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Summary. This paper is written as an introduction to epistemic logics and their
game theoretic applications. It starts with both semantics and syntax of classical
logic, and goes to the Hilbert-style proof-theory and Kripke-style model theory
of epistemic logics. In these theories, we discuss individual decision making
in some simple game examples. In particular, we will discuss the distinction
between beliefs and knowledge, and how false beliefs play roles in game theoretic
decision making. Finally, we discuss extensions of epistemic logics to incorporate
common knowledge. In the extension, we discuss also false beliefs on common
knowledge.
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1 Introduction

1.1 Aim and some basic notions in logic

This paper is written for economists and/or game theorists as an introduction to
epistemic logics and their applications to game theoretic problems. We believe
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that epistemic interactions play key roles in social behavior of people, and also
that symbolic expressions, manipulations and their interpretations are central in
such epistemic interactions. For these beliefs, we adopt the research strategy to
take and use basic concepts and results developed in mathematical logic.

The declaration of our ultimate aim may help readers understand our research
attitude: Our logic approach might be regarded as the pursuit of foundations of
extant game theories, as mathematical logic may be viewed as the study of foun-
dations of mathematics. Contrary to this, we have little intentions of pursuing
such foundations. A typical characteristic of an extant game theory is the pursuit
of “rationality” in outcomes assuming, often unintentionally, a lot of transcen-
dentalities. Although our approach shares target problems with extant theories,
we avoid and/or examine consciously transcendentalities involved in extant the-
ories. Instead, we view problems of finite nature as central in investigations of
human behavior. From this point of view, we develop our logical approach.

We follow the standard bases of mathematical logic. For such bases, there
are many entrance barriers which economists/game theorists may encounter, be-
cause of methodological differences between economics and logic. These barriers
may inhibit future economic and game theoretic research, but some of their con-
stituents may become important for future research itself. It is now timely to
give a systematic introduction, emphasizing such methodological differences, to
epistemic logics with some illustrations of game applications. We hope that this
introduction will induce further developments of the logical approach.

Economics and game theory have the tradition that their mathematical
methodology is based primarily on analysis such as topology, functional analysis
and probability theory. Also in logic, we can treat these mathematical fields, but
what we emphasize by the logical approach is the basic constructions of logic
rather than direct applications of extant results in the field of logic. Logic has
various unique constituents that are not found in other mathematical fields. This
paper introduces such unique constituents to economists/game theorists. In the
rest of this section, we mention several pairs of basic concepts unique to logic
and particular to epistemic logic, which would help the reader understand the
subjects better.

The very basic starting point of logic is the separation between symbolic ex-
pressions and their intended meanings. When we target human thinking seriously,
this separation is unavoidable. It is stated in the terminology of logic as:

A1: Syntax vs. semantics

As a syntactical notion, we define aformula to be a symbolic expression based
on given primitive symbols. As a semantical notion, we define a truth valuation
of such a formula. This separation leads to two different theories:

A2: Proof theory vs. model theory

In the former, mathematical reasoning is captured as grammatical symbol manip-
ulations from given axioms, while in the latter, mathematical models satisfying
those axioms are considered. These theories are connected by the, so-called,
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soundness-completenesstheorem. In this paper, we use the word “model theory”
as almost synonymous to “semantics”.

The above connection is important conceptually as well as technically. Model
theory talks about models, each of which is assumed to be acompletedescription
of a target situation in the sense that any sentence is eithertrue or false.1 A proof
theory talks about proofs, i.e., the provability of a formula from a given set of
(nonlogical) axioms. The given set of axioms may be apartial description of
the target situation. Since each model is complete, a single model is too much to
capture the partial description. Therefore, we consider asetof candidate models
for the partial description. If a formula is true for all the possible candidate
models, it is said to bevalid. The soundness-completeness theorem is a bridge
between the syntactical provability and semantic validity.

We take the view that a player has only a partial description of a target
situation. Therefore, we cannot adopt a single model as a description of the
situation. We should treat a set of nonlogical axioms in a proof theoretic manner
or a set of models in a model theoretic manner. This differs from the game
theoretic literature of epistemic models since Aumann [1], where a single model
is usually assumed to be a description of the target situation.2

Another relevant distinction here is:

A3: Object theorems vs. meta-theorems

A theorem whose provability and/or validity is discussedinsidea logical system
belongs to the former, and a theorem on a logical system belongs to the latter.
Since our purpose is to investigate the players’ inferences required for decision
making, meta-theorems on their decisions and inferences are our central concerns.
A translation of a result in an extant game theory into a logical system is an
instance of the former, and is not really our concern. The distinction will be
clear when some examples are given.

It is important to notice that mathematical logic is a mathematical theory
of mathematical theories. We use a standard mathematical method to handle a
logical system. The mathematical method to handle a logical system is called
meta-mathematics. This will be pointed out when it is relevant.3

In this paper, we will discuss epistemic logics, which are variants of modal
logics originally targeting the investigation of “necessity” and “possibility”. We
can borrow a lot from this literature.4 In the case of epistemic logics, the above
distinction A2 becomes.

1 This completeness is assumed in the classical model theory, but not necessarily assumed in
general. For example, a Kripke model for intuitionistic logic does not assume this completeness. See
van Dalen [37].

2 See Aumann [2] for some use of logical apparatuses from the viewpoint of the recent game
theoretic tradition. For the recent game theoretical literature of epistemic models, see Bacharach-
Mongin [3] and Bacharach et al. [4].

3 See Kleene [21] for the distinction between object-mathematics and meta-mathematics.
4 Hughes and Cresswell [12] and Chellas [6] are standard textbooks of modal logic. The modern

literature of epistemic logic was started by Hintikka [10]. Fagin-Halpern-Moses-Verdi [7] and Meyer
and van der Hoek [25] are found as textbooks on epistemic logics and other subjects.
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A4: Hilbert-style proof theory vs. Kripke semantics

We discuss mainly these two theories in this paper. The Hilbert-style proof theory
is convenient in its concise presentation. A strength of the logical approach is
to showunprovability. In this respect, the Hilbert-style proof theory is difficult
to handle, and the Kripke semantics is unavoidable. We will mention the other
proof theory calledGentzen-style, which enables us to evaluate unprovability as
well as provability. In this paper, however, we give only a brief explanation of
it in Section 4.4.

Since the above two theories are deductively equivalent, which is stated
by the soundness-completeness theorem, the reader may wonder why we adopt
both theories. The answer is double-fold. First, technically speaking, since each
theory has some merits and some demerits, it would be more powerful to have
both theories. Second, conceptually speaking, both syntactical manipulations and
semantical interpretations are important in investigations of human-thoughts in
social contexts. Therefore, we keep the dualistic attitude. Note that there are other
proof and model theories in the literature of logics (cf., Kleene [21] and Chellas
[6]).

Another relevant distinction is

A5: Propositional logics vs. predicate logics

If a target problem has only a finite number of objects such as a finite game
with pure strategies, a propositional logic would suffice, and if it has an infinite
number of objects such as a game with mixed strategies, a predicate logic would
be unavoidable. A predicate logic is an extension of a propositional logic so that
it allows for quantifications,∀ (for all) and∃ (exists). When the problem treats
only a finite set, the quantifications,∀ and∃, can be expressed by conjunction∧

(and) and disjunction
∨

(or), respectively. Therefore, as far as we confine
ourselves to finite games, only propositional logics suffice.5 In this paper, we
discuss only propositional epistemic logics.

1.2 Logical approach to game theoretic problems

We now turn our attention from broad distinctions in logic to ones particular to
epistemic logics and their game applications. The first distinction is:

B1: Classical logic vs. epistemic logics

Classical logic is the logic used in the standard mathematical practices. We adopt
classical logic as the base logic for our epistemic logics. This means that the
investigator (observer)’s reasoning ability is described by classical logic. The
reasoning ability of each player is assumed to consist of the ability described by
classical logic and the additional inference ability of (self-)introspection.

5 Even if the problems have only finite objects, predicate logics may be relevant to some problems
such as complexities of expressions (which are relevant for some situations, e.g., communication
within language). Kleene [21] and Mendelson [24] are classical textbooks treating basics of predicate
logic.
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The second distinction is important for game theoretic applications:

B2: Logical axioms vs. nonlogical (mathematical) axioms

This distinction can be, more or less, arbitrary in classical logic, but it is crucial
in epistemic logics (modal logics in general). We take the research strategy of
separating game problems from logical problems as much as possible. To achieve
this separation, we will describe game theoretic axioms as nonlogical axioms.

The third distinction is:

B3: Beliefs vs. knowledge

We define “knowledge” as “true beliefs”, where truth is referred to the outside
thinker. Beliefs are also divided into basic and inferred ones. A justification of
a belief for a player is an argument (proof) for it frombasicbeliefs by himself.
We do not discuss “justifications” of basic beliefs, which is a limit of the logical
approach. We allowfalse beliefs, rather than discuss whether a player can obtain
true beliefs.6 False beliefs enable us to consider the emergence of beliefs from
other sources such as individual experiences. We will treat thetruthfulness axiom,
which makes beliefs true, as a possible axiom rather than a basic axiom. We will
discuss distinction B3 from the logical point of view in Section 6.

The following two game theoretical distinctions are important in our ap-
proach:

B4: Solution theory vs. performance-playability theory

A solution theory addresses what criteria are adopted for decision making, while
performance - playability theory takes a solution theory as given and addresses
how the theory performs and whether the player makes a decision. In this paper,
we discuss both theories.

A related distinction is:

B5: Decision vs. prediction

In a game, each player makes a decision under predictions about other players’
decisions. A decision is ultimately important for each player, and predictions
about others’ decisions are auxiliary. For some games, a decision may be made
without predictions. We do not need to assume the same decision criteria for
decision and prediction. These differ by nature. Traditional game theory has not
distinguished between them. In this paper, we make this distinction, but will not
have enough space to examine it fully. This distinction will be clearer in Kaneko
and Suzuki [19].

1.3 Konnyaku Mond̂o (Jelly dialogue)

Before starting our discussions on the logical approach to game theory, we men-
tion a Japanese traditional comic (rakugo) story suggestive for the distinctions

6 We do not relate individual beliefs tosubjective probability.The reader may understand this by
reading the basic principles for beliefs in Section 4.2.
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mentioned above. This story is indirectly related to the main body of the paper,
but helps the reader understand the basic notions discussed in the rest of paper.

Konnyaku Mondô: A (devil’s tongue) jelly maker lived in a Buddhist temple
pretending to be a monk. A real Buddhist monk came to visit the temple to have
a dialogue on Buddhism thoughts. The jelly maker first refused but eventually
agreed to have a dialogue. Since the jelly maker did not know how he could
communicate with the monk on Buddhism, he answered the monk’s questions in
gestures. The monk took this as a style of dialogue, and responded in gestures.
After some exchanges of gestures, both thought that the jelly maker defeated
the monk. After the dialogue, a witness asked the monk about the dialogue. The
monk said that the jelly maker had a great Buddhism thought shown by his
gestures and should be respected. Afterwards, the jelly maker was asked by the
same witness and answered: the monk started talking badly about jelly products
with his gestures, made the jelly maker angry, and thus the jelly maker beat the
monk. Thus, each of them believed that they had perfectly meaningful dialogue
and that it was common knowledge that the jelly maker defeated the monk in the
dialogue. However, the monk believed that they had a Buddhism dialogue, while
the jelly maker believed that they had discussed about jelly products (pp. 61–70
in [35]).

This story has various relevant points for the distinctions mentioned in this
section. First, the gestures exchanged and the associated beliefs are distinguished
as syntax and semantics – A1. Second, different people associate different inter-
pretations with the same gestures, and they develop false beliefs, which corre-
sponds to the distinction between beliefs and knowledge – B3. Third, the other
person’s mind is only imagined in the mind of a person. An implication is that
prediction about the other’s decision differs considerably from one’s own deci-
sion – B5. The story also suggests the possibility that an individual person may
develop a false belief of common knowledge from common observations. The
last point will be discussed in a game theoretical context in Section 8.3.

This paper is organized as follows: Section 2 gives basic game theoretic
concepts to be used for illustrations. Section 3 describes semantics and syntax of
classical logic CL, and states the soundness-completeness theorem. Its proof will
be given in the Appendix. Sections 4 and 5 give various epistemic logics and
Kripke semantics, which are connected, again, by the soundness-completeness
theorem. Section 6 discusses the relationship between “beliefs” and “knowledge”.
Section 7 discusses decision criteria. We show that in some case, a solution
for decision making involves common knowledge, and that the epistemic logics
introduced in Section 4 are incapable of treating such a problem. In Section 8, we
consider an extension of an epistemic logic to incorporate common knowledge.

2 Basic game theoretic concepts

To exemplify logical constructs, we will refer to a 2-person finite noncooperative
gameg = (g1, g2) in strategic form. Each playeri = 1,2 has�i pure strategies
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(�i ≥ 2). We assume throughout the paper that the players do not play mixed
strategies. Playeri ’s strategy space is denoted bySi := {si 1, ..., si �i } for i = 1,2.
His payoff functionis a real-valued functiongi on S := S1× S2.

Let (s1, s2) ∈ S. We say thats1 is abest strategy to s2 iff g1(s1, s2) ≥ g1(t1, s2)
for all t1 ∈ S1. We say thats1 is adominant strategyiff s1 is a best strategy tos2

for any s2 ∈ S2. Player 2’s dominant strategy is defined in the parallel manner.
A strategy pairs = (s1, s2) is called aNash equilibriumiff si is a best strategy to
sj for i , j = 1,2 (i /= j ). We say thatsi is a Nash strategyfor player i iff ( s1, s2)
is a Nash equilibrium for somesj , wherei , j = 1,2 (i /= j ).

In the gameg1 = (g1
1, g

1
2) of Table 1 (Prisoner’s Dilemma), the second strategy

si 2 for eachi is a dominant strategy. In the gameg2 = (g2
1, g

2
2) of Table 2 which

is obtained fromg1 by changing the payoff 6 in the northeast corner to 2, only
player 1 has a dominant strategy,s12. Either game has a unique Nash equilibrium,
(s12, s22), which is marked with asterisk∗.

Table 1. g1 = (g1
1, g1

2) Table 2. g2 = (g2
1, g2

2)

s21 s22 s21 s22

s11 (5,5) (1,6) s11 (5,5) (1,2)
s12 (6,1) (3,3)∗ s12 (6,1) (3,3)∗

Here, we briefly describe in the standard game theory language what decision
criteria are candidates for these games. Later, we will see how such criteria are
more accurately described in epistemic logics.

We start with the following simple decision criterion:

DC1: Playeri should choose a dominant strategy.

In gameg1 = (g1
1, g

1
2), this criterion recommends a decision to either player.

However, it recommends a strategy only to player 1 in gameg2 = (g2
1, g

2
2), since

2 has no dominant strategies ing2. One way out for 2 is to predict 1’s decision,
assuming that 1 adopts DC1 for 1’s choice. We write this criterion as follows:

DC2: Playeri , predicting that playerj (j /= i ) would choose a strategy following
DC1 should choose a best strategy to his predicted strategy for playerj .

This differs from DC1 in that it involves a prediction about the other player’
decision making. The application of DC2 to player 2 in gameg2 states that
2 predicts that 1 would chooses12 as the dominant strategy and then 2 should
chooses22 as the best strategy tos12. This argument may be regarded as a special
case of the procedure so called theiterated elimination of dominated strategies
(cf. Moulin [28] and Myerson [29]). The main concern in this literature is the
consideration of a resulting outcome of such a procedure, but our concern is
the considerations of required epistemic aspects for such a decision criterion and
of its performance-playability relative to given beliefs. This point is clearer in
Kaneko and Suzuki [19].

We consider other two criteria, the first of which is auxiliary.
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DC30: Playeri should choose a Nash strategy without thinking aboutj ’s beliefs.

This differs considerably from DC2 in that playeri thinks about playerj ’s beliefs
in DC2 but not in DC30. The game,g3 = (g3, g3), of Table 3 is obtained fromg2

by adding one strategy to player 2. In this game, neither player has a dominant
strategy. Hence, neither DC1 nor DC2 gives a decision to a player. DC30 makes a
recommendation, but does not guarantees that playeri believes that his prediction
is taken by the other player. To guarantee each player to believe that his prediction
would be taken by the other player, we change DC30 as follows:

DC3: (1) Player 1 should choose a best strategy to his prediction based on (2)
below;

(2): player 2 should choose a best strategy to his prediction based on (1)
above.

One problem is whether or not DC3 leads to a Nash equilibrium, but our main
concern is to consider the epistemic structure involved in DC3. In fact, if we
assume that player 1 adopts (1), that the player 2 in 1’s mind adopts (2), and so
on, then we would meet the infinite regress:

(1) ← −− ((2)← −− ((1)← −− ((2)← −− ...

(2) ← −− ((1)← −− ((2)← −− ((1)← −− ...

That is, player 1 believes that in 1’s mind, player 2’s prediction is based on
(2), in 1’s mind player 2 believes that in 2’s mind, 1’s prediction is based on
(1), and so on. This infinite regress is closely related to the common knowledge
of this criterion. When an individual player adopts this criterion, the infinite
regressappears in his mind, and it takes only the form of anindividual beliefof
common knowledge. Here, we would like to differentiate common knowledge
from an individual belief of it. Here, the distinction B3 of Section 1 and the
Konnyaku Mond̂o become relevant.

These criteria suggest that we could find a lot of decision criteria in that
a decision criterion is genuinely subjective and belongs to each player’s mind.
Kaneko and Suzuki [19] discuss, stressing the bounded interpersonal introspec-
tions, the multitude of such decision criteria.

