (1,2)

Stz (61) (33)
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First, we develop the space of formulae. For any strategies a,b; in 3; (g and b; may
be identical and j = 1,...,n), (8 =b,) is an atomic formula, and for strategy profiles
(@,..a,),(0,..,b,) in 3, the expressions R(,,....a,:b;,...,0,) ad D;(a,...a,) (=
1,..,n) are also atomic formulae. These atomic formulae correspond to propositional
variables in the standard formulation of propositional logic. Since the number of
strategies is finite, so is the number of atomic formulae.

Let ?° be the set of all formulae generated by the standard finitary inductive
definition with respect to =, D and K,,...,K,, from the atomic formulae. That is, 2° is
the set of O-formulae defined by the following induction:

(0-i): any atomic formula is a O-formula;

(0-ii): if A and B are O-formulae, so are (- A),(ADB) and K,(A)®

Suppose that the set 2% * of (k — 1)-formulae is already defined (k = 1,...). Then #*
is the set of k-formulae defined by the following induction:

(k-i): any expression in 2 1 U{(A ®),(V ®):® is a nonempty countable subset of
2% 1 is a k-formula;

(k-ii): if A and B are k-formulag, so are (- A),(AD B) and K;(A).

We denote U eu P by P°. An expression in 2 is called smply a formula. We
abbreviate A{AB}and V{AB}asAABand AVB,and (ADB)A(BDA) asA=B.We
also abbreviate some parentheses in the standard manner. Also, we cal @ an allowable
set iff & isanonempty countable subset of 2 for some k < w. We say that a formula A
is nonepistemic iff it contains no K;,i = 1,...,n.

The primary reason for our infinitary language is to express common knowledge
explicitly as a conjunctive formula. The common knowledge of aformula A is defined as
follows: For any m=0, we denote the set {K; K; ..K; : each K; is one of K,,...K and
i, # i, for t=1..,m— 1} by K(m). We assume that K(0) consists of the null symbol e
(i.e, &(A) is A itself for any A). We define the common knowledge formula of A as

D{ K(A)K € mLJ) K(m) } (2.2)

which we denote by C(A). If A isin #* %, the set {K(AK € U meo KM} is a
countable subset of 2, and its conjunction, C(A), belongs to 2% by (k-i). Hence the
space 2 is closed with respect to the operation C(-).

Note that A itself is included as a conjunct in C(A), since K(0) = {e}. In this sensg,
C(A) is *'‘common knowledge’’ instead of ‘‘common belief”’ which is defined to be the
conjunction obtained from (2.2) by excluding A.

Base logic GL, is defined by the following five axiom schemata and three inference
rules: for any formulae A,B,C and allowable set @,

(L1): AD(BDA);

(L2): (AD(BDC)D((ADB)D(ADCQ));

(L3): (=AD-B)D(-ADB)DA);

(L4): AP DA, where A€ P;

®and all 0-formulae are obtained by a finite applications of those steps. We will not add this qualification in the
following inductive definitions.
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(L5): AD Vv @, where A€ &

ADB A
s MP)

{ADB:BE @}
ADA®D

{ADB:AE &}
V®OB

(O-Rule)

(O-Rule).

These axioms and inference rules determine base logic GL .

We define game logic GL,, by adding the following axiom schemata and inference
rule to GL,: for any formulae AB and i =1,...,n;

(MR): Ki(AD B) AK(A) DK(B);

(T): KADA

(PL): Ki(A) D KKi(A);

(C-Barcan): D{&MMKELJI«W}D&Q&;
and A m<w
(Necessitation): KA

We will abbreviate Necessitation as Nec, and use MR, T,, PI, as generic names for
those for different i.

A proof P in GL_ is a countable tree with the following properties. (i) every path
from the root is finite; (ii) a formula is associated with each node, and the formula
associated with each leaf is an instance of the axioms; and (iii) adjoining nodes together
with their associated formulae form an instance of the above inferences. We write +- A
iff there is a proof P such that A is associated with the root. For any subset I” of 2, we
write I'+, A iff -, [1& D A for some nonempty finite subset @ of I"* When I is empty,
I'k A is assumed to be +_ A itself. We also abbreviate I"U OF A and " U {B}- A as
6+ A and I'BF_ A, etc.

When we restrict the use of axioms and inference rules to those of GL ,, we denote the
provability relation by +,. Logic GL, is an infinitary extension of classical finitary
propositional logic.

We will use the following facts without references (see Kaneko-Nagashima (1996)).

Lemma 2.1. Let I',® be sets of formulag, and @ an allowable set of formulae. Then

F,(AOBDC)=(AD(BDC));

if '+ ,ADBand ®-,BDC, then [0 ADC;

F,A @ if and only if + A for all A€ &;

FK(A @)D AK (D), and if @ is a finite set, then + K (A @)= AK (D), where
K. (@) is the set {K (A):Ae d};

AwdE

“Since GL,, has Nec, nonlogical axioms should be introduced in this manner, instead of being initial formulae
in a proof. For the treatment of nonlogica axioms in a logic with Nec, see Kaneko-Nagashima (1997b).
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5. b, VK (@) DK,(V D).
Note that (1)—(3) hold aso for .

Axiom MP and inference rule Nec in addition to GL, give the complete logical
ability to each player (see (Kaneko and Nagashima, 1996)). Axiom T;, which is called
Veridicality Axiom, states that if i knows A, then A is true from the objective point of
view. Axiom Pl;, called the Positive Introspection, means that if player i knows A, he
knows that he knows A. In fact, these logical and introspective abilities of the players
are common knowledge in GL , (see (Kaneko and Nagashima, 1996)).

Axiom C-Barcan is called the common knowledge Barcan axiom. For the development
of our framework, C-Barcan will be used to derive the property:

F C(ADKCA) fori=1,.n (2.3)

That is, if A is common knowledge, then each player i knows that it is common
knowledge. This property will play an important role in the epistemic axiomatization of
final decisions in later sections.

Proof of (2.3)*. Let K be an arbitrary element in U m<o K(mM). When K; is not the
outermost symbol of K, we have + C(A) D K,K(A) by L4. When K; is the outermost
symbol of K, we have + _K(A) D KK(A) by Pl,. This together with +_ C(A) D K(A)

implies F_ C(A) D K/K(A). Thus ,C(A) DKK(A) for al Ke U m<o K(m). Hence

L e D AKKA: Ke U Km) by A-Rue By C-Barcan, we obtain
HC(A) DK CA). O

Since the finitary propositional modal logic defined by MP, T,, Pl, and Nec in addition
to classica propositional logic is called S4, our logic is an infinitary extension of
multi-modal S4 with C-Barcan. Kaneko-Nagashima (1996) and (19978) assumed the
following weaker axiom:

(L)-K(EADA);
instead of Axiom T,. Axiom L, is called D in the literature of modal logic. Hence
Kaneko-Nagashima (1996) and (1997a) developed the KD4-type game logic. In the
KD4-type game logic, since knowledge is not necessarily objectively true, it is called
belief. In fact, knowledge and belief are more fully discussed in the KD4-type game
logic. However, we do not treat our subjects in the way that the difference in them is
reflected. From the viewpoint of presentational purposes, the S4-type game logic is more
convenient than the KD4-type. Hence we adopt the $4-type game logic.

In the subsequent analysis, the relation between the provabilities of GL,, and GL, is
important. For this purpose, we introduce the following notion. Let A be a formula in
P“. Then ¢A is the formula obtained from A by eiminating al the occurrences of
K,,--K, in A, and eI isthe set {¢A: A€ I'} for any set I” of formulae. Formula £A is
nonepistemic, and if A is nonepistemic, A is A itself. For example, &(K;(A) AK;(AD
B) DK(B)) is eAA (¢AD &B) D ¢B, and &(K,(A) D A) is (¢AD eA). For every instance
A of the epistemic axioms, £A is a nonepistemic provable formula with respect to +, and
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every instance of Nec becomes a trivial inference with an application of &. This is the
reason for Lemma 2.2.(1). We have aso the other lemmas (see Kaneko-Nagashima
(1996)).

Lemma 2.2.

1 If I't A, then el'F,eA.
2. If I'vyAor I'+ A, then C(I")F, C(A), where C(I") ={C(B):B& I'}.

Lemma 2.3.

1. +,C(AD B) D(C(A) D C(B));
2. if C(I)F,A, then C(I')F,K.(A) for i = 1,...n.