Here, we point out the difference of DC3 from the other criteria. Criteria DC1
and DC2 (as well as DC30) can be discussed in an (purely finitary) epistemic
logic, but not DC3. To capture the infinite regress in DC3, we need an exten-
sion of an epistemic logic to incorporate common knowledge. Even if common
knowledge is included, it may be possible to allow false beliefs. For example,
player 1 believes the common knowledge of playing gameg3, while 2 does
the common knowledge of playing the gameg4 of Table 4. To discuss those
problems in meaningful manners, we need to develop epistemic logics carefully.
These problems will be discussed in Sections 7 and 8.
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Table 3. g3 = (g3
1, g3

2) Table 4. g4 = (g4
1, g4

2)

s21 s22 s23 s21 s22 s23

s11 (5,5) (1,2) (4,3) s11 (6,3) (1,2) (0,5)
s12 (6,1) (3,3)∗ (0,2) s12 (5,2) (3,3)∗ (4,1)

3 Classical logic CL

In this section, we review classical logic CL and its semantics. The reader may
feel that this is a detour to the logical approach to game theory. However, we
will define epistemic logics as superstructures of classical logic CL, and will use
a lot of concepts and results from CL in the development of epistemic logics as
well as in applications to game theory. Therefore, the reader should become a
bit familiar to CL before going to epistemic logics.

In Section 3.1, we define two sets of formulae. In Section 3.2, we give
the classical semantics. In Section 3.3, we give one axiomatic presentation of
classical logic CL, and state the soundness-completeness theorem for CL.

3.1 The sets of formulae:P andP n

We start with the following list of symbols:

propositional variable symbols: p0,p1, ...;
logical connective symbols: ¬ (not),⊃ (implies),

∧
(and),

∨
(or) ;

unary belief operator symbols: B1, B2, ..., Bn;
parentheses: ( , ) ; braces: { , }; andcomma: , .

We stress that these are pure symbols and are used to be elements of more
complex expressions, called formulae. We will associate theintendedmeanings,
“not” , “implies”, “and”, “or”, with ¬, ⊃, ∧, ∨, respectively. The implication
symbol⊃ should be distinguished from the set-theoretic inclusion⊆ . These
intended meanings will be defined operationally by logical axioms and inference
rules. Unary belief operator symbol Bi is the belief operator of playeri and is
applied to each formula. We denote the set of players byN = {1, ...,n}. The set-
theoretic brackets{, } are used to express a finite set of formulae. It is assumed
that the number of propositional variables is at least one and at most countable.
The set of propositional variables is denoted byPV .

Based on the above list symbols, we defineformulaeinductively as follows:

F1: anyp ∈ PV is a formula;
F2: if A andB are formulae, so are (¬A), (A⊃ B) and Bi (A) (i ∈ N );
F3: if {A0,A1, ...,Am} is a finite set of formulae withm ≥ 0, then (

∧{A0,A1, ...,
Am}) and (

∨{A0,A1, ...,Am}) are also formulae;
F4: every formula is obtained by a finite number of applications of F1, F2 and

F3.7

7 This definition deviates from the standard textbook definition of formulae in that conjunc-
tive and disjunctive connectives

∧
and
∨

are applied to a finite nonempty set of formulae, e.g.,
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p0 p1

↘ ↙
p0 (p0 ⊃ p1)
↘ ↙
(p0 ⊃ (p1 ⊃ p0))

p0 p1

↘ ↙
(p0 ⊃ p1)
↓

B1((p0 ⊃ p1))

Figure 1 Figure 2

For example, (p0 ⊃ (p1 ⊃ p0)) is obtained by applications of F1 and F2
three times and twice, respectively, and is intended to mean that ifp0 holds,
then p1 implies p0. The construction of two formulae (p0 ⊃ (p1 ⊃ p0)) and
B1((p0 ⊃ p1)) are described as Figures 1 and 2.

In general, a formula has afinite tree structure where each terminal node
corresponds to a propositional variable and each nonterminal node corresponds
to a logical connective or a belief operator. This tree structure will be used to
construct inductive proofs. We denote theset of all formulaeby P .

By a formula Bi (A), we intend to mean that playeri believes formulaA. The
behavior of the belief operators is of our central interests. In classical logic CL,
however, we first ignore these formulae, and later, will give a remark (Remark
3.5) on a somewhat nominal treatment of belief operators. We say that a formulaA
is nonepistemiciff A contains no B1, ..., Bn. We denote the set of all nonepistemic
formulae byP n. Of course,P n ⊆ P .

In this paper, we do not fix exact rules of abbreviations of parentheses (, ), but
follow standard practices of abbreviations so that we could recover the original
expressions when necessary. For example, (p0 ⊃ (p1 ⊃ p0)), B1((p1 ⊃ p0)) and
(
∧
Φ) are abbreviated asp0 ⊃ (p1 ⊃ p0), B1(p1 ⊃ p0) and

∧
Φ, respectively. We

will also abbreviate
∧{A,B},∨{A,B,C} asA∧B,A∨B ∨C , etc.8 We denote

(A⊃ B) ∧ (B ⊃ A) by A≡ B.9

To discuss the game theoretic problems of Section 2, we adopt the economics
practice to represent a payoff function in terms of preference relations. We start
with:

strategysymbols: s11, ..., s1�1; s21, ..., s2�2;

4-ary symbols: P1,P2.

Strategy symbols are identical to those given in Section 2. By a 4-ary symbolPi ,
we mean that the expressionPi (s1, s2 : t1, t2) is allowed for (s1, s2), (t1, t2) ∈ S.
These 4-ary expressions are calledatomic formulae,and the set of them is denoted∧

{A0, A1, ..., Am}, rather than to an ordered pair of formulae. We take this deviation to facilitate
game theoretical applications. However, the resulting logical systems are equivalent (with respec-
tive to provabilities or validities defined in the systems). This formulation does not fit to a Gödel
numbering. If one wants to take a Gödel numbering, then he should return to the standard formulation.

8 In the definition of formulae, we presume the identity of a finite set. Hence, (
∧

{A1, A2}) is
identical to (

∧
{A2, A1}) as a formula.

9 We introduce four logical connectives,¬, ⊃,
∧

and
∨

. In fact, some of them are enough
and the others can be defined as abbreviations. These abbreviations may be convenient for some
presentation purposes, but not necessarily so for other purposes. This is rather a matter of taste.
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by AF. When�1 = �2 = 2, AF consists of 32 atomic formulae. When we discuss
game theoretic problems, we regard alwaysAF asPV . Also, the sets of formulae
P andP n are defined based onAF as the replacement ofPV . We see presently
how some game theoretic concepts are described. It should be noted that atomic
formula Pi (s1, s2 : t1, t2) is intended to be aweak preferencefor (s1, s2) over
(t1, t2).

The statement thats1 is a best strategy tos2 is described as the formula∧{P1(s1, s2 : t1, s2) : t1 ∈ S1}, which we denote by Best1(s1 | s2). The statement
that s1 is a dominant strategy for 1 is expressed as

∧{Best1(s1 | s2) : s2 ∈ S2}.
This means thats1 is the most preferable whatever 2 would choose. The formula∧{P1(s1, t2 : t1, t2) : t1 ∈ S1 and t2 ∈ S2} is equivalent to

∧{Best1(s1 | s2) : s2 ∈
S2} in the logic we will define. We denote the former by Dom1(s1). In the parallel
manner, we define the formulae, Best2(s2 | s1) and Dom2(s2). The statement that
(s1, s2) is a Nash equilibrium is described as Best1(s1 | s2)∧Best2(s2 | s1), which
is denoted by Nash(s1, s2). The statement thats1 is a Nash strategy for player 1
is described as

∨{Nash(s1, s2) : s2 ∈ S2}. This is abbreviated as
∨

s2
Nash(s1, s2).

Recall that a payoff functiong1 of player 1 was given as a real-valued func-
tion. Here, we express a payoff functiong1 by the following set of preferences:

{P1(s : t) : g1(s) ≥ g1(t)} ∪ {¬P1(s : t) : g1(s) < g1(t)}. (3.1)

This is a set of symbolic expressions and is denoted by ˆg1. We can take the
conjunction,

∧
ĝ1, of this set. In the parallel manner, ˆg2 and

∧
ĝ2 are defined.

Thus, the payoff functions for both players are described as the set ˆg = ĝ1 ∪ ĝ2

or as the formula
∧

(ĝ1 ∪ ĝ2).

3.2 Classical semantics

So far, we have defined formulae expressing logical or game theoretic ideas,
but we have not considered a way of evaluating them. In this subsection, we
define semantical notions, “truth” and “falsity”. From these, we define another
semantical notion, “validity”, which will be connected to a syntactical notion,
“provability”.

First, we give the definition of a semantical valuation of each formula inP n.
In Remark 3.5, we mention the modification of this definition forP .

A function κ : PV → {�,⊥} is called an (classical)assignment, where�
and⊥ are the symbols designating “true” and “false”. We extend each assignment
κ to the functionVκ : P n → {�,⊥} by the following induction on the length
(tree structure) of a formula:

C0: for anyp ∈ PV , Vκ(p) = � iff κ(p) = �;
C1: Vκ(¬A) = � iff Vκ(A) = ⊥;
C2: Vκ(A⊃ B) = � iff Vκ(A) = ⊥ or Vκ(B) = �;
C3: Vκ(

∧
Φ) = � iff Vκ(A) = � for all A ∈ Φ;

C4: Vκ(
∨
Φ) = � iff Vκ(A) = � for someA ∈ Φ.
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By induction, the valueVκ(A) is defined for everyA ∈ P n. That is, each
step defines its left-hand side by the right-hand side. For example, whenPV =
{p0,p1} andκ(p0) = � andκ(p1) = ⊥, we calculateVκ(p0 ⊃ (p1 ⊃ p0)) from
the leaves of Figure 1, and obtainVκ(p0 ⊃ (p1 ⊃ p0)) = �. In fact, the valuation
of this formula is� independent ofκ. Such a formula is a classical tautology.
More precisely, we say thatA ∈ P n is a classical tautologyiff Vκ(A) = �
for all assignmentsκ. In fact, A ⊃ (B ⊃ A) is a tautology for any formulae
A,B ∈ P n : Indeed, for anyκ, if Vκ(A) = ⊥, thenVκ(A⊃ (B ⊃ A)) = � by C3,
and if Vκ(A) = �, thenVκ(B ⊃ A) = � by C3 and thus,Vκ(A⊃ (B ⊃ A)) = �.

To describe game theoretic assumptions, we will usenonlogicalaxioms. Let
Γ be a subset ofP n. We say thatκ is amodel ofΓ iff Vκ(C) = � for all C ∈ Γ.
For anyA ∈ P n, we say thatA is a semantical consequenceof Γ iff Vκ(A) = �
for all modelsκ of Γ, in which case we writeΓ � A. WhenΓ is empty, we
write simply� A. In this case,A is a classical tautology. We writeΓ � A iff not
Γ � A. Note that this differs fromΓ � ¬A. This means that the relationΓ � is
not necessarily complete.

Let us return to game problems. Consider the gameg1 = (g1
1, g

1
2) of Table 1.

Recall that the payoff functionsg1
1 andg1

2 are described as ˆg1
1 and ĝ1

2 defined by
(3.1). Since ˆg1

i contains eitherPi (s : t) or ¬Pi (s : t) for eachPi (s : t) ∈ AF, the
value of a modelκ of ĝ1

i on Pi (s : t) is uniquely determined, that is, ˆg1
1 ∪ ĝ1

2 has
a unique modelκ, in which sense ˆg1

1 ∪ ĝ1
2 is a completedescription of gameg1

(up to the orderings determined by the payoff functionsg1 andg2).
Consider a modelκ of ĝ1

1. In this case, sinceκ is arbitrary onP2(s : t), ĝ1
1

allows 216 models. For any modelκ of ĝ1
1, we haveVκ(Dom1(s12)) = � and

Vκ(¬Dom1(s11)) = �. Thus,

ĝ1
1 � Dom1(s12) and ĝ1

1 � ¬Dom1(s11). (3.2)

That is, if ĝ1
1 is assumed, Dom1(s12) and¬Dom1(s11) are derived as unantical

consequences of ˆg1
1. Also, it holds that ˆg1

2 � Dom2(s21) and ĝ1
2 � ¬Dom2(s22).

When ĝ1
1 ∪ ĝ1

2 is assumed, it holds that

ĝ1
1 ∪ ĝ1

2 � Nash(s12, s22).

Unless ˆg1
2 is assumed,Vκ(Best2(s22 | s12)) = ⊥ for some modelκ of ĝ1

1, and thus,

ĝ1
1 � Nash(s12, s22). (3.3)

That is, unless enough information is assumed, it is not concluded that (s12, s22)
is a Nash equilibrium.

The above are, more or less, standard game theoretic arguments. Standard
arguments can be expressed in the logical structure discussed so far. However,
the current structure is limited in that it cannot address arguments like DC2
of Section 2. They involve beliefs about the decision of the other player. To
adequately describe them, we need to introduce epistemic conditions on Bi which
come in Section 4.

kaneko
ノート注釈
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kaneko
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3.3 Classical logic CL and its provability�0

As yet we have discussed basic notions such as formulae and semantical conse-
quences. Here, we introduce a proof-theoretic system of classical logic CL. The
proof-theoretic system formulates mathematical inferences as pure symbol manip-
ulations, while the consequence relation� is formulated by considering meanings
or possibilities of symbolic expressions. We denote this proof-theoretic system
also by CL. We find out soon that the provability and consequence relations are
intimately related.

Classical logic CL consists of five axiom schemata and three inference rules,
which describe the possible ways of manipulating formulae ofP n. The notion
of a proof will be defined by means of such components. More concretely, those
five axiom schemataand threeinference rulesare as follows: for any formulae
A,B,C and finite nonempty setΦ of formulae inP n,

L1: A⊃ (B ⊃ A);

L2: (A⊃ (B ⊃ C)) ⊃ ((A⊃ B) ⊃ (A⊃ C));

L3: (¬A⊃ ¬B) ⊃ ((¬A⊃ B) ⊃ A);

L4:
∧
Φ ⊃ A, whereA ∈ Φ;

L5: A⊃ ∨Φ, whereA ∈ Φ;

A⊃ B A
B

(Modus Ponens)

{A⊃ B : B ∈ Φ}
A⊃ ∧Φ

(∧
-Rule

) {A⊃ B : A ∈ Φ}∨
Φ ⊃ B

(∨
-Rule

)
.

Modus Ponens is abbreviated as MP. These axioms and rules are schemata in the
sense that formulae,A,B,C and the setΦ can be arbitrary. A particular formula
or inference rule of them is called aninstance, for example,p0 ⊃ (p1 ⊃ p0) is
an instance of L1.10

Let A be a formula inP n andΓ a subset ofP n. A proof of A from Γ in
CL is a finite tree with the following properties:

(1): a formula inP n is associated with each node;

(2): the formula associated with each leaf is an instance of the above axioms or
is a formula inΓ ;

(3): adjoining nodes together with their associated formulae form an instance of
the above three inference rules;

(4): A is associated with the root node.11

10 There are many other formulations of classical propositional logic (see Mendelson [24], pp. 37–
38). The present axiomatization is given in Kaneko and Nagashima [16].

11 More explicitly, a proof is given as a triple (X, ≺: ϕ), where (X, ≺) is a finite tree in the sense
of graph theory andϕ is a function fromX to P n associating formulaϕ(x) with a each nodex ∈ X.
An ending nodex is called aleaf, and the initial node is called theroot.
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We say thatA is said to beprovable fromΓ in CL, denoted byΓ �0 A, iff there
is a proof of A from Γ. When Γ is empty, we write simply�0 A. We write
Γ �0 A iff not Γ �0 A.

The following lemma gives simple examples of provable formulae.

Lemma 3.1.

(1): �0 A⊃ A;
(2): {A⊃ B,B ⊃ C} �0 A⊃ C .

Proof.
(1): The following is a proof tree ofA⊃ A.

L2 L1

[A⊃ ((A⊃ A) ⊃ A)] ⊃ [(A⊃ (A⊃ A)) ⊃ (A⊃ A)] A⊃ ((A⊃ A) ⊃ A)
| MP L1

(A⊃ (A⊃ A)) ⊃ (A⊃ A) A⊃ (A⊃ A)
| MP

A⊃ A
(2): The following is a proof ofA⊃ C from {A⊃ B,B ⊃ C}.

Ass. L1

B ⊃ C (B ⊃ C) ⊃ (A⊃ (B ⊃ C))
| MP L2

A⊃ (B ⊃ C) [A⊃ (B ⊃ C)] ⊃ [(A⊃ B) ⊃ (A⊃ C)]
Ass. | MP

A⊃ B (A⊃ B) ⊃ (A⊃ C)
| MP

A⊃ C ��
The next lemma will be used without mentioning.

Lemma 3.2.

(1): Γ ′ ⊆ Γ andΓ ′ �0 A imply Γ �0 A;
(2): if Γ �0 B for all B ∈ Γ ′ andΓ ′ �0 A, thenΓ �0 A.

Here, we find the distinction A3 stated in Section 1. The claims of Lemma
3.1 are object theorems, while those of Lemma 3.2 are meta-theorems on object
theorems. The latter are not formulated in CL but in metamathematics.

We would like to have a bridge between the classical semantics of Section 3.2
and the syntactical system CL. To have this connection, we need a key concept:
We say that a setΓ of formulae inP n is inconsistentin CL iff Γ �0 ¬C ∧ C
for someC , and thatΓ is consistentin CL iff it is not inconsistent in CL.

Theorem 3.3 (Soundness-completeness for classical logic CL). Let Γ be a set
of formulae andA a formula. Then

(1): Γ �0 A if and only if Γ � A;

(2): there is a modelκ of Γ if and only if Γ is consistent in CL.

Assertions (1) and (2) (with the quantifications of allΓ and A for each)
are actually equivalent. Theonly-if part of each is calledsoundness, and theif
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part iscompleteness. The term “soundness” means that the syntactical formula-
tion of symbolic inferences provides nothing other than the semantical validity,
and “completeness” means that the former captures the latter. Thus, the two ap-
proaches are equivalent. In this sense, our description of “logic” is complete.
This gives the bridge between model theory and proof theory stated as A2.

The above completeness differs from the “completeness” in the sense that
Γ �0 A or Γ �0 ¬A. The former is the completeness of a logic, but the latter is
the completeness of nonlogical axiomsΓ .12

Theorem 3.3 is quite standard, and the above syntactical system turns out to
be equivalent to the other formulations of classical logic (see Mendelson [24] for
other formulations of CL). Nevertheless, the above axiomatization is modified to
facilitate game theoretic arguments, and no textbook for this version is found.
Thus, we should state its proof. The soundness part can be proved without much
difficulty, following a proof in a textbook, but the completeness part is quite
complicated. We give a proof of completeness in the Appendix.

By Theorem 3.3, we can use any tautologies as provable formulae in CL. For
example,¬A∨A, ¬(¬A∧A), ¬∨Φ ≡ ∧{¬A : A ∈ Φ}, ¬∧Φ ≡ ∨{¬A : A ∈ Φ}
and (A ⊃ B) ≡ (¬B ⊃ ¬A) are provable in CL. In the subsequent sections, we
use such tautologies without mentioning.

It follows from the soundness part of Theorem 3.3.(2), by taking the empty
Γ, that CL is contradiction-free.

Corollary 3.4. There is no formulaA such that�0 ¬A∧ A.

Let us return to the game example. Using Theorem 3.3, (3.2) and (3.3) can
be written as

ĝ1
1 �0 Dom1(s12) and ĝ1

1 �0 ¬Dom1(s11). (3.4)

ĝ1
1 �0 Nash(s12, s22). (3.5)

In fact, (3.4) can directly be proved in CL, which is easier than (3.2). On the
other hand, it is difficult to obtain (3.5) directly in CL. For a direct proof of
(3.5), we should show that there is no proofP of Nash(s12, s22) from ĝ1

1. This is
a difficult task, since there are an infinite number of candidate proofs. However,
Theorem 3.3 enables us to show unprovability by constructing a countermodel.

Remark 3.5. When we adoptP rather thanP n, we need no essential modifica-
tion of syntactical system CL; just we replaceP n by P . On the other hand, the
classical semantics should be slightly modified: the domain of each assignment
κ becomesPV ∪ {Bi (A) : A ∈ P and i ∈ N} with the same image{�,⊥}.
Accordingly, C0 is replaced by

C0∗: for any C ∈ PV ∪ {Bi (A) : A ∈ P and i ∈ N}, Vκ(C) = � if and only if
κ(C) = �.
Then all the other definitions are the same. Here, Bi (A) is treated in the same
manner as a propositional variable. Theorem 3.3 holds with these modifications.
In the subsequent sections, we use this modified CL with the set of formulaeP .

12 The latter is the completeness of a theory in the sense of the logic literature.
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The following tautologies will be used, often without mentioning: for any
A,B,C ∈ P and any finite nonempty subsetΦ of P ,

(1): �0
(
A
∧

B ⊃ C
) ≡ (A⊃ (B ⊃ C)) ;

(2): �0 (A⊃ B)
∧

(B ⊃ C) ⊃ (A⊃ C);

(3): �0 ¬
∧
Φ ≡ ∨{¬A : A ∈ Φ} and�0 ¬

∨
Φ ≡ ∧{¬A : A ∈ Φ};

(4): �0 (A⊃ B) ≡ (¬B ⊃ ¬A).

In the classical logic CL of Remark 3.5, it turns out that�0 Bi (A) for any
A ∈ P . Thus, we cannot discuss how a player arrives at his beliefs or his
reasoning ability. On the other hand, game theory is particularly interested in the
construction of beliefs and the reasoning ability of a player, which is the subject
of the next section.

4 Various epistemic logics: proof-theoretic approach

In this section, we present various epistemic logics from the proof-theoretic point
of view. There are many possible logical systems and their different formula-
tions. We discuss some of them, following the standard logic literature. However,
the basic principles for epistemic logics are not be clearly seen in the standard
formulation. Thus, we discuss general ideas for beliefs. In doing so, the logical
system KD4n emerges as central in various systems. For future purposes, we
present also the sequent formulation KD4n in Gentzen-style. The reader may
skip Sections 4.2 – 4.4 for reading the rest of the paper.

4.1 Standard axiomatizations of epistemic logics

In this subsection, we follow the standard axiomatizations of epistemic logics.
We obtain various logical systems determined by combinations of axioms, which
are treated in a somewhat parallel manner.

We consider the following list of axiom schemata and inference rule, for
whose names we follow the literature of modal logic: for anyi ∈ N , anyA,C ∈
P and any finite nonempty subsetΦ of P :

K: Bi (A⊃ C) ⊃ (Bi (A) ⊃ Bi (C));13

D: ¬Bi (¬A∧ A);

T: Bi (A) ⊃ A – – – – – – – – –truthfulness;

4: Bi (A) ⊃ Bi Bi (A) – – – – – –positive introspection;

5: ¬Bi (A) ⊃ Bi (¬Bi (A)) – – – negative introspection;

and

13 K and D come from “Kripke” and “deontic logic”. See Chellas [6].
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A
Bi (A) (Necessitation).

By Remark 3.5.(1), Axiom K is equivalent to Bi (A ⊃ C)∧Bi (A) ⊃ Bi (C).
This is interpreted as meaning that playeri can use Modus Ponens. Axiom D
means that playeri does not have a contradictory belief. Axiom T means that
beliefs are true to the outside thinker. Axiom T implies Axiom D. Axiom 4 means
that if playeri believesA, then he also believes that he believesA. Axiom 5 means
that if he does not believeA, he believes that he does not. These two axioms
look parallel, but we will argue in Section 4.2 that they differ substantively. The
Necessitation rule states that ifA is already proved, then Bi (A) is also provable.
Some examples of proofs are given below.

We abbreviate the Necessitation rule as Nec. It is important to notice that
Nec may be repeatedly applied even with different players, e.g.,

A
Bi (A)

Bj Bi (A)
· · ·

Thus, onceA is provable, then it becomes common knowledgein effect. Note that
Nec differs fromA ⊃ Bi (A) as an axiom. This difference will be clearer when
we introduce nonlogical axioms. The treatment of nonlogical axioms differs from
that in classical logic CL, which will be explained presently.

The most basic system is defined as

Kn: CL + K + Nec (within P ).

A proof P in epistemic logic Kn is defined in the same manner as in CL except:
(1) instances of K and Nec are allowed and (2) nonlogical axioms are not allowed
in the proof.

Consider player 1’s inference in the gameg1 of Table 1. Diagram 1 gives a
proof of B1(

∧
ĝ1

1) ⊃ B1(Dom1(s12)) in Kn, where the uppermost formulae are
instances of L4, the uppermost inference is

∧
-Rule, the second is Nec, the right-

hand formula of the third line is an instance of Axiom K, and the last inference
is MP. Note that

∧
-Rule has|S| = 4 upper formulae.

{
∧

ĝ1
1 ⊃ P1(s12, s2 : s1, s2) : (s1, s2) ∈ S}∧

ĝ1
1 ⊃ Dom1(s12)

B1

(∧
ĝ1

1 ⊃ Dom1(s12)
)

B1

(∧
ĝ1

1 ⊃ Dom1(s12)
)

⊃ (B1

(∧
ĝ2

1

)
⊃ B1(Dom1(s12)))

B1

(∧
ĝ1

1

)
⊃ B1(Dom1(s12)).

Diagram 1

That is, if 1 believes that his payoff function is
∧
ĝ1

1, then he infers the belief that
s12 is a dominant strategy. There is also a proof of B1(

∧
ĝ1

1) ⊃ B1(¬Dom1(s11)),
which is derived from

∧
ĝ1

1 ⊃ ¬Dom1(s11) in the same manner, but
∧
ĝ1

1 ⊃
¬Dom1(s11) needs a bit longer proof.

Various epistemic logics can be defined based on Kn by choices of some of
the above axiom schemata. In this paper, we consider the following list of logics:
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Kn: CL + Nec + K; KDn: Kn + D; KTn: Kn + T;

KD4n: KDn + 4; S4n: K4n + T;

KD45n : KD4n + 5; S5n : S4n + 5.

Diagram 2

We will argue that KD4n and KDn take central positions in this list of logics. It
will be discussed in Section 6 that a logic including Axiom T, say S4n, can be
discussed in one without it.

Let S be a logic in the above list. A proof in S is defined in a similar
manner to that in Kn. Let A be a formula inP . We write �S A iff there is
a proof of A in S . The following is a simple observation, which will be used
without mentioning: for anyA ∈ P ,

�0 A implies �S A . (4.1)

Note that the provability ofA ∈ P in CL is mentioned in Remark 3.5.
In the above definition of a proof, we do not allow nonlogical axioms as

initial formulae in proofs. To describe game theoretic assumptions, we introduce
nonlogical axioms in a way different from in Section 3.3. LetΓ be a subset of
P and A ∈ P . We defineΓ �S A iff �S A or �S

∧
Φ ⊃ A for some finite

nonempty subsetΦ of Γ. For the reason to avoid a nonlogical axiom in a proof,
see the remark about the Necessitation rule in Section 4.3.

In classical logic CL, for a nonempty finite setΓ of formulae,Γ � A is
equivalent to�

∧
Γ ⊃ A, which together with the soundness-completeness for

CL implies Γ �0 A is equivalent to�0
∧
Γ ⊃ A. Hence it follows from (4.1)

that
Γ �0 A impliesΓ �S A. (4.2)

The strengths of the provabilities of the above logics are described as follows:

Kn → KDn → KTn

↓ ↓
KD4n → S4n

↓ ↓
KD45n → S5n.

Diagram 3

where the expression,S → S ′, means that the provability ofS ′ is stronger
than that ofS , for example,�KD4n A implies�S4n A. Diagram 1 is a legitimate
proof in all S ’s.

The following are basic properties of the epistemic logics of the above list.

Lemma 4.1. For anyA,C ∈ P and a nonempty finite subsetΦ of P ,

(1): �S Bi (A⊃ C)∧Bi (A) ⊃ Bi (C);
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(2): �S

∨
Bi (Φ) ⊃ Bi (

∨
Φ), where Bi (Φ) = {Bi (A) : A ∈ Φ};

(3): �S Bi (
∧
Φ) ≡ ∧Bi (Φ);

(4): �S Bi (¬A) ⊃ ¬Bi (A), whereS includes Axiom D;

(5): if Γ �S A, then Bi (Γ ) �S Bi (A).

Proof. We prove (1) – (4).

(1): This follows from Axiom K and Remark 3.5.(1).

(2): Let A be an arbitrary formula inΦ. Since�S A ⊃ ∨Φ by L5, we have
�S Bi (A⊃

∨
Φ) by Nec. By K,�S Bi (A) ⊃ Bi (

∨
Φ). Since this holds for any

A ∈ Φ, we have �S

∨
Bi (Φ) ⊃ Bi (

∨
Φ) by

∨
-Rule

(3):�S Bi (
∧
Φ) ⊃ ∧Bi (Φ) is the dual of (2). We prove the converse only forΦ =

{A,C}. Since�S A⊃ (C ⊃ A∧C), we have�S Bi (A) ⊃ (Bi (C) ⊃ Bi (A∧C)),
using Nec, K and MP a few times. This is equivalent to�S Bi (A)∧Bi (C) ⊃
Bi (A∧C). WhenΦ has more than two formulae, we should prove�S

∧
Bi (Φ) ⊃

Bi (
∧
Φ) by induction on the number of formulae inΦ.

(4): By (3), �S ¬Bi (¬A ∧ A) ≡ ¬(Bi (¬A)∧Bi (A)). By Axiom D, we have
�S ¬(Bi (¬A)∧Bi (A)). This is equivalent to�S Bi (¬A) ⊃ ¬Bi (A). ��

We will use the following facts extensively without mentioning.

Lemma 4.2. For anyA,B,C ∈ P and subsetsΓ,Φ of P ,

(1): Γ �S A⊃ B andΓ �S B ⊃ C imply Γ �S A⊃ C ;

(2): Γ �S A for all A ∈ Φ if and only if Γ �S

∧
Φ, whereΦ is a nonempty

finite set.

Proof. (1) follows from Remark 3.5.(2). Theif part of (2) follows from L4 and
MP. The converse is proved by using

∧
-Rule and MP (L1 in the case ofΓ = ∅).

��
Let us see how the decision criteria DC1 and DC2 of Section 2 are expressed

in epistemic logicS .
Since�S B1(

∧
ĝ1

1) ⊃ B1(Dom1(s12)) by Diagram 1, we have, by Lemma
4.1.(3),�S

∧
B1(ĝ1

1) ⊃ B1(Dom1(s12)). Following our convention of nonlogical
axioms in epistemic logicS , we have

B1(ĝ1
1) �S B1(Dom1(s12)). (4.3)

Similarly, B1(ĝ1
1) �S B1(¬Dom1(s11)). In logic S including Axiom D, we have,

by Lemma 4.1.(4),
B1(ĝ1

1) �S ¬B1(Dom1(s11)). (4.4)

Hence 1’s belief on his own payoff function is enough to decides12 to be a
unique dominant strategy.

The counterpart of (3.5) inS is expected to be:

B1(ĝ1
1) �S B1(Nash(s12, s22)). (4.5)
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In fact, it would be difficult to prove this kind of unprovability withinS . One
way of showing such anunprovability is to use semantics, which is discussed in
Section 5.2.

As will be seen in Section 7.1, we formulate criterion DC2 as:

D̂22(s2) = B2

(∨
t1

B1(Dom1(t1))

)
∧
∧
t1

B2
(
B1(Dom1(t1)) ⊃ Best2(s2 | t1)

)
.

That is, player 2 believes that 1 has a dominant strategy and that 2’s deci-
sion is a best strategy to 1’s dominant strategies. Consider the decision making
of player 2 with this criterion in gameg2. Suppose thatS includes Axiom
D. Since g2

1 = g1
1, we have B1(ĝ2

1) �S

∨
t1
B1(Dom1(t1)) by (4.3), and thus

B2B1(ĝ2
1) �S B2(

∨
t1
B1(Dom1(t1))) by Lemma 4.1.(5). Also, we have ˆg2

2 �S

Best2(s22 | s12), and so ˆg2
2 �S B1(Dom1(s12)) ⊃ Best2(s22 | s12). Hence

B2(ĝ2
2) �S B2(B1(Dom1(s12)) ⊃ Best2(s22 | s12)) by Lemma 4.1.(5). It fol-

lows from (4.4) that B1(ĝ2
1) �S B1(Dom1(s11)) ⊃ Best2(s22 | s11), and thus

B2B1(ĝ2
1) �S B2(B1(Dom1(s11)) ⊃ Best2(s22 | s11)). Combining all the results,

we have
B2B1(ĝ2

1),B2(ĝ2
2) �S D̂22(s22), (4.6)

where we abbreviate B2B1(ĝ2
1)∪B2(ĝ2

2) as B2B1(ĝ2
1),B2(ĝ2

2). That is, player 2
would chooses22 as a recommended strategy by DC2 under the beliefs B2B1(ĝ2

1),
B2(ĝ2

2).

4.2 Basic principles for beliefs

Here, we state the general principle for a belief aboutA in order to have a clearer
view on what we would like to express by a belief aboutA. The reader may skip
this subsection to go to the subsequent sections.

The general idea for the notion of “a belief aboutA” is stated as:

G: player i believesA if and only if he has an argument forA from his basic
beliefs.

From the proof-theoretic point of view, we formulate “having an argument for
A” as “having a proof ofA.” There are still various options for a formulation
of “having a proof”. Since our investigator (observer) is assumed to have the
reasoning ability described by classical logic CL, we take the following:

G1: Playeri has the reasoning ability described by classical logic CL.

That is, playeri has at least the same reasoningability as the investigator’s.
Hence, playeri can infer what the investigator can infer. This does not imply that
the players and investigator share the same basic beliefs. Since players’ beliefs
and reasoning abilities are described inside the investigator’s logical system,
some descriptions are made purely from the investigator’s viewpoint and may
not be shared with players, which will be seen below.
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Besides G1, we add other three components to players’ beliefs and reasoning
abilities: (1) Basic beliefs taken as given; (2) Intrapersonal introspective abilities;
and (3) Interpersonal introspective abilities. Basic beliefs of playeri are given
as nonlogical axioms in the terminology in Section 3, and their emergence is not
discussed in this paper.14 Regarding (2) and (3), intrapersonal introspection may
be still regarded as a problem of individual inferences, but interpersonal ones are
largely hypothetical. For these problems, there are a great spectrum of options.
Here, we adopt simple and clear-cut options for these.

For the intrapersonal introspection ability, we assume:

G2: Player i has the introspection ability on his own abilities described by G1
and G2.

This requires playeri only to be conscious of “having a proof”. This conscious-
ness of “having a proof” is now regarded as “having a proof of “having a proof””.
Therefore, we regard G2 as forming part of basic principle G. However, some
subtlety is involved in G2: G2 itself is involved in G2. To see the feasibility of
G1–G2, we need an explicit mathematical formulation of them.

The nature of beliefs about other players and/or their beliefs considerably
differs from that of beliefs about himself and/or his own. Beliefs about other
players are based on projecting and are hypothetical constructs. There are many
options for this problem. Here we consider only the following.