Lemma 2.4. Let @ be an allowable set of formulae. Then

1 F,C(AD)D AC(P), and if @ is a finite set, then | C(A @)= AC(D);
2. F,VC(@)DC(V D).

Although our analysis is primarily syntactical, we will use some semantic methods in
several places. For this purpose, we prepare some semantics and review some results to
be used for the subsequent analysis. We say that a formula A is finitary iff it contains no
infinitary conjunction and no infinitary digunctions. We denote the set of all nonepis-
temic finitary formulae by 2. The space 2" is closed with respect to -, D and finitary
A, V. When we restrict the language of base logic GL, to 2", the resulting logic is
classical propositional logic, which we denote by GLI). Base logic GL , is a conservative
extension of GL{, i.e., for any A€ 2",

if FoA, then F{ A, (24)

where Fg is the provability relation of GLI). Of course, the converse of (2.4) holds.

We will use the classical two-valued semantics for GL{. An assignment 7 is afunction
from the set of atomic formulae to {truefalse}. We define the truth relation = _ relative to
an assignment 7 by the following induction on the structure of a formula in 2":

(TO): for any atomic formula A, & A iff 7(A) = true;

(T1): = ~Aiff not = _A;

(T2): = _ADB iff not = _Aor = _B;

(T3): E_A@iff £ _Aforadl A€ @;

(T4): &_v @ iff =_Afor some A€ &.

The following is the standard soundness-completeness theorem: for any A€ %',

L Aif andonly if = A for any assignment 7. (2.5)

The only-if part is equivalent to that if there is an assignment 7 such that = _A, then Ais
consistent with respect to Fg (afortiori, with respect to -, by (2.4)). We will refer to this
as Soundness for GL.
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2.3. Game theoretical concepts in the formalized language 2

Now we describe the game theoretical concepts given in Subsection 2.1 in 2.
First, we make the following axiom: for al distinct a,,b, € 3. (i = 1,...,n),

Axiom (EQ). a, =&, and - (a = b,).

We denote the set of instances of this axiom by Eq, which is a finite set of formulae.

Second, we describe the payoff functions g,,...,g, in terms of symbols R,,...,R, as
follows: for strategy profiles ab,a’,b’ with g(a)=g/(b) and g (@) <g(b') and i =
1,...n,

Axiom (G,). R(a;b) and =R/(@";b’).

We denote by G, the set of al instances of this axiom. This describes the payoff
functions g,,...,g, by preferences R;,...,R,. It holds that for any ab€ 3, either G,
FoRi(@b) or G, Fo=Ri(a;b).

In the game of Table 1, Eqistheset {s, =s;i=12andt=12}U{-s,=s.:i =12
and tt’ = 1,2 with t #t'}, and G, is the set of the preferences of players 1 and 2 Note
that G, contains both positive and negative preferences.

We define the Nash equilibrium property to be the formula:

A A Ray;a_), (2.6)

i=lyey

which we denote by Nash(a). Since either G, FiR(a;b) or G, F,~R(ab) for any
ab € 3, Nash(a) is also decidable for any a€ 3 under G, that is,

either G F,Nash(a) or G,-,—Nash(a). (2.7)
Also, it holds that
GyloNash(a) if and only if a € E,. (2.8)

The right-hand side of (2.8) is a statement in the nonformalized language. Thus (2.8)
relates the statement ‘‘a is a Nash equilibrium™ in the formalized language to the
nonformalized extensional counterpart. This is translated into 2 as follows:

yeE (A &= y')’ (29)

which is denoted by NashE(a). Of course, Nash(a) is the basic definition of Nash
equilibrium, and Nash®(a) is an extensional representation of it. Under Eq, this is also
decidable for any acl, ie, Eqh, Nash(a) or Eq - —|Nash (). Without Axiom G,
however, Nash®(a) does not have the meaning “Nash equilibrium’, i.e., neither Eq
Fo Nash“(a) D Nash(a) nor Eq ko Nash(a) D Nash(a). Under Eq and Gy, these two are
equivalent, which is stated as Lemma 25.(2).

If we try to give an intensional definition of a subsolution, it would involve the
second-order consideration, which is not allowed in our language. Hence we give the
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extensional definition of a subsolution in our formal language. We denote the following
formula by Sol“(a):

v (A a _y,) (2.10)

yEEk i=1

for k=1,...,0. The formula Sol(a) describes *a belongs to the subsolution Ej”.

Lemma 2.5.

1. EqG, Fo O,y (Nash(x) = Nash™(x));
2. EqGyt, O,(Nash(x) = O;_,Sol“(x)).

We abbreviate U, as 0, etc. unless it is confusing.

Proof. We prove (1). Let a be an arbitrary profile. Suppose Gyt Nash(a). Then a€ E,
by (2.8). Thus Eq F DyEEg( =vy,), i.e, Eq F, Nash®(a). Smce Nash(a) is demdable
under G, by (2.7), we have proved Eq,Gyko Nash(a) D Nash®(a). Noting that Nash®(a)
is deudable under Eqg, we can repeat a smllar argument to have Eq,Gyf Nash(a) D
Nash(a). Thus Eq,G,t, Nash(a) = Nash(a). Since a is an arbitrary prof|Ie we have
Eq,Ggyho O,(Nash(x) = Nash fx). O

In Section 6, we need to assume that these equivalences are common knowledge among
the players. If we assume that Axioms Eq and G, are common knowledge, these
equivalences are common knowledge, particularly, (2) becomes

C(Eq).C(Gy)F,, A C(Nash(x) Ekgl Sol k(x)). (2.11)

This follows from Lemmas 2.5, 2.2.(2), 2.3.(1), and 2.4.(1). Note, however, that the
common knowledge of the equivalence of Nash®(a) and 07_,Sol “@@) is provable
without these axioms. Indeed, I—ONashE(a) = D‘k’zlsol"(a) for al a€ 3, which this is
simply extensional equivalence, and then +, 0,C(Nash®(x) = 07_,Sol“(x)).

Note that Axioms Eq and G, are consistent with respect to F, i.e,, there is no formula
A such that Eq,G, F,~AAA. Th|s can be proved by constructing a model of them by the
Soundness Theorem for GL It follow from this that C(Eq) and C(G,) are aso
consistent with respect to -, by Lemma 2.2.(1), which we will use in Sections 5 and 6.

3. Final decision axioms

In a given game g, each player deliberates on his and the others' strategy choices and
may reach some predictions on their final decisions. Now we describe these ** predic-
tions” by n-ary symbols D,,...,.D,, that is, each D,(a,,...,a,) is intended to mean that
player i predicts that players 1,...,n could choose (a,,...,a,) as their final decisions, where
a, is his own decision. Note that each player's prediction may not be uniquely
determined.
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The following are base axioms for D,(-),...,.D,(-): for each i = 1,...,n,
Axiom D17. 0,(D,(x) D 0, R(x:y;x_,));
Axiom D2. O, 0,(D;(x) D D,(x));
Axiom D3?. 0,(D;(x) D K,(D;(X)));
Axiom D47, 0,0, 0,(D;(x) AD,(Y) D D;(x;y ;).
These are verbally as follows:

D1i°: (Best Response to Predicted Decisions): If player i predicts fina decisions
X,,.-.X, for the players, then his own final decision x, maximizes his payoff against his
prediction x_;, that is, x; is a best response to x_;.

D2i°: (Identical Predictions): The other players reach the same predictions as player
I's.

D3i°: (Knowledge of Predictions): Player i knows his own predictions.

D4: (Interchangeability): In predicting the players decisions, he assumes that the
players are independent decision makers. This axiom states that when multiple
predictions are possible, any combination of predictions on individual decisionsis again
a prediction profile. This may be better understood by looking at the equivalent
formulation focussing on individual predictions (see Subsection 7.2).

These axioms are requirements for decision (prediction) making in the mind of each
player i = 1,...,n. Hence we assume that these axioms are known to player i. These are
described as K;(D1?), K,(D2Y), K(D3), K,(D4?). We denote these formulae by D1,,
D2;, D3;, D4;, respectively. Now, the problem is whether these axioms determine
“unknown™ symbol D;(-) in terms of the “primitives’, S;,...S;.; i SqpreaSne,s
R,....R, and K,,...,K,. In the following, we denote D1] (... 1D4; and D1, O... 1D4, by
D°(1-4) and D,(1-4).