G3: When playeri thinks about other players’ beliefs, playeri assume G1, G2
as well as G3 for the other players in a symmetric manner.

This means that a player imagined in the mind of a player (imagined in the
mind of another player ...) follows G3. Thus, the situation is very complicated,
but, we obtain the symmetric interpersonal beliefs by assuming the limit case of
complications. Note that G3 appears in G3 itself, again.

To materialize our basic principle G, we need specific assumptions on the
above three steps. We should keep theremark in mind: Principle G1 is the most
basic, G2 is still basic, but G3 is one possible and convenient choice for our
research strategy. More restrictive possibilities of G2 and G3 are discussed in
Kaneko and Suzuki [19].

To formulate G1, it suffices to assume the beliefs about the instances of
Logical Axioms L1–L5, and the axioms expressing the reasoning ability of player
i corresponding to inference rules MP,

∧
-Rule and

∨
-Rule:

B-L: B i (A), whereA is an instance of L1–L5;

B-MP: Bi (A⊃ C)∧Bi (A) ⊃ Bi (C);

B-
∧

:
∧{Bi (A⊃ C) : C ∈ Φ} ⊃ Bi (A⊃

∧
Φ);

B-
∨

:
∧{Bi (C ⊃ A) : C ∈ Φ} ⊃ Bi (

∨
Φ ⊃ A),

14 The literature of belief revisions is related to the development of basic beliefs. For this literature,
see Schulte [33] in this issue. Also, the development of basic beliefs is considered from the viewpoint
of experiences in Kaneko and Matsui [15].
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where A,C in B-MP, B-
∧

and B-
∨

are any formulae andΦ is any finite
nonempty set of formulae inP . Note that B-MP is equivalent to Axiom K.
We denote the set of all instances of B-L – B-

∨
by ∆0

i . The following holds:

Theorem 4.3 (Classical reasoning ability). Let Γ be a set of formulae inP
andA a formula inP . ThenΓ �0 A if and only if Bi (Γ ) ∪∆0

i �0 Bi (A).

Sketch of a Proof. Consider theonly-if part. LetP be a proof ofA from Γ. We
prove Bi (Γ ) ∪∆0

i �0 Bi (C) for any C occurring inP by induction onP from
its leaves. It suffices to show that for any initial formulaC in P, Bi (Γ )∪∆0

i �0

Bi (C), and that the probability relation Bi (Γ )∪∆0
i �0 goes down from the upper

formulae of each inference rule to the lower formula.
The if part needs some new concept: We define the eraserεi of Bi : This goes

into a formula and erases the outer Bi only oncewhenεi meets Bi . Let P be a
proof of Bi (A) from Bi (Γ ) ∪ ∆0

i . Then it suffices to show by induction on the
tree structure ofP from its leaves that for any formulaC in P, Γ �0 εi C .��

That is,A is provable fromΓ in classical logic CL if and only if playeri
can deriveA from his basic beliefsΓ with his reasoning ability described by∆0

i .
Player i has given the same (potential) reasoning ability as the investigator’s.
Thus, we have succeeded in formulating G1 explicitly by this method.

For the connection of playeri ’s inner logic to the investigator’s, we add

B-D: ¬Bi (¬A∧ A).

This is Axiom D. It holds with B-D thatΓ is consistent if and only if Bi (Γ ) ∪
∆0

i ∪B-D is consistent, where B-D is now regarded as the set of instances of B-D.
In this sense, Axiom B-D connects playeri ’s inner logic with the investigator’s
logic up to their consistencies. Note that this axiom also enables us to show that
Bi (Γ ) ∪∆0

i ∪B-D �0 Bi (¬A) implies Bi (Γ ) ∪∆0
i ∪B-D �0 ¬Bi (A).

We formulate G2 by the following two axioms:

B-4: Bi (A) ⊃ Bi Bi (A);

B-I: B i (A), whereA is an instance of B-L, B-MP, B-∧, B-V, B-D and B-4.

Axiom B-4 is Axiom 4, and states that if playeri believesA, then he believes that
he believesA. Recalling basic principle G, this is described as thati is conscious
of “having an argument forA from his basic beliefs”. Axiom B-I states thati
is conscious of the reasoning and introspective abilities described by B-L – B-4.
We denote, by∆i , the set obtained from∆0

i ∪B-D by adding all the instances of
B-4 and B-I. The assumption set∆i is the formulation of principles G1 and G2.
This is essentially what an individual player is given. In the single player case,
we have the following, whose proof is found in Kaneko and Nagashima [16].

Theorem 4.4.(Reasoning ability described by G1 and G2). Let n = 1. For any
A ∈ P , ∆1 �0 A if and only if �KD41 A.

Thus, KD41 corresponds to the logic describing basic principles G1 and G2.15

15 From Theorem 4.3 and Theorem 4.4, we can regard KD41 as a logic of provability and intro-
spection. However, this differs slightly from the logic so calledprovability logic in the literature (see
Boolos [5]).

kaneko
ノート注釈
''and"
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Whenn ≥ 2, the set of axioms∆1∪ ...∪∆n does not yet describe the inter-
personal beliefs of players described in G3. Principle G3 requires interpersonal
assumptions on reasoning and introspective abilities, e.g., playeri believes that
playerj has the abilities described by∆j , etc. The entire assumption set is given
as

∆∗ = {Bim...Bi1(A) : A ∈ ∆1 ∪ ... ∪∆n, im, ..., i1 ∈ N andm ≥ 0}, (4.7)

where Bim...Bi1(A) is A itself if m = 0. This set states that the reasoning and
introspection abilities of players described by∆1∪ ...∪∆n are common knowl-
edge. We show that this gives the same provability as epistemic logic KD4n. Its
proof is also found in Kaneko and Nagashima [16].

Theorem 4.5.(Reasoning abilities described by G1, G2 and G3). Let n ≥ 2.
Then for anyA ∈ P , ∆∗ �0 A if and only if �KD4n A.

Theorem 4.5 helps us understand the basic principle for our epistemic logics,
especially, KD4n, but, it does not help us evaluate the axioms themselves. On
the one hand, Theorem 4.5 would hold even if we add each or both of Axioms
T and 5 to both sides. On the other hand, if we delete Axiom 4 from both sides,
then the left-hand side needs to be modified for the above equivalence. In this
case, G2 has a slightly different content. To evaluate various axioms, we should
return to the original principle G.

4.3 Evaluations of epistemic axioms

Let us return to the formulations of epistemic logics in Section 4. Our purpose
is to consider epistemic aspects of decision making in game situations. For this,
it does not suffice to consider only mathematical properties of such logics. We
would like to choose some logics as more appropriate than others. We adopt
the Inference Rule Nec, Axioms K and D as very basic. We reject Axiom 5 as
inappropriate: this rejection is made by recalling our basic principle G. We avoid
Axiom T to allow false beliefs, but can treat Axiom 4 inside our logics.

Here, we give remarks on Nec and Axioms D, T, 4, 5.

Necessitation. When nonlogical axioms are involved and
∧
Φ ⊃ A is provable,

Nec is applied to the whole formula
∧
Φ ⊃ A and yields Bi (

∧
Φ ⊃ A). Since Nec

can be applied arbitrarily many times,
∧
Φ ⊃ A becomes common knowledge in

effect in the sense that Bim...Bi1(
∧
Φ ⊃ A) are all derived. Nevertheless, this does

not means that the assumption
∧
Φ becomes common knowledge, but that only

the implication
∧
Φ ⊃ A becomes common knowledge. This note is related to the

reason for the introduction of nonlogical axiomsΦ in the present form. On the
other hand, if

∧
Φ is assumed as an initial formula in a proof, then

∧
Φ becomes

common knowledge. To avoid this, we have introduced nonlogical axioms as the
antecedent of

∧
Φ ⊃ A.

Axiom K changes Bi (
∧
Φ ⊃ A) into Bi (

∧
Φ) ⊃ Bi (A). The former states that

i believes
∧
Φ ⊃ A, while the latter states that ifi believes

∧
Φ, he believes
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A, too. Thus, Axiom K transforms a statement fromi ’s viewpoint into one from
the investigator’s.

The difference between Nec andA ⊃ Bi (A) as a logical axiom may be
now clear. IfA ⊃ Bi (A) is assumed as a logical axiom, then from�S

∧
Φ ⊃

A, we obtain�S

∧
Φ ⊃ Bi (A), and similarly�S

∧
Φ ⊃ Bim...Bi1(A) for all

im, . . . , i1 ∈ N . Hence, any logical consequence from
∧
Φ could be common

knowledge. WithoutA ⊃ Bi (A) as an logical axiom, however, we can obtain
only �S Bim...Bi1(

∧
Φ) ⊃ Bim...Bi1(A). Hence

{Bim...Bi1(C) : C ∈ Φ, im, ..., i1 ∈ N andm ≥ 0} �S Bjk ...Bj1(A)

for any jk , ..., j1 ∈ N . Thus, if
∧
Φ is common knowledge, then any consequence

from Φ is common knowledge.

Axiom D: The basic principle G states that playeri should not have a proof of
a contradiction. If his beliefs are contradictory, then he would have a proof of a
contradiction. Thus, Axiom D excludes contradictory basic beliefs.

Axiom T: This distinguishes knowledge from beliefs. With this axiom, beliefs are
always true relative to the thinker (ultimately to the investigator), and without
it, beliefs may be false. It is important to discuss the truth and/or falsity of
beliefs in the future studies of economics and game theory. Axiom T prohibits
the possibility of talking about the falsity of beliefs. In Section 6, we argue that
Axiom T can be captured in an epistemic logicS without it.

Axiom 4: Although we have adopted this axiom to describe a part of G2, we
do not think that this is so basic as Nec, K and D. It will be used once in
game theoretic arguments in Section 7, but is avoidable with a slightly longer
argument. The reasons for this reservation are: First, if we want to examine the
role of self-consciousness, we should do it in a logic without Axiom 4. Also,
a logic without Axiom 4 would be easier to handle in meta-theoretic respects.
So far, we do not have enough developments in theory and applications to give
clear distinctions between logics with and without Axiom 4.16

Axiom 5: We do not take this as a basic axiom. Axiom 5 is equivalent to Bi (A)∨
Bi (¬Bi (A)) for any A, which is easier to be evaluated. According to the basic
principle G, this states: for anyA,

(*): player i has either a proof ofA or a proof that he has no proof ofA from
his basic beliefs.

That is, when he has no proof objectively, he has also a proof of “no proof of
A”. This does not allow thethird possibility that there is no proof objectively
but playeri does not notice it. Unless his basic beliefs are very rich, we expect

16 We treated intrapersonal and interpersonal introspections separately in Section 4.2. In game theo-
retical practices, assumptions of interpersonal beliefs play significant roles but not much intrapersonal
introspection. In the human history, however, self-consciousness might be evolved as the ability to
derive interpersonal beliefs (Mithen [26], pp. 217–219). This may give a hint to reconsider the role
of Axiom 4 and/or the principle G2.
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that this third possibility could be the case. We would like to allow the third
possibility as natural. Thus, we exclude Axiom 5 from the basic axioms.

Finally, we note that if Axiom T is additionally assumed, then¬Bi (¬Bi (A))
and Bi (A) are equivalent.

4.4 Gentzen-style formulation of KD4n

This subsection is written for the reader who wants to go further to advances
in the logic approach. We give the sequent calculus formulation of KD4n in the
Gentzen-style. Some other papers in this issue adopt this style. Although it is
deductively equivalent to the Hilbert-style formulation, it adds another sense of
“logical reality”. The following is a very brief introduction. The interested reader
may consult some textbooks such as Kleene [21] and Takeuti [34] (in the case of
classical logic). Nevertheless, the best introduction may be still Gentzen’s [11]
original article.

We introduce the concept of a sequent. LetΓ,Θ be finite (possibly empty)
subsets ofP . Using auxiliary symbols [, ], and→, we introduce a new expression
Γ → Θ, which we call asequent. We abbreviateΓ ∪∆→ Λ∪Θ and{A}∪Γ →
Θ ∪ {C} asΓ,∆→ Λ,Θ andA, Γ → Θ,C , etc.

A sequentΓ → Θ is associated with each node in a proof. Here,Γ is a
set of nonlogical axioms. Thus, a set of nonlogical axioms appears in every
step in a proof. The counterpart ofΓ → Θ in the Hilbert-style formulation is∧
Γ ⊃ ∨Θ, where

∧ ∅ and
∨ ∅ are meant to be¬p∨p and¬p∧p, respectively.

For a moment, the reader may interpretΓ → Θ asΓ �KD4n
∨
Θ in the previous

formulation. We will explain presently the relationship of the present formulation
with the Hilbert-style epistemic logic KD4n.

In the following,Γ,Θ,∆,Λ, Φ are finite sets of formulae,A,B formulae and
Φ is also assumed to be nonempty.

Axiom (Initial sequent): A→ A,

Structural rules:

Γ → Θ

∆,Γ → Θ,Λ
(Th)

Γ → Θ,A A, ∆→ Λ

Γ,∆→ Θ,Λ
(Cut) .

Operational rules:

Γ → Θ,A
¬A, Γ → Θ

(¬ →)
A, Γ → Θ

Γ → Θ,¬A
(→ ¬)

Γ → Θ,A B, Γ → Θ

A⊃ B, Γ → Θ
(⊃→)

A, Γ → Θ,B
Γ → Θ,A⊃ B

(→⊃)

A, Γ → Θ∧
Φ, Γ → Θ

(∧
→
)

whereA ∈ Φ {Γ → Θ,A : A ∈ Φ}
Γ → Θ,

∧
Φ

(→
∧

)
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{A, Γ → Θ : A ∈ Φ}∨
Φ, Γ → Θ

(∨
→
) Γ → Θ,A

Γ → Θ,
∨
Φ

(→
∨

), whereA ∈ Φ .

Epistemic Rule (Necessitation rule):

Γ,Bi (∆)→ Θ

Bi (Γ ),Bi (∆)→ Bi (Θ)
(Bi → Bi ), where |Θ| ≤ 1 andi ∈ N ,

where|Θ| is the cardinality ofΘ.
A proof P of Γ → Θ in the present system is defined to be a tree in the

same manner as in the previous Hilbert-style. That is, a sequent is associated
with each node ofP, the sequent associated with each leaf ofP is an instance
of the axiom sequent, some instances of the inference rules connect nodes ofP,
andΓ → Θ is associated with the root ofP. We say thatΓ → Θ is provable in
KD4n, denoted by�KD4n Γ → Θ, iff there is a proofP of Γ → Θ.

We may regard sequent B1(ĝ1
1)→ B1(Dom1(s12)) as a counterpart of B1(

∧
ĝ1

1)
⊃ B1(Dom1(s12)) of (4.4), which is proved as follows:{

P1(s12, s2 : s1, s2)→ P1(s12, s2 : s1, s2)
ĝ1

1 → P1(s12, s2 : s1, s2)
(Th)

}
(s1,s2)

ĝ1
1 → Dom1(s12)

B1(ĝ1
1)→ B1(Dom1(s12))

(B1→ B1)
(→

∧
).

From the last sequent, we can derive sequent→ B1(
∧
ĝ1

1) ⊃ B1(Dom1(s12)),
which is also regarded as a counterpart of B1(

∧
ĝ1

1) ⊃ B1(Dom1(s12)).
The relation between the Gentzen-style of and Hilbert-style of KD4n is as

follows.

Theorem 4.6 (Relation to KD4n in the Hilbert-style). Let Γ andΘ be finite
sets of formulae. Then�KD4n Γ → Θ if and only if �KD4n

∧
Γ ⊃ ∨Θ. Recall

that
∨ ∅ and

∧ ∅ are¬p ∧ p and¬p ∨ p.

Thus,�KD4n Γ → Θ corresponds toΓ �KD4n
∨
Θ in the previous formu-

lation.
Note that�KD4n Γ → is equivalent to�KD4n Γ → ¬p∧p. This is proved

by (Cut) and the fact that�KD4n ¬p ∧ p→ .
The following cut-elimination theoremis the main theorem for the Gentzen-

style formulation KD4n. It makes the system meta-theoretically different from
the Hilbert-style formulation of KD4n.

Theorem 4.7 (Cut-elimination). If �KD4n Γ → Θ, then there is a cut-free proof
P of Γ → Θ.

The cut-elimination theorem was first proved for classical logic by Gentzen
[11], and then it was proved for many other systems. The above one is a variant of
the cut-elimination theorem for S41 and some others given by Ohnishi-Matsumoto
[30]. One remark is that it is not successful to have cut-elimination for S5n.

The cut-elimination theorem states that if a sequent is provable, then we can
find a proof of the same endsequent without using (Cut). All the inference rules
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given above except (Cut) add new symbols from the upper sequent(s) to the
lower sequent. Therefore, in a cut-free proofP, any formula occurring in some
sequent inP also occurs as a subformula in the endsequent. This is called the
subformula property. On the other hand, the Hilbert-style formulation has Modus
Pones, at which one formula is eliminated. In this case, we cannot trace back
from a given provable formula what have happened in a proof.

To illustrate the cut-elimination theorem with an example, we use the fol-
lowing stronger version (⊃→)∗ of (⊃→), which is, in fact, equivalent to (⊃→)
with the presence of (Th) :

Γ → Θ,A B, ∆→ Λ

A⊃ B, Γ,∆→ Θ,Λ
(⊃→)∗

The fact that (⊃→)∗ is admissible in the above sequent calculus is proved as
follows:

Γ → Θ,A
Γ,∆→ Θ,A (Th) B, ∆→ Λ

B, Γ,∆→ Θ,Λ (Th)

A⊃ B, Γ,∆→ Θ,Λ
(⊃→).