We will take three steps to distil ““solutions” from these axioms. Since the three steps
are quite different, we give a brief explanation of these steps.

Step 0. The knowledge, D,(1-4), of the base axioms is incomplete as the requirement to
determine D,(-)'s, and the process of completing this knowledge forms an infinite
regress of the knowledge of D,(1-4),...,.D,(1-4). The resulting outcome of this infinite
regress is described as the common knowledge of D,(1-4),...,D,(1-4), which we will
denote by C(D(1-4)).

In the other two steps, we “‘find solutions”’ of the common knowledge, C(D(1-4)), of
these axioms. It might be useful to remember a practice in middle-school mathematics
that solving a simultaneous equation needs two steps: (1): assuming that a given
equation has a solution, we calculate possible solutions from the equation; and (2): we
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verify that the solutions obtained satisfies the equation. In the same way, we have two
steps to solve the common knowledge of the axioms as follows:

Step 1. We derive a necessary condition from the common knowledge C(D(1-4)) of the
above axioms. In Section 4, we will discuss Steps 0 and 1.

Step 2. We will verify that the necessary condition derived in Step 1 is a solution for
C(D(1-4)). In fact, this depends upon a game. In Section 5, we will treat games
satisfying interchangeability (2.1). In Section 6, we consider games not satisfying (2.1),
where some additional information is required to have a *‘solution’.

In addition to these three steps, we will discuss, in Section 7, the status of each of the
above base axioms in our axiomatization, their variants and the comparisons of Johansen
(1982).

In the remaining of this section, we prepare some basic results on the axioms
D,(1-4), ..., D,(1-4).

Notice that D;(-)’s occur in Axiom D2; for al j. These D;(- )'s are determined by the
other axioms D;(1-4)'s. Then D;(-)'s would be just symbols without meaning for
player i unless he knows the other axioms D;(1-4)’s (j #i). In other words, D;(1-4)’'s
give operational meanings to the symbols D;(-)'s. We need to give some operational
knowledge of D;(-)’, which is assumed here to be D;(1-4)’s. In fact, thisis the first step
to the infinite regress to be discussed later.

The following proposition states that the addition of D;(1-4)'s to D,(1-4) is
nontrivial.

Proposition 3.1. Let i,j be distinct players. Then

1. neither D;(1-4)F, D{(1-4) nor D,(1-4),~D(1-4);
2. neither D;(1-4)F, D;(1-4) nor D;(1-4)F,~D;(1-4);
3. neither D;(1-4)F K (D;(1-4)) nor D,(1-4)r,-K;(D,(1-4)).

Proof. We prove only the first assertion of (3). Suppose D;(1-4)F K;(D;(1-4)), i.e,
F, D(1—4):>K(D (1-4)). By Lemma 2.2.(1), F,eD,(1~ 4):)sK(D (1-4)), which
|mpl|es ko D; (124) D Dy 9(1,2,4), since eD3, is equivalent to D( k(x):)Dk(x))
Hence = _ D 91,24)D D; (124) for any assignment 7 by Soundness for GL

However we can construct an assignment 7, so that = _ D, 9(1,2,4) but not
=, D; 9(1,2,4), a contradiction. Therefore it is not the case that D, (1-4)+ Ki(D; (1~
4)). D

We denote [J;D;(1-4) by D(1-4). Proposition 3.1 implies that for D;(-)'s to be
meaningful in AX|0m D2, we need to assume K;(D(1-4)). In fact, these are still
insufficient to determine the meanings of al D;(-)'s in K;(D(1-4)), which will be
discussed in Section 4. Here we state only the following undecidability:

neither D(1-4)r-, K,(D(1-4)) nor D(1-4)F,~K,(D(1-4)). (3.1)



M. Kaneko / Mathematical Social Sciences 38 (1999) 105-137 119

That is, the knowledge of D(1-4) is not derived from D(1-4) itself. In Section 4, we
will give a genera version of this claim, which leads to the infinite regress of the
knowledge of D(1-4). The resulting outcome of this infinite regress would be expressed
as the common knowledge of D(1—4)

In the followmg, we denote DJDt and [;Dt; by Dt® and Dt for t=1,2,3,4, and
D1°0D2° and D10D2A D4 by D°(1,2) and D(124) etc.

Lemma 3.2. D°(1,2)F, 0,(D;(x) D Nash(x)).

Proof Let a be an arbitrary profile. Since D2° + oD@ >D;@ and D1° + oD;@ >

R(asa_;y;;a ) for dl i,j, we have D°(1, 2)-,Di@>D O R(a, a; y],a,J) for al j.
Thus D (12)# D/(@> 0,0, R( a_ypa;) by 0O- Rule i.e, D (12)% D,(& >
Nash(a). Hence we have the assert|on O

Thus, Nash equilibrium is a necessary condition for Axioms D°(1,2). In fact, we will
show in our full axiomatization that D,(a) implies C(Nash(a)), i.e., it is the common
knowledge that a is a Nash equilibrium. The following lemma is indicative of this
common knowledge result.

Lemma 3.3. D(2,3)F,, U(D;(X) D Ki(Dy(X))) for any i,jk (i,j,k may be identical).

Proof. Let a be an arbitrary profile. Since D2 F K(D;(@ D D,(a)), we have D2
F,Ki(D;(@) D K(D(a)) by MR and MP. Since D2 ,D;(a) D D;(a) and D3 +,D;(a) O
Ki(D;(a)), we have D(2,3)F,,D;(a) O K;(D;(a). Hence we have D(2,3)F,,D;(a) D K; (D (a))-
This implies the assertion. [

We prepare one more lemma, which will be used in the later sections.

Lemma 3.4.

1. ¢D(1-4) is consistent with respect to +,, and £D(1-4),D;(a) is also consistent for
any ae 3.
2. +, D(1-4) does not hold.

Pr oof.

1. £D(1-4) is equivalent to D°(1,2,4) with respect to Fo- To prove the consistency of
D°%(1,2,4), by Soundness for GLB, it suffices to construct an assignment 7 so that
E, D°(1,2,4). Define 7 so that 7(D,(a)) = false for all profilesa and i = 1,...,n. Then
E, D°(1,2,4) in the trivial sense. The latter is proved by modifying .

2. Suppose +, D(1-4). Then ,eD(1-4), i.e, F, D°%1,2,4), by Lemma 2.2.(1). How-
ever, we can construct 7 in asimilar manner asin (1) so that D°(1,2,4) is false, which
together with (2.4) implies not +,, D°%(1,2,4). Thus t, D(1-4) is not the case. [
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4. Infinite regress of the knowledge of the axioms and its evaluations

In this section, we show that the process of making Axioms D1 to D4 meaningful
forms an infinite regress of the knowledge of D(1-4). The resulting outcome of this
infinite regress is expressed as the common knowledge of D(1-4). We make proof-
theoretical evaluations of this infinite regress.

4.1. Infinite regress of the knowledge of the final decision axioms

It could be found by looking at Lemma 3.3 carefully that axioms D1-D4 require each
player to know them. Lemma 3.3 states that each player knows any other players
predictions on final decisions, but this would not make sense unless the meaning of
“predictions on final decisions’ is given to the players. In fact, the meaning is
determined by the above four axioms themselves. Therefore each player needs to know
them, i.e, K;(D(1-4)) for i =1,....n.

Once the players know these axioms, each knows the consequences from these axioms
such as the assertion of Lemma 3.2, i.e., U;K;(D(1-4))F, A ,K(D;(x) D Nash(x))). It is,
however, more to the point that the following is provable: for any I,k =1,...,n,

A Ki(D-4)F, A (D09 D K Ky(D, (). (4.)

In (4.1), the “imaginary” player k in the mind of player | knows that x is a profile of
predicted decisions. This imaginary player k is not given the operational meaning,
D(1-4), of **final decisions’, though “‘real’” Kk is assumed to know D(1-4). This means
that (4.1) does not make sense for the imaginary k. Thus we need to assume
K K, (D(1-4)): we reach the assumption set {L(D(1-4)): L€ U _,K(t)}® Once we
assume this set of axioms, we would again meet the problem paralel to that arose in
(4.1), that is, it holds that for any K € K(3),

{L(D(l—4)): Le g K(t) }M (D,(x) D K(D;(x)))-

If we assume the knowledge of D(1-4) up depth 2, the knowledge of depth 3 is
necessarily involved. The imaginary players in the epistemic world of depth 3 should
know D(1-4).