The following is a proofA,A⊃ B,B ⊃ C → C with (Cut).

A→ A B→ B
A,A⊃ B → B (⊃→)∗ B → B C → C

B,B ⊃ C → C (⊃→)∗

A,A⊃ B,B ⊃ C → C
(Cut)

This can be proved without (Cut).

A→ A
B → B
B → C ,B

(Th)

A,A⊃ B → C ,B (⊃→)∗ A→ A
C → C

B,C → C
(Th)

A,A⊃ B,C → C (⊃→)∗

A,A⊃ B,B ⊃ C → C
(⊃→)∗

5 Kripke semantics: model-theoretic approach

In this section, the basic principle G: “having an argument forA from basic
beliefs” is formulated as “A is a true in all the possible models of the basic
beliefs”. Mathematically, this is formulated in the Kripke semantics. Here, the
basic principle G1 of Section 4.1 is clear-cut, but G2, G3 are less clear-cut.
Nevertheless, this model-theoretic approach has some technical advantages over
the proof-theoretic approach given in Sections 4.1 and 4.2. As already stated, it is
difficult to prove unprovability assertions such as (4.5) directly in epistemic logic
S . The more complex a formula is, the more difficult to evaluate provability is
in S . The Kripke semantics enables us to evaluate such unprovabilities.17.

17 Chellas [6] and Hughes and Cresswell [12] are good textbooks on Kripke semantics, which treat
uni-modal logics. For multi-modal epistemic logics, see Fagin,et al [7] and Meyer and van der Hoek
[25].
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5.1 Kripke models and completeness

We say that ann + 1 tuple (W; R1, ...,Rn) is a Kripke frameiff W is an arbitrary
nonempty set and eachRi is a binary relation onW. Each elementw in W is
called apossible world, and eachRi an accessibility relation. In each worldw,
we assume the classical truth valuation, i.e., the logical connectives¬,⊃,∧,∨
are valuated in the manner CV0–CV4. This means that each player has the
reasoning ability described by the classical logic in each possible world, which
expresses the basic principle G1 of Section 4.2. The other principles G2 and G3
are expressed by the relationships to other possible worlds defined byR1, ...,Rn.
EachRi describes the accessible worlds from each worldw, and the truthfulness
of Bi (A) is evaluated by referring to the truthfulness ofA in the accessible worlds
from w.

An assignmentσ in a Kripke frameK = (W; R1, ...,Rn) is a function from
W ×PV to {�,⊥}. A pair (K , σ) of a Kripke frameK and an assignmentσ
is called aKripke model. We define thevaluation relation(K , σ, w) � and its
negation (K , σ, w) � for eachw ∈W by induction on the length of a formula:

K0: for eachp ∈ PV , (K , σ, w) � p iff σ(w,p) = �;

K1: (K , σ, w) � ¬A iff ( K , σ, w) � A;

K2: (K , σ, w) � A⊃ B iff ( K , σ, w) � A or (K , σ, w) � B;

K3: (K , σ, w) �
∧
Φ iff ( K , σ, w) � A for all A ∈ Φ;

K4: (K , σ, w) �
∨
Φ iff ( K , σ, w) � A for someA ∈ Φ;

K5: (K , σ, w) � Bi (A) iff ( K , σ,u) � A for all u with wRi u.

The above inductive definition works simultaneously over the possible worlds.
We say thatA is true at worldw in (K , σ) iff ( K , σ, w) � A. This valuation
is complete in the sense that for anyw ∈W andA ∈ P ,

either (K , σ, w) � A or (K , σ, w) � ¬A. (5.1)

Step K5 expresses the idea that the truth of Bi (A) in world w is defined by
referring to the truth ofA in the accessible worlds fromw. Accessibility relation
Ri describes the possibilities that playeri can imagine at eachw. We note that
when (K , σ,u) � ¬A for someu with wRi u, we have (K , σ,u) � Bi (A) by
K5, and then (K , σ,u) � ¬Bi (A) by K1.

Note that the following does not necessarily hold:

either (K , σ, w) � Bi (A) or (K , σ, w) � Bi (¬A). (5.2)

If (5.2) was assumed, then playeri would have determinate beliefs about ev-
ery aspect of the model. The consideration of possibilities in a Kripke frame
K = (W; R1, ...,Rn) enables us to avoid (5.2). However, (5.1) still implies that
either (K , σ, w) � Bi (A) or (K , σ, w) � ¬Bi (A). Thus, the third possibility is
excluded in each model. To avoid this completeness, we consider the validity
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defined by asetof Kripke models. This enables us to have a connection to the
proof theoretic approach as well as to erase the superfluous information included
in each model. Such a set of Kripke models is defined by conditions on the
accessibility relationsR1, ...,Rn. Then we have an explicit connection to each
syntactical system in Section 4 to the Kripke semantics.

Specifically, we consider the following conditions onR1, ...,Rn, each of which
corresponds to an epistemic axiom:

no condition ←→ K
seriality : for anyw ∈W, there is someu ∈W with wRi u ←→ D
reflexivity : wRiw for all w ∈W ←→ T
transitivity : for all w,u, v ∈W, wRi u anduRi v imply wRi v ←→ 4
euclidean: for all w,u, v ∈W, wRi u andwRi v imply uRi v ←→ 5.

We postpone seeing the reasons for these correspondences after the main re-
sult. Let S be an epistemic logic in Diagram 4.2. ThenS ∗ is the set of
all Kripke frames satisfying the conditions on the accessibility relations corre-
sponding toS . For example, ifS is KD4n, S ∗ is the set of Kripke frames
K = (W; R1, ...,Rn) whoseR1, ...,Rn satisfy seriality and transitivity.18 Using
this notation, we can state the following soundness-completeness theorem. It can
be regarded as a special case of Theorem 8.2, which will be proved in Section
9. Here, we discuss only the soundness part of Theorem 5.1.

Theorem 5.1 (Soundness-completeness). Let S be an epistemic logic in Dia-
gram 2, andA a formula inP .

(1): �S A if and only if (K , σ, w) � A for all Kripke frames K =
(W; R1, ...,Rn) in S ∗, all assignmentsσ and allw ∈W.

(2): There is a Kripke frameK = (W; R1, ...,Rn) in S ∗, an assignmentσ and
a worldw ∈ W satisfying (K , σ, w) � A if and only if A is consistent in logic
S .

Note that the consistency ofA in S meansA⊃ ¬C ∧ C for any C ∈ P .

Let Γ be a finite nonempty set. SinceΓ �S A is defined by�S

∧
Γ ⊃ A,

Theorem 5.(1) implies

(1A): Γ �S A if and only if for all K = (W; R1, ...,Rn) in S ∗, σ andw ∈ W,
(K , σ, w) � C for all C ∈ Γ imply (K , σ, w) � A.

In the present context, a model ofΓ is (K , σ) making all assumptions inΓ
true at some worldw. Using this terminology, (2) is written: there is a Kripke
model ofA in S ∗ if and only if A is consistent in logicS .

18 We find the reason for the popularity of S5n among game theorists. Reflexivity and euclidean
imply symmetry. If S is S5n, then eachRi in (W; R1, ..., Rn) in S ∗ becomes an equivalence
relation. Hence the quotient spaceW/Ri = {{w ∈ W : wRi u} : u ∈ W} is a partition ofW. The
n + 1-tuple (W; W/R1, ..., W/Rn) may be regarded as an information partition model (of Aumann
[1]). However, a Kripke model describes the possibilities perceived by players but not information
processing.

kaneko
ノート注釈
S A implies notC&C  for no
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By Theorem 5.1, we have the equivalence between the provability�S defined
by means of symbol manipulations and the consequence relation� defined in
terms of a set of possible models. This equivalence is important and useful not
only in understanding playeri ’s belief onA as “having an argument forA from
basic beliefs” but also in investigating the properties of�S and � . In fact,
without the Kripke semantics, we would not go much further than the results
in Section 4. The usefulness of the Kripke semantics will be shown by some
examples and some other results below.

Let us see the reasons for the correspondences between the epistemic axioms
and the conditions on the accessibility relationRi . In the Kripke semantics, the
basic idea is that the truthfulness of Bi (A) at w is determined by looking at the
truthfulness ofA in all possible worlds accessible fromw. Also, in each world,
the classical valuation is assumed. Axiom K: (K , σ, w) � Bi (A⊃ C)∧Bi (A) ⊃
Bi (C) is derived only by this fact, that is, in any referred world, the truthfulness
is closed under Modus Ponens.

The other axioms impose some restrictions on accessibility relations. Axiom
D: (K , σ, w) � ¬Bi (¬A∧A) is derived by the fact that a contradictory formula
is not true in any accessible world fromw, but needs at least one world, which
needs seriality. Axiom T: (K , σ, w) � Bi (A) ⊃ A requires that the accessible
worlds fromw includew itself: otherwise, the truthfulness of Bi (A) should be
independent of that ofA. Axiom 4: (K , σ, w) � Bi (A) ⊃ Bi Bi (A) requires that
the accessible worlds be closed withRi in the sense that ifu is accessible fromw
by finite steps ofRi , u is already accessible directly byRi . In the same manner,
the corresponding conditions to Axiom 5 is understood.

Now we exemplify the above theorem by proving the unprovability assertion
(4.5) with Kripke models. The game (g5

1, g
5
2) of Table 5, called theMatching

Pennies, has no Nash equilibrium, and the game (g1
1, g

5
2) of Table 6 has the

unique Nash equilibrium (s12, s21).

Table 5. (g5
1, g5

2) Table 6. (g1
1, g5

2)

s21 s22 s21 s22

s11 (1, −1) (−1, 1) s11 (5, −1) (1, 1)
s12 (−1, 1) (1, −1) s12 (6,1) (3, −1)

�1,2 w1 : ĝ1
1 ∪ ĝ5

2

↑1,2

w0 : ĝ5
1 ∪ ĝ5

2

Diagram 4. (K , σ)

Consider the Kripke model (K , σ) described as Diagram 4. It is read as fol-
lows: Each arrow indexed byi connects the possible worlds withRi , i.e.,
Ri = {(w0, w1), (w1, w1)} for i = 1,2, and the assignmentσ is determined by the
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set associated with each world, i.e., for any atomic formulap ∈ AF, σ(w0,p) = �
iff p ∈ ĝ5

1∪ ĝ5
2 andσ(w1,p) = � iff p ∈ ĝ1

1∪ ĝ5
2. This K is serial and transitive.

Since (K , σ, w1) � ¬Nash(s12, s22), we have (K , σ, w0) � ¬B1(Nash(s12, s22)).
Also, (K , σ, w0) � B1(ĝ1

1). Hence, B1(ĝ1
1) �KD4n B1(Nash(s12, s22)) by (1A). On

the other hand, (K , σ, w0) � B1(Nash(s12, s21)) but (K , σ, w0) � Nash(s12, s21).
Hence, player 1 derives the false belief from his beliefs ˆg1

1 ∪ ĝ5
2 that (s12, s21) is

a Nash equilibrium.
The two claims of Theorem 5.1 are equivalent. Theif part of either claim is

calledcompleteness, which will be proved in Section 9. Theonly-if part, called
soundness, is proved as follows:

Lemma 5.2. Let S be an epistemic logic in Diagram 2,K = (W; R1, ...,Rn)
in S ∗ andσ any assignment inK .

(1): Let A be an instance of L1–L5 or an instance of an epistemic axiom forS .
Then (K , σ, w) � A for any worldw ∈W.

(2): For anyw ∈W, (K , σ, w) � satisfies MP,
∧

-Rule, and
∨

-Rule, e.g., MP:
if (K , σ, w) � A⊃ B and (K , σ, w) � A, then (K , σ, w) � B.

(3): If (K , σ, w) � A for all w ∈W, then (K , σ, w) � Bi (A) for all w ∈W.

Proof. (1): Consider (K , σ, w) � Bi (A ⊃ C) ⊃ (Bi (A) ⊃ Bi (C)). Suppose
(K , σ, w) � Bi (A⊃ C) and (K , σ, w) � Bi (A). These imply (K , σ,u) � A⊃
C and (K , σ,u) � A for all u with wRi u. Hence, (K , σ,u) � C for all u with
wRi u. I.e., (K , σ,u) � Bi (C).

Next, consider (3). Let (K , σ, v) � A for all v ∈W. Let w be any world in
W. Since (K , σ,u) � A for all u with wRi u, we have (K , σ, w) � Bi (A). ��
Proof of the only-if part of (1) of Theorem 5.1. Let P be a proof ofA. Then we
show, by induction on the tree structure ofP from its leaves, the assertion that
for anyC occurring inP, (K , σ, w) � C for anyK in S ∗, assignmentσ and
world w in K . Each of the inductive steps is verified by Lemma 5.2. ��

The contradiction-freeness ofS follows from the soundness part of Theorem
5.1.(1).

Theorem 5.3 (Contradiction-freeness). EachS in Diagram 2 is contradiction-
free, i.e., there is no formulaA in P such that�S ¬A∧ A.

Proof. Suppose�S ¬A∧A for someA. By Theorem 5.1.(1), we have (K , σ, w) �
¬A∧ A for all w ∈W in K , all σ in K and allK in S ∗. However, this is
impossible by (5.1). ��

As already stated, ifΓ �0 A, thenΓ �S A. WhenΓ andA are nonepistemic,
the converse follows from the definition of the semantical valuation and Theorem
5.1. In this sense,S is said to be aconservative extensionof CL.

Theorem 5.4 (Conservativity of S upon CL). Let Γ ⊆ P n and A ∈ P n.
ThenΓ �S A if and only if Γ �0 A.
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5.2 Decision criterion DC1 with false beliefs

Here, let us return to a game problem. Specifically, consider DC1 of Section 2
from the viewpoint of false beliefs. In DC1, neither player predicts the other’s
decision, and each player’s own decision making is relevant fori = 1,2. Here we
adopt the dominant strategy criterion, Bi (Domi (si )), which we denote bŷDii (si ).
Let us applyD̂ii (si ) to the gameg1 of Table 1. By combining (4.3) and (4.4),
we have

B1(ĝ1
1),B1

2(ĝ1
2) �S

∧
i

(¬D̂ii (si 1) ∧ D̂ii (si 2)
)
. (5.3)

That is, each playeri infers from the belief on his payoff function that his
decision is his second strategy.

The objectivity of the payoff functions is not included in (5.3). If epistemic
logic S includes Axiom T, beliefs B1(ĝ1

1),B1
2(ĝ1

2) imply that the game to be
played isg1 = (g1

1, g
1
2). Now, let us adopt KD4n asS . Then it is possible to add

any payoff functiongi on {s11, s12} × {s12, s22} to (5.3) as an objective one. In
other words, the beliefs B1(ĝ1

1), B1
2(ĝ1

2) are false in most cases. For example, we
can assume that the true game isg2 = (g2

1, g
2
2) rather thang1 = (g1

1, g
1
2) :

ĝ2,B1(ĝ1
1),B1

2(ĝ1
2) �S

∧
i

(¬D̂ii (si 1) ∧ D̂ii (si 2)
)
. (5.4)

In this case, 1’s belief is true but 2’s is false.
Assertion (5.4) is meaningful only if ˆg2∪B1(ĝ1

1)∪B1
2(ĝ1

2) is consistent in KD4n.
This consistency can be proved by constructing a model of ˆg2∪B1(ĝ1

1)∪B1
2(ĝ1

2) :

�1,2 w1 : ĝ1

↑1,2

w0 : ĝ2

Diagram 5. (K , σ)

whereσ assigns� to each atomic formula included in ˆg1 atw1 and to one in ˆg2

atw0. This K = (W; R1,R2) is serial and transitive frame. Then (K , σ, w0) � A
for any A ∈ ĝ2∪B1(ĝ1

1)∪B1
2(ĝ1

2). Hence ˆg2∪B1(ĝ1
1)∪B1

2(ĝ1
2) is consistent by (1A)

after Theorem 5.1. Since this frameK does not satisfy reflexivity, (K , σ) is
not a model in S4n. Hence the above consistency proof cannot be converted to
S4n.

6 Beliefs vs. knowledge

As mentioned as B3 in Section 1, we adopt the distinction betweenbeliefs and
knowledgethat knowledge is a true belief, while a belief may be false. Here,
truth is referred to the outside thinker, ultimately, the investigator. For example,
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in Bi (A), the thinkeri only believes the truth ofA, and the investigator determines
the truth ofA. In Bj Bi (A), thinker j can determine the truth of playeri ’s belief A
by referring toj ’s belief aboutA. In this case, the investigator may determine the
truths ofA, Bi (A) as well as Bj Bi (A).19 Once Axiom T is assumed, beliefs are
true to any outside thinkers. To take human interpersonal epistemic interactions
seriously, we would like to allow false beliefs. The situation with Axiom T must
be a special case.

In fact, Axiom T can be treated inside an epistemic logic without it. Let
S be an epistemic logic without Axioms T and 5, andS ′ the logic obtained
from S by adding Axiom T. Then it holds thatS ′ is faithfully embedded into
S . This result guarantees that we capture the distinction between beliefs and
knowledge inS . In this section, we show the embedding theorem for S4n into
KD4n. This embedding would not hold with the presence of Axiom 5.

In epistemic logicS , we denote formula Bi (A)∧A by B+
i (A). It means that

player i believesA and thatA is true to the outside thinker. For example, in
Bj B+

i (A) = Bj (Bi (A)∧A), player j thinks about the truth ofi ’s belief comparing
with his belief onA. The formula B+

i (A) satisfies

T+: �S B+
i (A) ⊃ A;

K+: �S B+
i (A⊃ C) ⊃ (B+

i (A) ⊃ B+
i (C));

4+: �S B+
i (A) ⊃ B+

i B+
i (A), when Axiom 4 is included inS ;

Nec+: if �S A, then�S B+
i (A).