In general, we have the following proposition.

Proposition 4.1. For any playersi,j, finite m=0 and K € K(m+ 1),

(L(D23):LE ISUm KO, A (D) D K(D;()).

°By Axiom T, it suffices to assume {L(D(1-4)):L € K(2)}. However, we keep some redundancies for
presentational consistency.
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Proof. Let a be an arbitrary profile. We prove that for any K € K(m + 1), {L(D(2,3)):L €

U =mK)},,D;(@) D K(D;(@). For m=0, this is Lemma 3.3. Now we assume the
induction hypothesis that the assertion holds for m. Let K=K K, € K(m+ 2). Then
K € K(m+ 1). By the induction basis and some applications of Nec, MP and MR,
K'(D(2,3))F-,K (D;(8) D K (D;(@))), and then K (D(2,3))F,, K (D;(@)) D K K,(D;(a)). This

together with the induction hypothesis implies {L(D(2,3)).L € U ems 1 KO} F,Di(@ D
K K(D@). O

Thus, if we assume the knowledge of Axiom D(1-4) up to depth m, the knowledge of
depth m + 1 is necessarily involved. Hence the knowledge of D(1-4) up to depth m+ 1
should be added. The following theorem states that this addition is inevitable, which is a
general version of (3.1). This will be proved in Subsection 4.2.

Theorem 4.A. For any finite m=0 and for any K € U =m K(t),

neither {L(D(1—4)):L eU K(t)}l—wK(D(l—4)) (4.2)
nor {L(D(1—4)):L e U ko }I—wﬁ K(D(1~4)). (4.3)

This theorem states that without assuming K(D(1-4)) for all K of al depths, some
imaginary players living in the mind of the players in some depth could not know the
definition of D;(-)’'s. To avoid this problem, we should assume

(K(D(1-4)K € tL<J K@) (4.4)

Thus we meet an infinite regress of the knowledge of axioms D(1-4). The infinite
regress leads to the set of (4.4), and its conjunction is the common knowledge of
D(1-4). We will adopt this common knowledge formula as an axiom and consider its
implications. The following result holds, which was given in Kaneko-Nagashima (1991)
and (1996). For completeness, we will give a brief proof. In the following, when we
write D;(-),D;(+) without quantification of i,j, they are arbitrary players.

Proposition 4.2.

1 C(D23)F, O,(D,() D CO,()).
2. C(D(1-3))F, 0,(D,(x) D C(Nash(x)).

Proof. (1) follows Proposition 4.1. Consider (2). Let a be an arbitrary profile. First,
D(1,2) +,D,(@ D Nash(a) by Lemma 3.2. Hence, by Lemma 2.2.(1), we have
C(D(1,2))F,C(D;(a) D Nash(a)), and C(D(1,2))F,C(D;(a) D C(Nash(a)) by Lemma
2.3.(1). Since C(D(2,3))l,D;(@ DC(D;(@) by (1), we have C(D(1-3))} D,(@>
C(Nash(a)). O
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In fact, C(Nash(x)) will be shown to be the solution of C(D(1-4)) for a game satisfying
interchangeability (2.1), which will be the subject of Section 5. Here, we can ask
whether the conclusion of Proposition 4.2.(2) is provable from the knowledge of D(1-4)
up to some finite depth. The following theorem states the negative answer. Since this can
be proved in the same manner as in the proof of Theorem 4.A, we omit the proof.

Theorem 4.B. For any finite m,

neither {L(D(1—4)):L S ty K(t)}km A (D,(9 D C(Nash(x))

nor {L(D(1—4)):L e LJ K(t) }Fwﬂ A (D;(¥) D C(Nash(x))).

The above derivation of the infinite regress, a fortiori, C(D(1-4)), is still heuristic.
However, it can be formulated in the following manner, whose proof is also omitted.

Theorem 4.C. Let I" be a set of formulae. Suppose that I't+, O,K(D; (X)) D K(D(1-4)) for
alke U __ Km). Then I'-, 0,D.(x) D C(D(1-4)).

In Subsection 4, we show that this set " needs to contain some common knowledge.

The results given in this section are still purely solution-theoretic: they do not require
the players to know the game, i.e., neither Axioms Eq nor G,. The knowledge of the
structure of the game will be needed in Sections 5 and 6.

4.2. Evaluations of the infinite regress

To prove the undecidability theorems given in the above subsection, we need the
depth 6(A) of a formula A. Using this concept, we will evaluate the provability of an
epistemic statement.

We define the depth 6(A) by induction on the structure of a formula from the inside:

(0): 8(A) =0 for any atomic A;

(1): 6(=A) = 8(A);

(2): 8(ADB)=6(A) U s(B);

@3): s(A D) =s(vd)= U .54

{6)); if 5(A) =0

(4): 8K (A) = (Gl el ) (i e ) € 6(A) @ j #i5} U

(i gyeii)i(igyensi ) ESA) and j=1i,} otherwise.

For any set I' of formulae, let 6(I") be U rcO(A). Define supd(I”) =
sup{m:(i,,...,i,.) € 8(I")}. For example, §(D3°) = 6(D1,)=1{(i)},8(D3)={(i):i = 1,...,n}
and 8(0;K(D(1-4)) ={(i.j)i #]}.

The following lemma is the key to prove the undecidability results presented, and is
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proved in the Gentzen-style sequent calculus formulation of GL , in Kaneko (1998)
using the cut-elimination theorem for GL . °

Lemma 4.3* (Depth Lemma). Let K = K K € K(m),I" a set of formulae and A a
formula. Assume I'+_K(A). Assume (iy,....i,,) & 6(I).

1. Let supS(I” U {A}) < w. Then (8) I is inconsistent with respect to +_; or (b) F A
2. (8 el is inconsistent with respect to +,; or (b) F_eA.

The first states that if K; ..K; (A) is derived from the set of premises I’ then I" is
inconsistent or A isatrivia formula. The second is essentially the same, but needs some
modification for some technical difficulty if sups(I” U {A}) is infinite.

We use this lemma to prove Theorems 4.A.

Proof of Theorem 4.A. Let us start with the proof of (4.3). Suppose, on the contrary,
that {L(D(1-4)):.L € U cemK}F,~K(D(1-4)). Then eD(1-4)F,~&D(1-4) by
Lemma 2.2.(1), which contradicts Lemma 3.4.(1).

Now consider (4.2). Suppose {L(D(1-4)).L € U cemK}F K(D(1-4)) for some
K= Kil...Ki/ and ¢>m. Then since K(D(2,3))F,K(D;(@) D KK;(D;(@)) for any j and
profile a, we have {L(D(1-4)).L € U =mKO},D;(@ D KK;(D;(a)). Let j be different
from the index of the innermost symbol of K. This is written as

{L(D(1—4)):L = IL<J K(t) } Dy(a)F, KK, (D,(@)).

Since supd({L(D(1-4)).L € U =mK®)}U{D,(@}) =m+1, it follows from Lemma

4.3.(1) that either {L(D(1-4)):L € U r=mK(®)} U{D,(@)y} is inconsistent or +,D;(@). In
the former case, £D(1-4),D;(a) is inconsistent with respect to +,, which is impossible by
Lemma 3.4.(1). In the second case, we have I-,D;(a), which is aso impossible. [

The following is the result corresponding to Theorem 4.C.

Theorem 4.D. Let I' be a set of formulae with supd(I”) < w, and assume that
I'{0O,D;(x)} is consistent with respect to I-,. Then I+ 0,D;(x) O C(D(1-4)) does not
hold.

Proof. On the contrary, suppose I't, 0,D;(X) D C(D(1-4)). This is equivalent to that
F (A D)A(O,D;(x) D C(D(1-4)) for some finite subset @ of I. Let K& K(m) for
m>supd(I”). Then +_ (A @)A(O,D;(X)DK(D(1-4)). The application of Lemma

°This lemma is an extension of the depth lemma proved in Kaneko-Nagashima (1997b) for the propositional
epistemic logic $4 based the cut-elimination theorem obtained by Ohnishi-Matsumoto (1957).
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4.3.(1) to this statement implies that either (A @) A (O,D;(X)) is inconsistent with
respect to -, or -, D(1—4). The former is impossible by the assumption of the theorem.
The latter is also impossible by Lemma 3.4.(2). O

This theorem implies that infinite depth is necessarily involved for I" in Theorem 4.C. In
fact, we can prove the knowledge structure of common knowledge is exactly involved in
I'. However, since it needs more detailed argument, we omit it.