Thus, ifS includes Axiom 4, the operator B+i (·) behaves like an operator in S4n.
In this definition, however, only the outermost Bi (A) is replaced by B+i (A), but A
may include other Bj . Hence, we cannot yet regard B+

i exactly as the operator in
S4n. To have the exact relationship, we need a more accurate translation. Now,
we focus on the case of S4n and KD4n.

To avoid confusions, we differentiate the formulae in S4n from those in
KD4n. We denote, byPK , the set of all formulae generated by the same list of
symbols of Section 3 except for the replacements of operator symbols B1, ...,Bn

by new ones K1, ...,Kn. Here Ki (A) is intended to mean that playeri knowsA.
Now we define the translatorψ : PK → P by the following induction:

T0: for anyp ∈ PV , ψ(p) = p;

T1: ψ(¬A) = ¬ψA;

T2: ψ(A⊃ C) = ψA⊃ ψC ;

T3: ψ(
∧
Φ) =

∧{ψA : A ∈ Φ}; andψ(
∨
Φ) =

∨{ψA : A ∈ Φ};
19 According to philosophical literature, knowledge is defined as “justified true beliefs”. In this

definition, justification needs some different sources of authority such as experiences or community
(see Moser [27] for debates on justifications of beliefs). Objects targeted by epistemic logics are
beliefs inferred from basic beliefs. Justifications for inferred beliefs are traced back to those on the
basic beliefs. However, when we consider justifications for basic beliefs, we cannot go further to any
other sources. To have such justifications, we need a general framework including experiences.
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T4: ψ(K i (A)) = B+
i (ψA) for i = 1, ...,n.

That is, any formulaA in PK is translated into the corresponding formula in
P which is obtained fromA by replacing all occurrences of subformulae of the
form Ki (C) by B+

i (C∗), whereC∗ is obtained fromC by the same principle.
For example,ψ(K2K1(Dom1(s12)) = B+

2B+
1(Dom1(s12)), which is equivalent to

B2B1(Dom1(s12))∧ B1(Dom1(s12))∧ B2(Dom1(s12))∧ Dom1(s12).
We have the following theorem, which will be proved in the end of this

section.

Theorem 6.1 (Faithful embedding of S4n into KD4n). For anyA ∈ PK , �S4n A
if and only if �KD4n ψA.

Thus, we can discuss logic S4n inside KD4n. When we can forget false
beliefs for some game theoretic problems, discussions in S4n are simpler than
in KD4n in that Axiom T can be used in S4n. Such results in S4n can be
translated into more general discussions with the presence of false beliefs in
KD4n by Theorem 6.1. Conversely, Theorem 6.1 may be used to translate some
meta-theorems obtained for KD4n into S4n: KD4n is easier than S4n from the
meta-theoretic point of view. One example will be mentioned in Section 7.2. The
same embedding assertion holds between KDn (also Kn) and KTn. Over all, S4n

and KTn can be considered inside KD4n and KDn, respectively.
The above embedding theorem fails with the presence of Axiom 5. For ex-

ample, S5n cannot be embedded into KD45n. A counterexample is�KD45n

¬B+
1(¬p) ⊃ B+

1(¬B+
1(¬p))), where p ∈ PV . This unprovability is proved by

constructing a Kripke model.
Logic KD4n is capable of distinguishing between knowledge and beliefs,

while S4n is not. For example, the following holds:

Γ �KD4n B1(Dom1(s12)) ∧ B2B+
1(Dom1(s12)) ∧ B2(Best2(s22 | s12)).

where Γ = ĝ5∪B1(ĝ2
1)∪B2(ĝ2

2)∪B2B+
1(ĝ2

1) and g5 is the game of Table 5. In
Γ , each playeri believes that his payoff function isg2

i , and player 2 believes
that player 1 has true beliefs on 1’s payoff functiong2

1. Nevertheless, these
basic beliefs of both players are all false objectively, since the true game isg5.
Accordingly, player 2 believes that 1’s inferred belief, B1(Dom1(s12)), is true,
but this inferred belief is also false objectively.

Proof of Theorem 6.1.Theonly-if part of this theorem can be proved by induction
on a proof in S4n from its leaves, using the above T+, K+, 4+ and Nec+.

The if part needs two steps. We define another translatorϕ : P → PK by
T0–T3 and T4

′
: ϕ(Bi (C)) = Ki (ϕC) for i = 1, ...,n. That is,ϕ is the operator

which simply substitutes Ki for all occurrences of Bi in A. Then, for anyC ∈ P ,

�KD4n C implies �S4n ϕ(C). (6.1)

This can be proved by induction on a proof in KD4n.
The second step is the following assertion: for anyA ∈ PK ,
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�S4n ϕ · ψ(A) ≡ A. (6.2)

This is now proved by induction on the structure of a formula. For anyp ∈ PV ,
ϕ · ψ(p) is p itself, which implies�S4n ϕ · ψ(p) ≡ p.

Suppose the induction hypothesis that (6.2) holds for any immediate subfor-
mulae ofA. We should consider the cases:¬,⊃,∧,∨ and Ki . Here we consider
only ¬ and Ki .

(¬): Let A = ¬C . By the induction hypothesis, we have�S4n ϕ · ψ(C) ≡ C .
Then�S4n ¬ϕ ·ψ(C) ≡ ¬C . Since¬ϕ ·ψ(C) is ϕ ·ψ(¬C) by the definitions of
ϕ andψ, we have�S4n ϕ · ψ(¬C) ≡ ¬C .

(K i ): Let A = Ki (C). By the induction hypothesis, we have�S4n ϕ ·ψ(C) ≡ C .
Hence�S4n K i (ϕ ·ψ(C)) ≡ K i (C) by Nec, MP and Axiom K. By the definition
of ϕ andψ, we haveϕ·ψ(K i (C)) = ϕ(Bi (ψ(C))∧ψ(C)) = Ki (ϕ·ψ(C))∧ϕ·ψ(C).
Since�S4n K i (ϕ ·ψ(C))∧ϕ ·ψ(C) ≡ K i (ϕ ·ψ(C)), we have�S4n ϕ ·ψ(K i (C)) ≡
K i (C).

It follows from (6.1) that for anyA ∈ PK , �KD4n ψA implies�S4n ϕ ·ψ(A),
and the latter is equivalent to�S4n A by (6.2). ��

7 Solution theories for DC2 and DC3

As yet our game theoretic consideration was about performance-playability rela-
tive to a player’s beliefs, taking criterion DC1 as given. Here, we discuss solution
theories for DC2 and DC3. In the game theoretic terminology, these are axiomatic
considerations of decision making. From the descriptive point of view, there must
be a lot of possible prediction-decision criteria in that a lot of arbitrary structures
may be considered in such criteria, particularly, in predictions about others’ de-
cision making. In this section, we consider only D2 and DC3. More criteria are
discussed in Kaneko and Suzuki [19].

Although we give somewhat tedious proofs of an axiomatic characterization
of DC2, the point is neither in the characterization nor in the proof, but is in
the comparisons with DC3. For DC3, we meet a difficulty caused by an infinite
regress of beliefs. This difficulty leads us to an extension of epistemic logicS

to incorporate common knowledge, which is the subject of Section 8.
Throughout this section, we assumeS = KD4n. Let {Dij (sj ) : sj ∈ Sj and

i , j = 1,2} be a given set of formulae indexed bysj ∈ Sj and i , j = 1,2. For
j = i , Dii (si ) is intended to mean thatsi is player i ’s decision, and forj /= i ,
Dij (sj ) that i predicts thatsj would be a decision of playerj .

7.1 Decision criterion DC2

Let i = 2 and j = 1. Only player 2 predicts 1’s decision. We assume that
1’s decision criterion isD̂11(s1) = B1(Dom1(s1)). We require 2’s decision and
prediction to satisfy:
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DC212:
∧

s1,s2

(
D22(s2) ∧ D21(s1) ⊃ B2(Best2(s2 | s1))

)
;

DC222:
∧

s1
(D21(s1) ⊃ B2(D21(s1))) ∧∧s2

(D22(s2) ⊃ B2(D22(s2))) ;

DC232:
∨

s2
D22(s2) ≡ ∨s1

D21(s1);

DC242:
∧

s1

(
D21(s1) ⊃ B2(D̂11(s1))

)
.

The first states that if 2 predicts that 1 would chooses1, then 2 believes that
his decisions2 is a best strategy againsts1. The second requires player 2 to be
conscious of his prediction and own decision. The third states that 2’s decision
is possible if and only if so is 2’s prediction, and the last that 2’s prediction
implies his belief ofD̂11(s1) = B1(Dom1(s1)).

Our problem is to find appropriate formulaeD21(s1) andD22(s2) (s1 ∈ S1 and
s2 ∈ S2) satisfying the above four requirements. In fact, contradictory formulae,
i.e., thedeductively strongestformulae, satisfy these requirements in the sense
that if we substitute¬p ∧ p for D22(s2) andD21(s1), these would be provable in
S = KD4n, wherep is any atomic formula. However, we would like to find
the deductively weakestformulae satisfying these requirements, since they have
no additional properties other than what the requirements describe. One set of
candidates is given as:

D̂21(s1) := B2B1(Dom1(s1));

D̂22(s2) := B2(
∨

t1
B1(Dom1(t1))) ∧∧t1

B2
(
B1(Dom1(t1)) ⊃ Best2(s2 | t1)

)
.

The formulaD̂22(s2) states that 2 has a predictiont1 about 1’s decision, and that
whatever his predictiont1 is, 2’s decisions2 is a best response tot1. Note that
in S , D̂22(s2) is equivalent to

B2

(∨
t1

B1(Dom1(t1)) ∧
∧
t1

(
B1(Dom1(t1)) ⊃ Best2(s2 | t1)

))
.

These D̂21(s1) and D̂22(s2) (s1 ∈ S1 and s2 ∈ S2) satisfy the above re-
quirements DC212, ..., DC242 in the following sense. First, we denoted, by
DC212(D̂), ..., DC242(D̂), the formulae obtained from DC212, ..., DC242 by
plugging D̂21(s1) and D̂22(s2) to D21(s1) and D22(s2). Theorem 7.1 is proved
below.

Theorem 7.1.

(1): �S DC212(D̂)∧DC222(D̂)∧DC242(D̂).
(2): Let g = (g1, g2) be any 2-person game having a unique dominant strategy

for player 1. Then B2B1(ĝ1), B2(ĝ2) �S DC232(D̂).

Thus,D̂21(s1) and D̂22(s2) are candidate formulae for the axioms DC212, ...,
DC242. Conversely, the following theorem states thatD̂21(s1) andD̂22(s2) are the
deductively weakest formulae satisfying DC212, ..., DC242, under the assumption
that 1 has a unique dominant strategy. Hence,D̂21(s1) and D̂22(s2) are what we
look for. This theorem is proved also below.
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Theorem 7.2 (Personalized characterization of DC2). Let g = (g1, g2) be any 2-
person game having a unique dominant strategy for player 1. If B2(ĝ2),B2B1(ĝ1)
�S DC212

∧
...
∧

DC242, then

B2(ĝ2),B2B1(ĝ1) �S

∧
s1

(
D21(s1) ⊃ D̂21(s1)

) ∧∧
s2

(
D22(s2) ⊃ D̂22(s2)

)
. (7.1)

It follows from Theorems 7.1 and 7.2 that the deductively weakest formulae
{D2j (sj ) : sj ∈ Sj and j = 1,2} satisfying DC212 ∧ ...∧DC242 are uniquely
determined to be{D̂2j (sj ) : sj ∈ Sj and j = 1,2}.

The assumption that a gameg = (g1, g2) has a unique dominant strategy for
player 1 can be relaxed as follows:

ĝ �0

∧
t1,t ′

1

∧
t2

(
Dom1(t1) ∧ Best2(t2 | t1) ∧ Dom1(t ′

1) ⊃ Best2(t2 | t ′
1)
)
. (7.2)

In this case, though player 2 predicts multiple dominant strategies for player 1,
this multiplicity would cause no problem for player 2 ing = (g1, g2). If (7.2)
is violated, then we should modify player 2’s decision criterion or add more
information to guarantee him to have a decision. Condition (7.2) corresponds to
the interchangeability condition of Nash [31].20

Since the above characterization is purely personalized, this axiomatization
is compatible with false beliefs discussed in the previous sections relative to the
investigator as well as to the other player.

Proof of Theorem 7.1.
(1): We prove only�S DC212(D̂). Let (s1, s2) be any strategy pair. Then�S

D̂22(s2) ⊃ B2(B1(Dom1(s1)) ⊃ Best2(s2 | s1)) by the definition ofD̂22(s2). Hence
�S D̂22(s2) ⊃ (B2B1(Dom1(s1)) ⊃ B2(Best2(s2 | s1))). This is equivalent to
�S D̂22(s2)∧B2B1(Dom1(s1)) ⊃ B2(Best2(s2 | s1)). Thus,�S DC212(D̂).

(2): We prove B2B1(ĝ1),B2(ĝ2) �S

∨
s1

D̂21(s1) ⊃ ∨
s2

D̂22(s2). Let t∗
1 be

the unique dominant strategy for player 1 ing, and t∗
2 a best response to

t∗
1 . Since B1(ĝ1) �S B1(Dom1(t∗

1 )) and B1(ĝ1) �S ¬B1(Dom1(t1)) for any
t1 /= t∗

1 , we have B1(ĝ1), ĝ2 �S B1(Dom1(t1)) ⊃ Best2(t∗
2 | t1) for all t1.

Thus, B2B1(ĝ1), B2(ĝ2) �S B2(B1(Dom1(t1)) ⊃ Best2(t∗
2 | t1)) for all t1.

Hence, B2B1(ĝ1), B2(ĝ2) �S

∧
t1
B2(B1(Dom1(t1)) ⊃ Best2(t∗

2 | t1)). Hence

B2B1(ĝ1),B2(ĝ2) �S

∨
s1

D̂21(s1) ⊃ ∧
t1
B2(B1(Dom1(t1)) ⊃ Best2(t∗

2 | t1)).

Since �S

∨
s1

D̂21(s1) ⊃ B2(
∨

s1
B1(Dom1(s1)), we have B2B1(ĝ1),B2(ĝ2) �S∨

s1
D̂21(s1) ⊃ B2(

∨
s1

B1(Dom1(s1)) ∧ ∧t1
B2(B1(Dom1(t1)) ⊃ Best2(t∗

2 | t1)),

i.e., B2B1(ĝ1),B2(ĝ2) �S

∨
s1

D̂21(s1) ⊃ D̂22(t∗
2 ). Hence B2B1(ĝ1),B2(ĝ2) �S∨

s1
D̂21(s1) ⊃ ∨s2

D̂22(s2).

Since B2B1(ĝ1) �S

∨
s1

D̂21(s1), we have B2B1(ĝ1),B2(ĝ2) �S

∨
s2

D̂22(s2) ⊃∨
s1

D̂21(s1), using L1 and MP. ��
20 See Kaneko [13] for such modifications in the case of the decision criterion of a common

knowledge Nash strategy.
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Proof of Theorem 7.2. The former half follows from DC242. LetΓ = B2(ĝ2)∪B2B1

(ĝ1). For the latter, it suffices to showΓ �S D22(s2) ⊃ D̂22(s2), wheres2 is any
strategy for 2. By the former half,Γ �S D22(s2) ⊃ ∨s1

D̂21(s1). This further
implies Γ �S D22(s2) ⊃ B2(

∨
s1

B1(Dom1(s1)) by Lemma 4.1.(2). Hence, it re-
mains to showΓ �S D22(s2) ⊃ ∧t1

B2(B1(Dom1(t1)) ⊃ Best2(s2 | t1)). Let t∗
1 be

the dominant strategy for 1.
Sinceĝ2,B1(ĝ1) �S Best2(t2 | t∗

1 ) ⊃ ∧t1

(
B1(Dom1(t1)) ⊃ Best2(t2 | t1)

)
, we

have B2(ĝ2),B2B1(ĝ1) �S B2(Best2(t2 | t∗
1 )) ⊃ ∧t1

B2 (B1(Dom1(t1)) ⊃ Best2(t2 |
t1)). ThenΓ �S B2(Best2(t2 | s1))∧ B2B1(Dom1(s1)) ⊃ ∧t1

B2 (B1(Dom1(t1)) ⊃
Best2(t2 | t1)). SinceΓ �S D22(s2)

∧
D21(s1) ⊃ B2(Best2(s2 | s1))∧B2B1(Dom1

(s1)) by DC212 and DC242, we have Γ �S D22(s2) ∧ D21(s1) ⊃ ∧
t1
B2(

B1(Dom1(t1)) ⊃ Best2(s2 | t1)
)
. This is written asΓ �S D21(s1) ⊃ (D22(s2) ⊃∧

t1
B2
(
B1(Dom1(t1)) ⊃ Best2(s2 | t1)

)
), and thenΓ �S

∨
s1

D21(s1) ⊃ (D22(s2) ⊃∧
t1
B2
(
B1(Dom1(t1)) ⊃ Best2(s2 | t1)

)
). Since�S D22(s2) ⊃ ∨s2

D22(s2) by L5
and Γ �S

∨
s2

D22(s2) ⊃ ∨
s1

D21(s1) by DC232, we haveΓ �S D22(s2) ⊃∧
t1
B2
(
B1(Dom1(t1)) ⊃ Best2(s2 | t1)

)
.��

7.2 Decision criterion DC3 for player2

Recall that criterion DC2 does not recommend a decision in the gameg3 of
Table 3. Suppose that player 2 starts believing that his criterion DC2 is inade-
quate, and that he adopts DC3 for his criterion. In the following, we consider
criterion DC3 from the viewpoint of player 2. Though we treat also 1’s prediction-
decision making, it occurs in the mind of player 2.