5. Solvable games

In Section 4, we derived the common knowledge, C(D(1-4)), of Axioms D(1-4). We
adopt this C(D(1-4)) as an axiom and consider its implications. It was shown in
Kaneko-Nagashima (1991) and (1996) that this determines the final decision predicate
D,(a) to be C(Nash(a)) under the common knowledge of interchangeability (2.1). Here
we will evaluate epistemic aspects of this result, and consider also the playability of a
game.

5.1. Determination of the final decision prediction and its evaluations

Proposition 4.2.(2) states that under C(D(1-4)), D,(a) implies C(Nash(a)). Axiom D4
requires D;(-) to be interchangeable, while C(Nash(-)) is not necessarily interchange-
able. Hence C(Nash(a)) may not capture all the properties of C(D(1-4)). However, if we
assume that interchangeability,

A 3 A (Nesh(x) ONash(y) D Nash(y;ix ), (5.1)

is common knowledge, then C(Nash(-)) can be regarded as capturing all the properties
of C(D(1-4)). This corresponds to the verification step of the obtained solutions for a
simultaneous equation, discussed in Section 3.

We denote the formula of (5.1) by Int, which is the formalized statement of (2.1).
When a game g satisfies (2.1), it holds that G+, Int, and by Proposition 2.2.(2), we
have C(Gy)F,,C(Int).

The following proposition states that C(Nash(-)) as D,(-)’s satisfies our axioms.

Proposition 5.1.

1. +,C(D(1-3)[C(Nash)]);
2. C(Int)F,C(D4[C(Nash)]),

where D(1-3)[C(Nash)] and D4[{C(Nash)] are the formulae obtained from D(1-3) and
D4 by substituting C(Nash(a)) for every occurrence of D,(a) (@€ 2 and i = 1,...,n) in
D(1-3) and DA4.
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Proof.

1. We prove only +_ C(D3[C(Nash)]). Since +,C(Nash(@)) D K;(C(Nash(a))) for all
i=1..,n by (23), we have + 0 0J[C(Nash(x))DK,(C(Nash(x))], i.e,
t,D3[C(Nash)]. By Lemma 2.2.(2), +,C(D3[C(Nash)]).

2. Since Int F, Nash(a) ANash(b) O Nash(b;;a_;), we have C(Int)-, C[Nash(a)
ANash(b) O Nash(b;;a_;)] by Lemma 2.2.(2). By Lemmas 2.3.(1) and 2.4.(1),
C(Int) F,C(Nash(a)) A C(Nash(b)) O C(Nash(b;;a_;)). Since a,b,j are arbitrary,

Cnt)k,, A A A [C(Nash(x)) DC(Nash(y)) 2 C(Nash(y;x )]

This is C(Int)-, D4[C(Nash)]. By Lemma 22(2), we have
C(Int)F C(D4[C(Nash)]). O

Thus, C(Nash(-)) is a solution of C(D(1—4)) under C(Int). Conversely, it can be proved
in the same way as Proposition 4.2.(2) that

C(D(1.2.3)[ #])F, A (A(X) D C(Nash(x)) fori =1....,n, (5.2)

where o = {(A,(d),...,A,(@): a€ 3} isany set of profiles of formulae indexed by a € 3.
Thus C(Nash(-)) is weaker than any formulae satisfying C(D(1,2,3)). Additionally,
Proposition 5.1 states that C(Nash(-)) satisfies C(D(1-4)) under C(Int). Hence
C(Nash(-)) is the deductively weakest formula among those satisfying C(D(1-4)). We
are looking for the deductively weakest formulafor D;(- ), since it contains no additional
information other than what we intend to describe by C(D(1-4)).

The explicit formulation of the choice of the deductively weakest formulais given as
the following axiom schemata:

(WD): CO-4)/1) A C(A A [DX) D AXI) DA A [D,69= A,

where o = {(A,(a),...,A,(8)):a€ 3} is any set of vectors of formulae indexed by a € 3.
Although, in fact, we should, probably, regard C(WD) as our axiom, WD suffices for all
the results in the subsequent analysis. Therefore we use simply WD instead of C(WD).

Since Proposition 4.2.(2) and Proposition 5.1 imply C(D(1-4)),C(Int) +,C( D(1-
4)[C(Nash)]) OC(0,(D;(x) D C(Nash(x)))). Since this is the premise of an instance of
WD, we obtain the following theorem.

Theorem 5.A. C(D(1-4)),C(Int)WD F, 0,(D,(x) = C(Nash(x)).

Recall that C(G,)F,C(Int) for any game g satisfying interchangeability (2.1). Hence it
follows from Theorem 5.A that for a game g satisfying (2.1),
C(D(1-4)),C(Gy) MWD F, A (D;(X) = C(Nash(x)).

Thus, the above solution-theoretical result does not differentiate the abstract knowledge,
C(Int), on a game from the specific knowledge, C(G,), of the game. However, these are
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differentiated by the existence-playability consideration, which is the subject of
Subsection 5.2.

Now we evaluate the above procedure of unique determination. First, we ask whether
any formula weaker than C(Nash(a)) satisfies our axioms. In fact, for D(1,2) or D(1,2,4),
we can replace C(Nash(-)) by Nash(-), i.e, the following hold:

I C(D(1,2)[Nash]); and C(Int)r-, C(D4[Nash]). (5.3)

Thus C(D(1,2,4)) does not require the common knowledge operator C(-) for Nash(- ).
The common knowledge is required by D3 together with D2, which is stated in the
following theorem.

Theorem 5.B. Let «f = {(A,(a),...,A (a)):a€ 2} be a set of profiles of formulae.

1. If +, D(2,3)[ <], then +-_A;(@) D C(A;(@)) for any i and a.
2. Suppose max; ;SUpS(A;(@) < w. Then F, D(2,3)[«/] if and only if + -A(a) or
F, A (@) for any i and a.

Pr oof.

1. Suppose I, D(2,3)[ «]. It can be proved in the same way as the proof of Lemma 3.3
that +, D(2,3)[ 4] D (A(@) D K(A(@))) for al i,j and a. Hence +,A(@) D K;(A(2)
for al i,j and a. From this together with Nec, MP and MR, we have +- A;(a) D

K(A @) for al Ke U __K@). Hence A () D C(A @) by A-Rule.

2. The if part is straightforward. The only-if part is proved as follows. Consider an
arbitrary A,(a). Since supsd(A(a)) <o, we can choose K& K(m) so that m>
supd(A;(@). Since kA (@) D K(A,(@) by (1), Lemma 4.3.(1) states that I-_— A(@) or
F,A@. O

Theorem 5.B.(1) states that if some formulae satisfy D2 and D3, then they include
common knowledge. Then (2) implies that if nontrivia formulae satisfy D2 and D3,
they have infinite depths.

5.2, Playability of and the knowledge of a game

The introduction of an epistemic structure enables us to consider the problem of
playability. In our context, the playability of a game is formulated as [0,D,(x) — the
existence of predicted final decisions. According to Theorem 5.A, the question is
equivalent to whether or not [0,C(Nash(x)) is obtained from some axioms. This is
different from C(J,Nash(x)). The former states that there is some strategy profile x such
that it is common knowledge that x is a Nash equilibrium, but the second states that the
existence of a Nash eguilibrium is common knowledge.

The solvability of a game is formulated as

ItV Nash(x),
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which we denote by Solv. Since C(Solv) contains the existence of a Nash equilibrium,
we have C(Solv), C(0,Nash(x)). Nevertheless, this together with C(D(1-4))WD does
not imply 0O,D,(X): Instead, we need to have some I" so that

C(D(1-4) WD, I,V C(Nash(x)). (5.4)

We prove that C(Solv) is not sufficient as I" to have [J,D;(x), but C(G,) guarantees
playability when g is solvable. Note that if g is solvable, then C(G,)F,C(Int).

Theorem 5.C.

1. Neither C(D(1-4))WD,C(Solv)F,, 0,D;(x) nor C(D(1—-4))WD,C(Solv)t,,— 0,D(x).
2. Let g be a solvable game. Then C(D(1-4)) WD,C(G,)F,, U,D(X).

Thus C(G,) suffices for I" in (5.4) with the condition that g is a solvable game, but
C(Salv) is not sufficient. The significance of this theorem is to demarcate the knowledge
of abstract conditions on the game from the knowledge of the specific structure of a
game. Abstract treatments are convenient for our (investigators') considerations, but the
specific knowledge of the game is needed for the players to play the game.

The first assertion of Theorem 5.C corresponds to the undecidability result presented
in Kaneko-Nagashima (1996) that there is a specific three-person game with a unique
Nash equilibrium in mixed strategies such that the playability statement is undecidable,
while the common knowledge of the existence of a Nash equilibrium is provable under
the common knowledge of real closed field axioms. Their undecidability is caused by the
choice of a language the players use. Contrary to theirs, our unplayability is caused by
the fact that a game is given abstractly and is not specified enough for the players. The
second assertion states that once a game is fully specified for them, our undecidability is
removed when it is solvable.

In fact, the playability and existence of a Nash equilibrium could not be distinguished
without epistemic structures. Ignoring Axiom D3, Theorem 5.A is stated as follows:

C(D(1,2:4)).C(INt) WD(L2.4)F, A (D;(X) = Nash(x), (5.5)

where WD(1,2,4) is the corresponding modification of WD. In this case, O,D;(X) is
equivalent to O ,Nash(x). Hence

C(D(L,2.4)), C(Solv), WD(L,2.4) F,,V D;(x).

Thus the abstract existence knowledge leads to 0, D;(x), contrary to Theorem 5.C.(1).
The first assertion of (1) needs a long proof, but (2) can be proved with what we have
already prepared. Therefore we give the proofs of those assertions in the reverse order.

Proof of (2). Since g is a solvable game, it has a particular Nash equilibrium a. Then G,
ko Nash(a) by (2.7), which implies C(G)t-,,C(Nash(a)) by Lemma 2.2.(2). By Theorem
5A, we have C(D(1-4))WD,C(Gy)+,D;(@). Hence C(D(1-4))WD,C(Gy)+, O
D). O
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Lemma 5.2. Let A be a formula including no D,,...,D,. If C(D(1-4)), WD,C(Solv)t A,
then C(Solv)l- A

Proof. Suppose C(D(1-4))WD,C(Solv)F,A. Then +_ C(D(1-4)) O(O@®)OC(Solv) D A
for some finite subset @ of WD. Hence there is a proof P of C(D(1-4))0(O®)0O
C(Solv) D A. We substitute C(Nash(a)) for each occurrences of D;(a) (i = 1,...,n and
ac ) in P. Then we have a proof P’ of C(D(1-4)[C(Nash)]) 0 (O@[C(Nash)])O
C(Solv) D A. Note that C(Solv) and A are not affected by these substitutions since they
contain no D,,i =1,...,n.

Since C(Solv)t,C(D(1-4)[C(Nash)]) by Proposition 5.1, we have + (O ®[C(Nash)])
O C(Solv) D A. Also, C(Solv)t, OP[C(Nash)] by using (5.2), since @ is a subset of
WD. Hence - ,C(Solv) D A. [

Proof of the Second Assertion of (1). Suppose C(D(1-4)) WD,C(Solv)F - 00,D;(x). By
Theorem 5.A, we have C(D(1-4))WD,C(Solv)t - 0O0,C(Nash(x)). By Lemma 5.2, we
have C(Solv)l,—~ O,C(Nash(x)). By Lemma 2.2.(1), we have Solv +,—~ O, Nash(x).
However, Solv +, [0, ,Nash(x), which implies that Solv is inconsistent with respect to .
It can be proved that this is not the case. [

For the first assertion of Theorem 5.C.(1), we need one metatheorem, which was proved
in Kaneko-Nagashima (19973).

Theorem 5.D. (Digjunctive Property): Let I" be a set of nonepistemic formulae, and
A,,...,A, nonepistemic formulae. If C(F)I—thk:1C(At), then C(I')F,C(A,) for some
t=1,.k

Proof of the First Assertion of (1). Suppose C(D(1-4))WD,C(Solv)l-, O0,D(x). Then it
follows from Theorem 5.A that C(D(1-4))WD,C(Solv)t,, O,C(Nash(x)). Then we have,
by Lemma 5.2, C(Solv)t,, O,C(Nash(x)). Applying Theorem 5.D to this statement, we
have C(Solv)t,,C(Nash(a)) by some strategy profile a. By Lemma 2.2.(1), we have Solv
ko, Nash(a). Then we construct an assignment based on a game g which has a unique
Nash equilibrium different from a. Here we need the assumption ¢, = 2 for at least one .

By Soundness for GLO, it is not the case that Solv +, Nash(a). O

6. Unsolvable games

When g is an unsolvable game, i.e, does not satisfy interchangeability (2.1),
Proposition 5.1.(2), a fortiori, Theorem 5.A, fails to hold: C(Nash(-)) does not satisfy
Axiom D4. For an unsolvable game, subsolutions play the role of Nash(- ), instead, but
we will meet two new difficulties. One, purely game theoretical, is that an unsolvable
game has multiple subsolutions and the individual choice of a subsolution may lead to a
double cross. Therefore they need to share some information on the choice of a
subsolution. The other is that, as already discussed in Subsection 2.3, the subsolution
concept needs an extensional description. Therefore we need the common knowledge of
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G, as well as Eg. Once these axioms as well as the choice of a subsolution are assumed
to be common knowledge, we would have the characterization result parallel to that
obtained in Section 5. Without sharing the knowledge on the choice of a subsolution,
however, the game is not playable, again.

6.1. Exchange of some information to choose a subsolution

Proposition 3.2 becomes the following form. Here, recall that the equilibrium set E is
divided into the union, U — lE , of subsolutions.

Proposition 6.1.

1. Eq, G,, D°(1,2.4)k, 0, 0,(D,(x) D Sol“(x));
2. C(Eq,G,).C(D(1,24)F,,C( O}, 0,(D;(x) D Sol “(x))),where C(Eq,G,) is C(EqU G,).

Proof. (2) follows from (1) and Lemma 2.2.(2). Now we prove (1) in a semantic way.

Let 7 be any truth assgnment in which Eq,G,, D°%(1,2,4) are true. It follows from
Axioms D1° and D2° that if D,(a) is true, then a is a Nash equilibrium. Hence
{a:7(D;(a)) = true} is a subset of E;. Then Axiom D4° implies that the set {a:7(D,(a)) =
true} satisfies interchangeability. Since each subsolution is a maximal set of Nash
equilibria satisfyi ng interchangeability, {a:7(D;(a)) = true} is a subset of some subsolu-
tion, say, Ey. Thus =, 0,(D;(x) D Sol“(x)). This k may depend upon 7, but Oy_,

0,(D, (x):)SoI X)) is true in any truth assgnment 7 saisfying Eq,G,,D°(1,2,4). By
(2.5), we have Eq,G,,D°(1,2,4)F, Oy, 0,(D;() D Sol“(x). O

The first states that for a game g, if a is afinal decision profile, then it belongs to one of
the subsolutions, and the second statement is simply a conclusion of the first and Lemma
2.2.(2). In the second, however, which subsolution is implied is unknown, since the
digunction is taken over the subsolutions in the scope of common knowledge. To choose
one subsolution, the players need to exchange some information in addition to the
common knowledge of Eq and G,.

We denote the following formula

A Y (Di(¥ A Sol(x) (6.1)

by Sub(t). This states that for any subsolution other than the t-th one, some predicted
final decision profile does not belong to the subsolution. If this is common knowledge,
the players can choose the subsolution Sol".

Proposmon 6.2. Let t be one of 1,..0 Then C(Eq,G,),C(D(1-4)),C(Sub(t)) F,
0,(D, () D C(Sol'(x)).

Proof. Since Oy_, 0(D,(X) D Sol*(x)) is equivaent to Sub(t) D O(D,(x) D Sol'(x))
with respect to +,, we have, by Lemma 2.2.(2), C(Eq,G,), C(D(1,2,4)) F,C[Sub(t) D
0,(0;(9 D Sol'(x)]. Hence C(Eq,G,), C(D(124)) F, C(Sub(t))D O,[C(D;(X)>D
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C(Sol'(x))] by Lemmas 2.3 and 2.4. Since C(D(2,3)) F, 0,(D;(x) D C(D;(x)) by
Proposition  3.2(1), we have C(Eq,G,),C(D(1-4)),C(Sub(t)) *F, 0(D,(x) D
C(Sal'(x)). O

Thus, the common knowledge of the information, Sub(t), suffices for O, [D;(X) D
C(Sol'(x))]. In addition to this, if C(Sol'(-)) satisfies C(D(1-4)), then Axiom WD
implies that D,(X) is equivalent to C(Sol‘(x)). The following proposition states that
C(Sol'(-)) satisfies those axioms under C(Eq,G,), which can be proved in the same
manner as in the proof of Proposition 5.1.