In DC3, we assume that prediction-decision making is reciprocal between 1
and 2, and thus,D11(s1),D12(s2),D21(s1),D22(s2) are all relevant now. We can
keep the requirements for playeri corresponding to DC212 – DC232, which are
denoted by DC31i – DC33i , but we modify the fourth one into

DC341:
∧

s2
(D12(s2) ⊃ B1(D22(s2))) ∧∧s1

(D11(s1) ⊃ B1(D21(s1)));

DC342:
∧

s1
(D21(s1) ⊃ B2(D11(s1))) ∧∧s2

(D22(s2) ⊃ B2(D12(s2))).

The former conjunct of each means that playeri ’s prediction is based on his
belief about the decision criterion forj , and the latter thati believes that his
decision is predicted byj . The reciprocity of DC3 stated in Section 2 is involved
here.

We focus on the prediction-decision criterion for player 2. For his own crite-
rion, we assume DC312, ...,DC342. Since player 2 makes also his prediction about
1’s prediction-decision, we assume B2(DC311), ..., B2(DC341). Our problem is
to find formulae{Dij (sj ) : sj ∈ Sj and i , j = 1,2} satisfying the requirements
DC312, ..., DC342 and B2(DC311), ..., B2(DC341). In fact, we would meet a se-
rious difficulty. The following theorem states that only trivial formulae would be
candidates for DC342∧ B2(DC341), which is proved in Section 7.3.

Theorem 7.3 (Reciprocal failure). Suppose�S DC342∧ B2(DC341). Then for
each (s1, s2) ∈ S, �S ¬(D21(s1) ∧ D22(s2)) or �S D21(s1) ∧ D22(s2).
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Thus, as soon as we assume DC342∧B2(DC341), D21(s1)∧D22(s2) becomes a
trivial formula. Hence, the above axiomatic system is a failure as a description of
prediction-decision making. In fact, this failure is not caused for a game theoretic
reason but for a reason in our logical system. It is closely related to the problem of
the infinite regress involved in DC3 pointed out in Section 2. Epistemic logicS

is incapable of capturing the reciprocity or infinite regress involved in DC342∧
B2(DC341). This leads us to an extension of epistemic logicS to incorporate
the concept of common knowledge, which is the subject of Section 8.

Notice that Theorem 7.3 is a meta-theorem evaluating the axiomatic system
DC342∧ B2(DC341) in logic S = KD4n, while Theorems 7.1 and 7.2 are object
theorems inS .

Before going to the next subsection, we mention one lemma (cf., Chellas [6],
p.99). To illustrate a model-theoretic argument, we give a proof of this lemma.

Lemma 7.4. For anyA, �S Bi (A) if and only if �S A.

Proof. Theif part follows from the Necessitation rule. We prove the contrapositive
of theonly-if part. Suppose�S A. By Theorem 5.1, there is a serial and transitive
Kripke frameK = (W; R1, ...,Rn) and an assignmentσ such that (K , σ,u) � A
for some u ∈ W. Let w0 be a symbol not inW. We extend (K , σ) into
(K ′, σ′) = ((W ′; R′

1, ...,R
′
n), σ′) as follows:

(1): W ′ = W ∪ {w0};
(2): R′

i = Ri ∪ {(w0, w) : w ∈W} for i ∈ N ;

(3): for anyp ∈ PV , σ′(w,p) = σ(w,p) for all w ∈W andσ′(w0,p) is arbitrary.

EachR′
i is serial and transitive. It holds also that for anyw ∈W and any formula

C , (K , σ, w) � C if and only if (K ′, σ′, w) � C . Hence (K ′, σ′,u) � A. Since
w0Ri u, we have (K ′, σ′, w0) � Bi (A). By Theorem 5.1, we have�S A. ��

Thus,�S B2(DC341) is equivalent to�S DC341. After all, the assumption
of Theorem 7.3 is equivalent to�S DC342∧DC341.

7.3 Epistemic depths and the depth lemma

To prove Theorem 7.3, we consider the epistemic depth of a formula. First, let
N<ω> := {(im, ..., i1) : im, ..., i1 ∈ N and ik+1 /= ik for k = 1, ...,m− 1}, where
we stipulate thatN<ω> includes the null sequenceε, i.e., the sequence of length
0. For e = (im, ..., i1) ∈ N<ω>, Bim...Bi1(A) is denoted by Be(A), and Bε(A)
is stipulated to beA. We define the following concatenation: fori ∈ N and
e = (im, ..., i1) ∈ N<ω>, let i ∗ e = (i , im, ..., i1) if i /= im and i ∗ e = (im, ..., i1) if
i = im. Also, we let i ∗ ε = (i ).

Let A ∈ P . We define the (epistemic) depthδ(A) of A by induction on the
length of a formula:

D0: δ(p) = {ε} for any p ∈ PV ;

D1: δ(¬C) = δ(C);
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D2: δ(C ⊃ D) = δ(C) ∪ δ(D);

D3: δ(
∧
Φ) = δ(

∨
Φ) =

⋃
C∈Φ δ(C);

D4: δ(Bi (C)) = {i ∗ e : e ∈ δ(A)}.
For example,δ(p0 ⊃ B2B3(p1)) = δ(p0) ∪ δ(B2B3(p1)) = {ε, (2,3)}. We define
δ(Γ ) =

⋃
C∈Γ δ(C). The following theorem is due to in Kaneko and Suzuki [18]

and a weaker form was given by Kaneko and Nagashima [17].

Theorem 7.5 (Depth lemma for KD4n). Let Γ be a subset ofP and Be(A) =
Bim...Bi1(A) a formula inP . Supposee ∈ N<ω> and e /∈ δ(Γ ). ThenΓ �S

Be(A) if and only if Γ is inconsistent inS or �S A.

WhenΓ = {C}, the assertion is written as:�S C ⊃ Be(A) if and only if
�S ¬C or �S A.

The reader may find that Theorem 7.5 (hence, Theorem 7.3, too) is translated
into S4n by Theorem 6.1.

Now, let us return to the proof Theorem 7.3.

Lemma 7.6. Suppose the assumption of Theorem 7.3. Then, for any oddm and
(im, ..., i1) ∈ N<ω> with im = 2, �S D21(s1) ∧ D22(s2) ⊃ Bim...Bi1(D21(s1) ∧
D22(s2)).

Proof. The claim form = 1 follows from DC342. Suppose the claim for odd
m. Then �S B1(D21(s1) ∧ D22(s2)) ⊃ B1Bim... Bi1(D21(s1) ∧ D22(s2)). Hence,
�S B2B1(D21(s1)∧ D22(s2)) ⊃ B2B1Bim...Bi1(D21(s1) ∧ D22(s2)). It remains to
show �S D21(s1) ∧ D22(s2) ⊃ B2B1(D21(s1)∧ D22(s2)). Since �S D11(s1) ∧
D12(s2) ⊃ B1(D21(s1)∧ D22(s2)) by �S DC341 by Lemma 7.4, we have�S

B2(D11(s1)∧D12(s2)) ⊃ B2B1(D21(s1)∧D22(s2)). Since�S D21(s1)∧D22(s2) ⊃
B2(D11(s1)∧D12(s2)) by DC342, we have�S D21(s1)∧ D22(s2) ⊃ B2B1(D21(s1)∧
D22(s2)). ��
Proof of Theorem 7.3. Take an oddm large enough so thate = (im, ..., i1) /∈
δ(D21(s1) ∧ D22(s2)) with im = 2. Applying Theorem 7.5 to the assertion of
Lemma 7.6, we have�S ¬(D21(s1) ∧ D22(s2)) or �S D21(s1) ∧ D22(s2). ��

8 Common knowledge logic CS

The difficulty we met in DC3 is caused by the limited capability of epistemic
logic S to express common knowledge. InS , the common knowledge of a
formula A is expressed by as the set C∗(A) := {Be(A) : e ∈ N<ω>}. However,
when this is used as nonlogical axioms, e.g., C∗(A) �S B, only a finite subset
of C∗(A) is used as initial formulae in a proof ofB from C∗(A). The entirety
of C∗(A) is never captured inS , which is the reason for the difficulty. In this
section, we extendS to capture the entirety of C∗(A). We find two approaches
in the logic literature: thefixed-pointand infinitary approaches. In this section,
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we follow the former due to Halpern and Moses [8]. We also discuss decision
making criterion DC3 in the extension.21

8.1 Common knowledge logic

We add one more unary operator symbol, C, to the list of primitive symbols
given in Section 3.1. In F2 of the definition of formulae, we allow C(A) to be a
formula. We denote this extended set of formulae byPC. Note that this C(A) is
a formula and is syntactically different from C∗(A).

Let S be an epistemic logic in Diagram 2. We define the extensionCS as
follows:

CS : S + CA + CI within PC,

where CA and CI are the following axiom schema and inference rule:

CA: C(A) ⊃ A∧B1C(A) ∧ ...∧BnC(A);

CI:
D ⊃ A∧ B1(D) ∧ ... ∧ Bn(D)

D ⊃ C(A)
,

whereA andD are any formulae. The provability ofCS is denoted by�CS .
Lemmas 4.1 and 4.2 hold also forCS .

Axiom CA is thefixed-point propertythat if A is common knowledge, then
A holds and each player believes the common knowledge ofA. Using CA, Nec
and MP a finitely many times, we have

�CS C(A) ⊃ Be(A) for all e = (im, ..., i1) ∈ N<ω>. (8.1)

Thus, the single formula C(A) includes all the content of C∗(A) = {Be(A) : e ∈
N<ω>} in CS . On the other hand, CI states that if formulaD has the fixed-point
property of the same form as CA, thenD includes the common knowledge ofA.
Thus, C(A) is the deductively weakest formula having the fixed-point property.

The following fact may help understand the term “fixed-point”: By CA and
CI, we have, reading bothD andA as C(A) in CI,

�CS C(A) ⊃ CC(A). (8.2)

The converse is provable, too.
To see that C(A) captures really the entirety of C∗(A) = {Be(A) : e ∈ N<ω>}

in CS with no superfluous properties, we prove the following lemma using
semantics after stating the completeness ofCS :

21 For the fixed-point approach, see also Fagin-Halpern-Moses-Vardi [7], Lismont-Mongin [22],[23]
and Meyer and van der Hoek [25]. For the infinitary approach, see Kaneko and Nagashima [16]
(including the predicate case) and also Heifetz [9]. Kaneko [14] proved in the propositional case
that these approaches can be regarded as equivalent as far as the definition of common knowledge
is concerned. However, Wolter [36] proved that this equivalence does not hold in the predicate case.
See Kanekoet al [20] for a map of common knowledge propositional and predicate logics.
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Lemma 8.1.
(1): If �CS D ⊃ Be(A) for all e ∈ N<ω>, then�CS D ⊃ C(A).

(2): If �CS D ⊃ Bi Be(A) for all e ∈ N<ω>, then�CS D ⊃ Bi C(A).

We would like to regard C(A) effectively as equivalent to the conjunction of
C∗(A) = {Be(A) : e ∈ N<ω>}, though the infinitary conjunction is not allowed
in CS . This effective equivalence can be seen by comparingCS with classical
logic CL. In CL,

∧
Φ is determined by Axiom L4 and

∧
-Rule. Fact (8.1) corre-

sponds to L4, and Lemma 8.1.(1) does to
∧

-Rule. Thus,CS succeeds in having
the parallel structure to that of CL. In order to prove Lemma 8.1, however, we
need to extend the Kripke semantics and to prove the completeness theorem. The
present author has no direct syntactical proof of Lemma 8.1.

Now, consider the semantical counterpart ofCS . For CS , we can use
the same Kripke semantics, and need only to extend the valuation relation
(K , σ, w) � to PC from P .

Let (K , σ) = ((W; R1, ...,Rn), σ) be a Kripke model. We extend the valuation
relation (K , σ, w) � from P to PC by K0–K5 and

K6: (K , σ, w) � C(A) if and only if (F , σ,u) � A for all u reachable fromw,

whereu is reachable fromw iff there is a sequencew0 = w,w1, ..., wm = u such
that for eachk = 0,1, ...,m− 1, wkRjwk+1for somej ∈ N . K6 is equivalent to

K6∗: (K , σ, w) � C(A) if and only if (F , σ, w) � Be(A) for all e ∈ N<ω>.

This equivalence can be proved by induction on the length ofe.
We state the soundness-completeness ofCS , which is proved in Section 9.

Theorem 8.2 (Soundness-completeness of CS ). Let S be an epistemic logic
in Diagram 2, andS ∗ the set of the Kripke frames satisfying the corresponding
conditions on the accessibility relations. LetA be a formula inPC.

(1): �CS A if and only if (K , σ, w) � A for all Kripke framesK in S ∗, all
assignmentsσ and allw ∈W.

(2): There is a Kripke frameK in S ∗, an assignmentσ and a worldw ∈ W
satisfying (K , σ, w) � A if and only if A is consistent inCS .

Claims (1) and (2) are equivalent as in Theorem 5.1. Theonly-if part of
(1) is proved by modifying the corresponding proof for Theorem 5.1 adding the
following steps to Lemma 5.2.

Lemma 8.3.
(1): (K , σ, w) � C(A) ⊃ A∧B1C(A) ∧ ...∧BnC(A) for any K = (W; R1, ...,Rn)
in S ∗, assignmentσ in K andw ∈W.

(2): Let K be any frame inS ∗ andσ any assignment inK . If (K , σ, w) �
D ⊃ A∧B1(D) ∧ ...∧Bn(D) for any w ∈ W, then (K , σ, w) � D ⊃ C(A) for
anyw ∈W.

Proof. We prove only (2). Letu be any world. Suppose (K , σ,u) � D . Then
(K , σ,u) � A and (K , σ,u) � Bi (D) for i = 1, ...,n. Let um be any world so
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that it is reachable bym steps (m ≥ 0). We assume the inductive hypothesis that
(K , σ,um) � A and (K , σ,um) � Bi (D) for i = 1, ...,n. Now let umRi um+1.
Then (K , σ,um+1) � D . Since (K , σ, w) � D ⊃ A∧B1(D)∧ ...∧Bn(D) for any
w ∈ W, we have (K , σ,um+1) � A and (K , σ,um+1) � Bi (D) for i = 1, ...,n.
Thus, we have proved (K , σ, v) � A for any v reachable fromu. By K6,
(K , σ,u) � C(A). ��

One possible use of the above soundness-completeness is to prove Lemma
8.1.

Proof of Lemma 8.1. We prove only (2). Suppose�CS D ⊃ Bi Be(A) for all
e ∈ N<ω>. Let (K , σ) be any Kripke model. Then (K , σ, w) � D ⊃ Bi Be(A)
for any world w. Then let u be any world. Suppose (K , σ,u) � D . Then
(K , σ,u) � Bi Be(A). Let u′ be any world withuRi u′. Then (K , σ,u′) �
Be(A). Since this holds for anye ∈ N<ω>, we have (K , σ,u′) � C(A) by K6∗.
Since this holds for anyu′ with uRi u′, we have (K , σ,u) � Bi C(A). We proved
(K , σ,u) � D ⊃ Bi C(A). By Theorem 8.2, we have�CS D ⊃ Bi C(A). ��

The following is an immediate but important consequence from Theorem 8.2.

Theorem 8.4 (Conservativity of CS upon S ). Let A be a formula inP .
Then�S A if and only if �CS A.

This theorem guarantees that forS = KD4n, the Reciprocal Failure Theo-
rem and Depth Lemma (Theorems 7.1 and 7.3) can be converted into common
knowledge logicCS with the restrictions of the target formulae toP .

Remark 8.5. In CS , the common knowledge operator C enjoys the properties
K, T, 4 and Nec. Hence,CS may be regarded as S41 with respect to C.22

Therefore, the assertions of Lemma 4.1 hold for C inCS , e.g., (3) of Lemma
4.1 becomes:�CS C(

∧
Φ) ≡ ∧C(Φ) for a finite nonempy setΦ of formulae in

PC.

8.2 Solution theory for decision criterion DC3

In Section 7.2, we formulated Axioms DC312, ...,DC342,B2(DC311), ...,
B2(DC341) for decision criterion DC3 for player 2, and showed that Axioms
DC342 and B2(DC341) lead to the reciprocal failure. By the conservativity of
the extensionCS uponS , the Reciprocal Failure Theorem (Theorem 7.3) still
holds forP in CS , whereS = KD4n. Now, however, we can look for can-
didates inPC rather than inP . Here, we show that DC3 can be a meaningful
criterion in the common knowledge extensionCS .

To define the candidate formulae, we first modify Nash(s1, s2) into

22 In CS , we are treating commonknowledge, rather than common beliefs, in the sense that it
has the property:�CS C(A) ⊃ A. As in Section 6, common beliefs can be expressed in common
knowledge logicCS . Specifically, the common belief ofA is defined as

∧
i
Bi C(A) in CS . See

Kaneko et al. [20]. However, it will be seen in the following that the individual belief of common
knowledge plays an important role in our game theoretical application rather than common beliefs.
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B1(Best1(s1 | s2)) ∧ B2(Best2(s2 | s1)), (8.3)

which we denote by Nash∗(s1, s2). This differs from Nash(s1, s2) in that each
individual payoff function is taken up to his beliefs in Nash∗(s1, s2). Then we
define the candidate formulae: for (s1, s2) ∈ S,

D̃11(s1) = B1

(∨
s2

C(Nash∗(s1, s2))

)
and D̃12(s2) = B1

(∨
s1

C(Nash∗(s1, s2))

)

(8.4)

D̃21(s1) = B2

(∨
s2

C(Nash∗(s1, s2))

)
and D̃22(s2) = B2

(∨
s1

C(Nash∗(s1, s2))

)
.