Proposition 6.3. C(Eq,Gg)ka(Dh[C(Sol k)]) for k=1,....0 and h=1,234.

By Propositions 6.2 and 6.3 together with Axiom WD, we have following theorem,
which is a generalization of Theorem 5.A.

Theorem 6.A. Let t be one of 1,.,0. Then C(Eq,G,),C(D(1-4))WD,C(Sub(t))
F, 0(Di(¥) = C(Sol'(¥))).

The role of C(Sub(t)) in Proposition 6.2 is to choose one subsolution. Without this
assumption, we could not prove Proposition 6.2, which will be stated as Theorem 6.B.
The other direction does not need this assumption.

The assumption, C(Sub(t)), itself is rather an abstract statement, but may be regarded
as derived from the information commonly obtained by some communication. In the
battle of the Sexes (Table 1), for example, if the players share the knowledge, viatalking
on the phone (or, face-to-face) that they would choose the pair (s,;, S,,) as find
decisions, then the assumption C(Sub(t)) might be derived.

Since we need to assume Eq and G, to describe subsolutions, we aready assume the
specific knowledge of the structure of the game in Theorem 6.A, contrary to Theorem
5.A. Hence the game g with o =1 is playable under the premise of 6.A, i.e,

C(Eq,G,),C(D(1-4)) WD,C(Sub(t)) ,, V Dy(¥). (6.2)

In this case, the problem is the necessity of C(Sub(t)) from the solution-theoretic and
playability point of view, which is the subject of the next subsection.

6.2. Necessity of the exchange of the information

The next theorem states that without any knowledge of Sub(t), the choice of one
subsolution is impossible.

Theorem 6.B. SQuppose that game g has at least two subsolutions, i.e., o= 2. Then for
anyk=1,..,c0andi=1,..,n,

neither C(Eq,G,),C(D(1-4))F,, A (D,(x) D C(Sal*(x)));

nor C(Eq,G,),C(D(1-4)k,~ A (D;(x) D C(Sol“(x))).
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This theorem implies that without sharing some information about a subsolution, a
player could not reason which subsolution is played specificaly. This implies that (6.2)
could not hold without C(Sub(t)), since the premise of WD holds trivially and D,(a) may
be always (semantically) false. That is, for any game g with o =2,

neither C(Eq,G,),C(D(1~4)WD F,, V D;(x)
nor C(Eq,G,).C(D(1~4)MD F,= V' D,(x).

Thus, without additional information of which subsolution would be played, the game is,
again, not playable.

Proof. Suppose C(Eq,G )C(D(1—4))F 0,(D,(x) D C(Sol (x))) for some k. Hence we
have, by Lemma 2.2.(1), EqG D°%(1,2,4)F, 0,(D,(X) D Sol“(x)). Now we show that this
is impossible, which implies that the supposition does not hold. For this, we give an
assgnment 7 on the atomic formulae so that Eq,G,, D°%(1,2,4) are true in 7 but
0(D;(x) D Sol*(x)) is false. This together with Soundness for GL{ implies that
0(D;(x) DSoI “(x)) is not provable from {Eq.G,,D°(1,2,4)} with respect to F
Let Sol“(-) be different from Sol“(-). Then we define a truth assgnment T as
follows:

)= true ift=t’
S fase otherwise

(1): T(Sjt

true if g;(@) = g;(b)
false otherwise

@) #Rab) = {

true ifacEy
false otherwise,

(3): 7(D;@) = {

where j =1,..,n. Then every axiom of Eq,G,D °(1,2,4) is true, but not &= D(a)D
Sol “(a) for some a in E , since 7(D;(a)) = true but not & Sol (@) for any a € E
Es. Hence O,(D, (x)DSoI X)) is false in 7.

Next suppose C(Eq,G,),C(D(1-4))r,,~ 0,(D;(x) D C(Sol ‘(x))) for some k. By Propo-
stion 2.2.(1), we have Eq, G,D°(1,24)F,~ (D (x) D Sal'(x)). Equivalently,
Eq,Gg,Do(l,2,4)kO DX(Di(x)/\—'SoI (X). Let be Eg - Eg We modify the above truth
assignment 7 by changing (3) into

(3): 7(D;(@) =fdseforalaand j = 1,..., n.

In the truth assignment 7 defined, 0 ,(D,(X) A ~Sol*(x)) is false but D°(1,2,4) is true in
the trivial way. Hence this is a contradiction. [

To choose one subsolution, the players need to communicate with each other to share
some information. The following theorem states that the sufficient condition given in the
previous subsection is the deductively weakest, whose proof is omitted.
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Table 5

S2]. S22 S23
Su (0,0) (1,1)* (1,2
S1 (1,1)* (1,1)* (0,0)
Sis (11)* (0,0) (1,2)*

Theorem 6.C. Let t be one of 1,...,0, and I" any set of formulae. If C(Eq,G,),C(D(1-
4)),I'+ C(0,(D,(x) = C(Sol‘(x)))), then C(Eq,G,),C(D(1-4)),I"+,,C(Sub(t)).

The condition C(Sub(t)) eliminates all the possibilities but the t-th subsolution.
However, more specific information may suffice. For example, the following is one
possible assumption on the game g,

(Dsuby): Eg,..., E] aremutually exclusive.

The battle of the sexes (Table 1) satisfies this condition. For a game satisfying Dsub, an
exchange of an indication of afinal decision profile suffices, instead of the elimination of
possibilities. That is, for a game satisfying Dsub, the sufficient condition, C(Sub(t)), can
be replaced by C( 0 (D,(x) 0Sol'(x))). This can be proved in the same way as Theorem
6.A. In the game of Table 2, Dsub is not sufficient, since 0,(D,(x) JSol*(x)) does not
eliminate the possibility C(0 (D, (x) JSol?(x))). Nevertheless, it suffices to exchange the
information of some particular pair, for example, the common knowledge that (S,,,S,,) IS
a final decision pair is sufficient, that is,

C(Eq, Gy),C(D(1-4)), WD, C(D;(S;, 5,1))F, C( 4 (D;(X) = C(Sol '(x)))).

On the other hand, the exchange of the information of (s,;,S,,) is not sufficient.

The game in Table 5 has six subsolutions and each Nash equilibrium belongs to
exactly two subsolutions. In this game, the exchange of the information of choosing one
subsolution needs to have the origina form, C(Sub(t)).

7. Remarks on the final decision axioms
7.1. Role of each axiom

Consider the role of each of Axioms D1-D4 by eliminating it from the others. The
elimination of D1 or D2 makes our theory almost meaningless, and without Axiom D3
or D4, the theory would still have some structure but become much poorer.

(1) Axiom D1: Without D1, we would have the same infinite regress. The deductively
weakest formula satisfying C(D(2,3,4)) is given as the common knowledge of a strategy
profile under the assumption C(Eq,G,), i.e,

C(Eq, G,), C(D(2,3,4)), WD(2,3,4)|—w/X\ ( D,(X) = C(\y/ /J\ =Y, ))),
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where WD(2,3,4) is the modification of WD by eliminating D1. This states that the
prediction is the common knowledge of a strategy profile. Thus, the trivial structure is
given by these axioms.

(2) Axiom D2: Without D2, we would not meet the common knowledge of the other
axioms. Each player has D,(-) but does not think about the other players predictions.
Hence the others choices remain arbitrary for him. That is, we have

D(1,3,4). WD (L3, 4, A (DX =K( ) Ry x))) fori=1..n

Here WD (1, 3, 4) does not require the common knowledge operator for its premise.
Thus, there are n independent decision problems without interactions, though the
situation itself may be interactive.

(3) Axiom D3: We dready discussed the case without D3 in Subsection 5.2.

(4) Axiom D4: Without D4, our theory would be simpler. The infinite regress
discussed in Section 5 remains unchanged. The main theorem becomes

C(D(1, 2, 3)), WD(L, 2, 3) F, A (D, (X) = C(Nash(x))).

This does not need the interchangeability condition. In this case, we would loose the
demarcation between the solvable and unsolvable games. Thus, the entire consideration
of Section 6 would disappear. The role of D4 could be found by looking at a different
formulation of our axiomatization, which is given in the next subsection.

7.2. The I-system of final decision axioms

We presented the axioms on final decisions D,(*),...,.D,(+) as n-ary predicates. That
is, a prediction is an attribute of a final decision profile. Therefore each player i makes
simultaneously a prediction of a strategy profile for al the players. Kaneko-Nagashima
(1991, 1996) and Kaneko (1997b) adopted different axiomatic systems so that
predictions are separately made for each player. Player i makes a prediction of player j's
choice, i.e., it is an attribute of a strategy for each player instead of a strategy profile. We
cal this system the I-system, and the system of the present paper the D-system.

To formulate the I-system, we prepare unary predicates |,(+ )yl 1, ); oo s TgC )sensy
I.,,(+) and assume the following base axioms: for each i = 1,...,n,

Axiom 11°. O (O31506) D 0 ROGX_ 1Y% )

Axiom 127, 0, 0, O,(1;0¢) D 1,());
Axiom 137, O, 0,(1;%) D K;(1;;(X));

Axiom 147, O, Oy Oy 1506 D Oy ).

We define 11,,...,14, to be K (117),...,K,(147). Axioms D4 and |4 connect the D-system
and I-system in the following sense:
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FIEACAID X =ALX)]Y=D4’A (A A [L(x)=V DX,y ).
A (NI =210 . (j A () Y, i yﬂ)])

Thus, we can start either with the I-system together the definition of D;(a) to be [J;1;;(a)
or either with the D-system together the definition of 1;(a) to be Dy_jDi @,y
Furthermore, we can prove the entire equivalence between the above two systems with
the above connection.

7.3. Fully and partially interactive games

Ignoring the difference between the D-system and I-system, the axiomatization in this
paper is a specia case of that in Kaneko (1997b). In his axiomatization, multiple
systems of axioms for decision making may be permitted, depending upon a game.
Kaneko (1997b) gave a condition on a game only for the system of this paper to be
permissible. A game is caled fully interactive iff it satisfies this condition, and
otherwise, it is caled (properly) partially interactive. The system in this paper is
permitted for any games, though partially interactive games may have multiple
“weaker’” systems of axioms.

Here we give some simple examples of fully and partially interactive games. In the
Prisoner’s Dilemma (Table 3), since each player has a dominant strategy, s, it is
possible for each player i to make a decision satisfying utility maximization only with
the knowledge of his own payoff function but without predicting the other’s decision.
This argument is formulated as one system of axioms in (Kaneko, 1997b), but the
solution for this system does not require the knowledge of the other player’s decision.
This argument is not applied to the game of Table 4, since only player 1 has a dominant
strategy, s,,. In this game, 1 can ignore 2's choice, but 2 needs to predict 1's choice.
This situation is also formulated as a system of axioms. Even in these games, if we
require each player to infer the other’s decision, we would have the system in this paper.

The game of Table 6 obtained by adding one strategy to player 2 to Table 4 is fully
interactive: this has the same Nash equilibrium (s,,,S,,), but without predicting the
other’'s decision, each player cannot make a decision to maximize his payoff. This game
differs from the games of Tables 3 and 4 in that the system in this paper is only
permissible.

In fact, there is a great spectrum of games from those with dominant strategies to fully
interactive games. One typical (four-person) example is as follows: each of 1,3 and each
of 2,4 have three and two strategies, respectively. The payoffs for players 1 and 2 are
determined by their own strategies, which are given by Table 6. Those for 3 and 4
depend upon their strategies as well as the choices of 1 and 2: if 1 and 2 choose (S,,,S,,),
then the payoffs of 3 and 4 are given aso as Table 6 with the replacements of players

Table 6
3, 4's payoffs if (S,,, S,,) is played

521 SZZ SZ3
Si (55) (12 (33)

Stz (61) (33) 02)
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Table 7
Otherwise

S41 S42 543
Sa1 (33) (6,1) (02)
Ss (1.6) (55) (33)

1,2 with 3,4; and if 1 and 2 choose a strategy pair other than (s,,,S,,), then their payoff
matrix is given by Table 7 (obtained from 6 by permuting the roles of s, and s, for
i =3,4). In this game, if 1 and 2 ignore 3 and 4, then 1 and 2 are facing the game of
Table 6, which is fully interactive. Players 3 and 4 still need to infer the choices of 1,2,
and their part is fully also regarded as fully interactive.

When a partialy interactive game permits a *‘ weaker” system of axioms, it has a part
which can be regarded as fully interactive in that each player needs to predict the others
decisions in the part, though sometimes it is trivial in the sense that it consists of asingle
player. The system of axioms restricted to such a fully interactive part of the game is
regarded as the same as the system in this paper. Therefore our analysis is applied aso
to the fully interactive parts of partially interactive games. See Kaneko (1997b).

In the approach of this paper, we used the game logic GL,, where the knowledge of
the logical and introspection abilities are allowed up to any finite depths. Kaneko's
(1997b) axiomatization permits, for some games, to be discussed in game logic GL ,, for
a finite m. For example, the Prisoner’s Dilemma can be discussed in logic GL ,, where
each player does not think about the other player’s thinking. Nevertheless, when we
consider the axiomatic system of this paper, we need the limit logic GL , and this is
inevitable for many games.

7.4. Comparisons with Johansen’s argument

Now we look at Johansen’'s (1982) argument on Nash equilibrium from the viewpoint
of the above axiomatization. Johansen proposed four postulates for rational (in-
dividualistic) decision making in a game. We reproduce them with dlight modificationsin
terminology:

(J1). A player makes his decision a, € 3. on the basis of, and only on the basis of
information concerning the strategy sets 3,,...,3,,, and preferences R,,...,R...

(J2). In choosing his own decision, a player assumes that the other players are rational in
the same way that he himself is rational.

(J3). If some decision is the rational decision to make for an individual player, then this
decision can be correctly predicted by the other players.

(J4). Being able to predict the actions to be taken by the other players, a player’s own
decision maximizes his preference relation corresponding to the predicted actions of the
other players.
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Johansen argues that if a game possesses a unique Nash equilibrium, then each player’s
Nash strategy is the unique choice satisfying these four postulates. He claims also that
the uniqueness of a Nash equilibrium is for simplicity and that interchangeability
suffices for his argument (Johansen (1982), p.424). Since Johansen did not formalize his
postulates and arguments at our level, a lot of ambiguities remain — Bernheim (1986),
p.486 criticized Johansen’s postulates as ambiguous and self-referential. Nevertheless, it
might be useful for the understanding of our and his approaches to make comparisons of
them.

Besides the differences in formalisms, there is one difference we should be conscious
of. Johansen’'s postulates describe the whole situation he is considering. On the other
hand, our axioms constitute a part of the description of the game situation — the
description of logical abilities is made separately in GL . Therefore we should consider
the correspondence between his postulates and our entire approach. Postulates J1 and J4
are clear enough even in the comparisons with our approach. We consider the possible
interpretations of J2 and J3.

Postulate J2 may be interpreted in our axiomatization as meaning that each player i
follows the final decision axioms assuming that the other players also assume the same
axioms. This interpretation may be formulated as assuming K;(D(1-4)) for i = 1,...,n. As
remarked above, it isinterpreted also as including the assumption that every player has a
(complete) logical ability as well as knows (or assumes) that the other players have the
same logical abilities. In the latter sense, J2 partialy corresponds to our GL, (which
may be an overinterpretation of Johansen).

Postulate J3 corresponds to Lemma 3.3 (thus, D2 and D3 combined) rather than D3
itself. This postulate requires each player to assume that the others obey the same
postulates as his. Thus, the four postulates require the players to know the postulates
themselves for their “‘rational decison making’. In this sense, Johansen's argument
looks self-referential, but this self-referential is too ambiguous to be investigated. In our
case, the ambiguity is avoided by formulating the whole situation in game logic, and the
self-referential becomes the infinite regress, which was solved in Sections 5 and 6.

Johansen’s postulates appear to have no counterpart of Axiom D4?, though Johansen
himself emphasized independent individual decision making. Probably, he presupposed a
game with a unique Nash equilibrium and needed no explicit postulate for independent
decision making.
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