(8.5)
Now, we have to see that these formulae satisfy Axioms DC342 and B2(DC341).
We denote by DC341(D̃) and DC342(D̃), the formulae obtained by plugging
D̃ij (sj ) into Dij (sj ) in DC341 and DC342. The proof of the following lemma will
be given in the end of this subsection.

Lemma 8.6. �CS DC342(D̃)∧B2(DC341(D̃)).

In fact, requirements
∧{DC312, ...,DC342} and B2(

∧{DC311, ...,DC341})
hold for the above candidates{D̃ij (sj ) : sj ∈ Sj , i , j = 1,2}. Only DC312 and
B2(DC311) need a game theoretic assumption, which is proved below.

Theorem 8.7. Let g = (g1, g2) be a game with a unique Nash equilibrium. Then

(a): B2C(ĝ) �CS DC312(D̃)∧B2(DC311(D̃));

(b): �CS

∧{DC322(D̃), ...,DC342(D̃)}∧B2(
∧{DC321(D̃), ...,DC341(D̃)}).

The next theorem states that formulaeD̃ij (sj ), i , j = 1,2 are the deductively
weakest formulae satisfying our requirements. The proof is given below.

Theorem 8.8 (Personalized characterization of DC3). Let g = (g1, g2) be a
2-person game with a unique Nash equilibrium. ThenDij (sj ), i , j = 1,2 satisfy
our requirements in the sense of (a) and (b) of Theorem 8.7. Then B2C(ĝ) �CS∧

s1

(
D21(s1) ⊃ D̃21(s1)

)∧ ∧s2

(
D22(s2) ⊃ D̃22(s2)

)
.

These theorems correspond to Theorems 7.1 and 7.2 for DC2. As in the
case of DC2, Theorems 8.7 and 8.8 imply that the deductively weakest formulae
D̃21(s1), D̃22(s2), (s1, s2) ∈ S1× S2 are uniquely determined.

We have succeeded in avoiding the reciprocal failure by incorporating com-
mon knowledge into epistemic logicS = KD4n. Nevertheless, we should rec-
ognize that epistemic logicCS involves two levels of infinities: first,S allows
formulae of any epistemic (finite) depths, e.g., Be(A) = Bim...Bi1(A) for anym, and
second,CS allows C(A) to capture the entirety of C∗(A) = {Be(A) : e ∈ N<ω>}.
After all, common knowledge is an infinitary concept of an idealization, though
CA and CI avoid infinitary treatments in an ingenious way.

For the analysis of human decision making, it seems more natural to avoid
such infinitary concepts. Probably, this depends upon a situation. If the rules
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of the game including payoff functions are visible for the players and if they
are standing face-to-face, then these constituents may be regarded as common
knowledge between these players. This is due to the special property of vision:
Since the speed of light can be regarded as infinity, the mutual verification can
be made almost instantaneously (it is reminiscent of theAnalogy of the Sunof
Plato [32], Book VI). On the other hand, payoff functions for games are usually
not visible but belong to individual subjectivity. Visions do not help to obtain the
common knowledge of payoff functions. This was already seen in the Konnyaku
Mondô in Section 1.3: the exchanged gestures were common knowledge between
the jelly maker and monk, but the subjective interpretations of the gestures were
very different.

The above characterization is made from the viewpoint of player 2. This
personalized characterization makes sense inCS with S = KD4n. If we adopt
S = S4n, then Bi C(Nash∗(s1, s2)) is equivalent to C(Nash(s1, s2)) in CS . Fur-
thermore,

�CS D̃ij (sj ) ≡
∨
st

C(Nash(s1, s2)), wheret /= j . (8.6)

This is what is described often informally by some game theorists.23 In this case,
subjectivity disappears,a fortiori, false beliefs cannot be discussed. The false
beliefs on common knowledge will be discussed in a game theoretic example in
Section 8.3.

Proof of Lemma 8.6.We prove�CS DC341(D̃), which implies�CS B2(DC341

(D̃)). Recall DC341(D̃) is
∧

s1

(
D̃11(s1) ⊃ B1(D̃21(s1))

) ∧∧s2

(
D̃12(s2) ⊃ B1(D̃22

(s2))). We prove only the first half. Since�CS C(Nash∗(s1, s2)) ⊃ B1C(Nash∗(s1,
s2)) by CA, we have�CS C(Nash∗(s1, s2)) ⊃ ∨

s2
B1C(Nash∗(s1, s2)) by L5,

which implies �CS C(Nash∗(s1, s2)) ⊃ B1
(∨

s2
C(Nash∗(s1, s2)

)
by Lemma

4.1.(2). I.e.,�CS C(Nash∗(s1, s2)) ⊃ D̃11(s1). Since this holds for anys2, we have
�CS

∨
s2

C(Nash∗(s1, s2)) ⊃ D̃11(s1) by
∨

-Rule, and�CS B2(
∨

s2
C(Nash∗(s1,

s2))) ⊃ B2(D̃11(s1)). I.e., �CS D̃21(s1) ⊃ B2(D̃11(s1)). ��
Proof of Theorem 8.7.We prove B2C(ĝ) �CS DC312(D̃). Since B1(ĝ1),B2(ĝ2)
�CS Nash∗(s1, s2)∧ Nash∗(t1, t2) ⊃ Nash∗(t1, s2) using the uniqueness of a Nash
equilibrium, we have CB1(ĝ1), CB2(ĝ2) �CS C(Nash∗(s1, s2))∧ C(Nash∗(t1, t2))
⊃ C(Nash∗(t1, s2)) by Remark 8.5. Since C(ˆg) �CS CBi (A) for all A ∈ ĝi andi =
1,2, we have C(ˆg) �CS C(Nash∗(s1, s2))

∧
C(Nash∗(t1, t2)) ⊃ C(Nash∗(t1, s2)).

Hence C(ˆg) �CS C(Nash∗(s1, s2)) ∧C(Nash∗(t1, t2)) ⊃ B2(Best2(s2 | t1)). Since
C(ĝ) �CS C(Nash∗(r1, r2)) if and only if ĝ �CS Nash(r1, r2) for any (r1, r2),
we have C(ˆg) �CS C(Nash∗(s1, s2)) ∧C(Nash∗(t1, t2)) ⊃ Best2(s2 | t1). We can
introduce

∨
to the premise: indeed, the following is equivalent to the last formula,

�CS C(Nash∗(s1, s2)) ⊃
(∧

C(ĝ) ∧ C(Nash∗(t1, t2)) ⊃ Best2(s2 | t1)
)
.

Sinces1 is arbitrary, we have, applying
∨

-Rule,

23 This set of decision criteria is considered in Kaneko and Nagashima [16] with the mixed strate-
gies, and is considered in Kaneko [13] with pure strategies.



52 M. Kaneko

�CS

∨
s1

C(Nash∗(s1, s2)) ⊃
(∧

C(ĝ) ∧ C(Nash∗(t1, t2)) ⊃ Best2(s2 | t1)
)
.

This is equivalent to C(ˆg) �CS

∨
s1

C(Nash∗(s1, s2)∧C(Nash∗(t1, t2)) ⊃ Best2(s2 |
t1). Using a similar argument, we have C(ˆg) �CS

∨
s1

C(Nash∗(s1, s2)) ∧ ∨t2
C

(Nash∗(t1, t2)) ⊃ Best2(s2 | t1). Hence, B2C(ĝ) �CS B2(
∨

s1
C(Nash∗(s1, s2)))∧

B2(
∨

t2
C(Nash∗(t1, t2))) ⊃ B2(Best2(s2 | t1)), i.e., B2C(ĝ) �CS D̃22(s2)∧D̃21(t1) ⊃

B2(Best2(s2 | t1)). Thus, B2C(ĝ) �CS DC312(D̃).
Similarly, B1C(ĝ) �CS D̃11(s1)∧D̃12(t2) ⊃ B1(Best1(s1 | t2)). By CA, we have

C(ĝ) �CS D̃11(s1) ∧ D̃12(t2) ⊃ B1(Best1(s1 | t2)). Thus, C( ˆg) �CS DC311(D̃).
Hence B2C(ĝ) �CS B2(DC311(D̃)). ��

For the proof of Theorem 8.8, we first prove the following lemma.

Lemma 8.9. B2C(ĝ) �CS D21(s1) ∧ D22(s2) ⊃ B2C(Nash∗(s1, s2)) for i = 1,2.

Proof. Denote Di 1(s1) ∧ Di 2(s2) by Di (s1, s2) for i = 1,2. First, by DC312,
B2C(ĝ) �CS D2(s1, s2) ⊃ B2(Best2(s2 | s1)). Hence B2C(ĝ) �CS D2(s1, s2) ⊃
B2B2(Best2(s2 | s1)). Second, by B2(DC311), B2C(ĝ) �CS B2(D1(s1, s2)) ⊃
B2B1(Best1(s1 | s2)). Since B2C(ĝ) �CS D2(s1, s2) ⊃ B2(D1(s1, s2)) by DC342,
we have B2C(ĝ) �CS D2(s1, s2) ⊃ B2B1(Best1(s1 | s2)). Thus, B2C(ĝ) �CS

D2(s1, s2) ⊃ B2(Nash∗(s1, s2)).
In the same manner, we have B2C(ĝ) �CS B2(D1(s1, s2)) ⊃ B2B1(Nash∗(s1,

s2)). For this, we use B2C(ĝ) �CS B2(D1(s1, s2)) ⊃ B2B1(D2(s1, s2)).
Suppose the induction hypothesis that B2C(ĝ) �CS D2(s1, s2) ⊃ B2Be(Nash∗

(s1, s2)) for all e = (im, ..., i1) and B2C(ĝ) �CS B2(D1(s1, s2)) ⊃ B2B1Be(Nash∗

(s1, s2)). We prove these for (im+1, im, ..., i1). Since B2C(ĝ) �CS D2(s1, s2) ⊃
B2(D1(s1, s2)), we have B2C(ĝ) �CS D2(s1, s2) ⊃ B2B1Be(Nash∗(s1, s2)) as well
as B2C(ĝ) �CS D2(s1, s2) ⊃ B2B2Be(Nash∗(s1, s2)). Finally, since B2C(ĝ) �CS

B2(D1(s1, s2)) ⊃ B2B1(D2(s1, s2)), and B2C(ĝ) �CS B2B1(D2(s1, s2)) ⊃ B2B1B2

Be(Nash∗(s1, s2)), we have B2C(ĝ) �CS B2(D1(s1, s2)) ⊃ B2B1B2Be(Nash∗

(s1, s2)). ��
Proof of Theorem 8.8. Since Lemma 8.9 is equivalent to B2C(ĝ) �CS D21(s1) ⊃
(D22(s2) ⊃ B2C(Nash∗(s1, s2))). Thus B2C(ĝ) �CS D21(s1) ⊃ (D22(s2) ⊃∨

t1
B2C(Nash∗(t1, s2))), and then B2C(ĝ) �CS

∨
s1

D21(s1) ⊃ (D22(s2) ⊃∨
t1
B2C(Nash∗(t1, s2))). By DC332, B2C(ĝ) �CS D22(s2) ⊃ ∨t1

B2C(Nash∗(t1,
s2)). By Lemma 4.1.(2), we have B2C(ĝ) �CS D22(s2) ⊃ B2(

∨
t1
C(Nash∗(t1, s2)).

��

8.3 Konnyaku Mond̂o phenomena:
mutual misunderstanding of common understanding in DC3

We have relativized the concept of common knowledge to individual beliefs of
common knowledge. In particular, we have the individual belief of common
knowledge of a Nash strategy,D̃ij (sj ) ≡ Bi (

∨
st

C(Nash∗(s1, s2))), where t /= j ,
as decision and prediction criteria. This relativization enables us to discuss the
phenomenon in a game situation like the Konnyaku Mondô mentioned in Section



Epistemic logics and their game theoretic applications: Introduction 53

1.3. That is, each of two players falsely believes that a different game is common
knowledge between the players.

Consider the assumption set B1C(ĝ3)∪ B2C(ĝ4), where g3 and g4 are the
games of Tables 3 and 4. That is, player 1 believes that it is common knowledge
that gameg3 is played, while 2 believes that it is common knowledge thatg4 is
played. We can prove that B1C(ĝ3)∪ B2C(ĝ4) is consistent inCS with S =
KD4n, and that

B1C(ĝ3),B2C(ĝ4) �CS D̃11(s12) ∧ D̃12(s22) ∧ D̃21(s12) ∧ D̃22(s22).

This states that both players’ predictions arebehaviorallycorrect. Nevertheless,
decisions and predictions are based on the mutual misunderstanding of com-
mon understanding. Neither player would find this misunderstanding by seeing
the resulting choice of the other player, since the predictions are behaviorally
correct. This argument cannot be done in logicCS with S = S4n, since
B1C(ĝ3)∪B2C(ĝ4) becomes inconsistent.

The consistency of B1C(ĝ3)∪B2C(ĝ4) in CS with S = KD4n is verified
by constructing the following model:

�12 w1 : ĝ3 �12 w2 : ĝ4

↖1 ↗2

w0

Diagram 6

Then, since (K , σ, w1) � C(
∧
ĝ3) and (K , σ, w2) � C(

∧
ĝ4), we have (K , σ,

w0) � B1C(
∧
ĝ3)∧B2C(

∧
ĝ4).

The above mutual misunderstanding of common understanding may be ob-
served in our life. The point here is the possibility that each player develops
a false and different belief of the common knowledge of the situation. This is
exactly the point suggested by the Konnyaku Mondô of Section 1.3.

9 Proof of the completeness of CS

Here we prove the completeness part for Theorem 8.2 forS = KD4n. In other
cases, we need some modifications (see Halpern and Moses [8]). LetA be a
formula, which is assumed to be consistent inCS . We are going to show
that there is a serial and transitive Kripke frameK = (W; R1, ...,Rn) and an
assignmentσ such that for somew ∈W, (K , σ, w) � A.

If common knowledge operator C does not occur inA, then the following
proof becomes also a proof of the completeness of Theorem 5.2.(2) forS , in
which case we can ignore the step (5) of the induction proof of (9.1). We suggest
that the reader who is not familiar with proofs in logic should read the proof of
the completeness for CL given in the Appendix before this subsection.
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We denote{D : D is a subformula ofA}∪⋃i ∈N{Bi (D), Bi C(D) : C(D) is a
subformula ofA} by Sub(A).24 Then we define Sub+(A) = Sub(A) ∪ {¬D : D ∈
Sub(A)}. We say that a subsetΓ of Sub+(A) is maximally consistentiff it is
consistent inCS andΓ ∪ {D} is inconsistent for anyD ∈ Sub+(A) − Γ. We
denote the set{Γ : Γ is a maximally consistent subset of Sub+(A) in CS } by
Con(A).

Each maximally consistent setΓ of Sub+(A) has the following properties.

Lemma 9.1. Let Γ ∈ Con(A). Then

(1): for any¬B in Sub+(A), eitherB ∈ Γ or ¬B ∈ Γ ;
(2): for anyB in Sub+(A), ¬B ∈ Γ ⇔ B /∈ Γ ;
(3): for anyB ⊃ C in Sub+(A), B ⊃ C ∈ Γ ⇔ ¬B ∈ Γ or C ∈ Γ ;
(4): for any

∧
Φ in Sub+(A),

∧
Φ ∈ Γ ⇔ B ∈ Γ for all B ∈ Φ;

(5): for any
∨
Φ in Sub+(A),

∨
Φ ∈ Γ ⇔ B ∈ Γ for someB ∈ Φ.

For a setu of formulae, we writeuBi := {Bi (C) : Bi (C) ∈ u} andu\Bi :=
{C : Bi (C) ∈ u}. We define a Kripke modelK = (W; R1, ...,Rn) and an
assignmentσ by

M1: W = Con(A);
M2: Ri = {(u, v) ∈W ×W : u\Bi ∪ uBi ⊆ v} for all i ∈ N ;
M3: for any (w,p) ∈W × PV , σ(w,p) = � iff p ∈ w.

First, we verify that eachRi is serial and transitive.

Lemma 9.2.
Ri is serial and transitive.

Proof. Consider seriality. Letu ∈ W. Consider the setu\Bi ∪ uBi . We prove
that this is a consistent set. Suppose not. Then there is a finite subset{C1, ...,C�,

Bi (C�+1), ...,Bi (Ck)} of u\Bi ∪ uBi such that�CS C1 ∧ ... ∧ C� ∧ Bi (C�+1) ∧
...∧Bi (Ck) ⊃ ¬D ∧ D . Then�CS Bi (C1 ∧ ... ∧ C�) ∧Bi (C�+1)∧ ... ∧Bi (Ck) ⊃
Bi (¬D ∧ D). However, by Axiom D,�CS ¬Bi (¬D ∧ D). This means thatu
itself is inconsistent. Henceu\Bi ∪uBi is consistent. Then we have a maximally
consistent subsetv of Sub+(A) including u\Bi ∪ uBi . Then (u, v) ∈ Ri .

Consider transitivity. Let (u, v) ∈ Ri and (v, w) ∈ Ri . Take Bi (C) from u.
Then Bi (C) ∈ v. This implies Bi (C) ∈ w andC ∈ w. ��

Now we prove by induction on the length of a formula that for anyC ∈
Sub+(A) and anyv ∈W,

C ∈ v if and only if (K , σ, v) � C . (9.1)

Suppose that (9.1) is proved. SinceA is consistent, there is aw ∈W with A ∈ w.
Thus, (K , σ, w) � A by (9.1).

The 0-th step for (9.1) is the basis of the induction proof.

(0): Let C be a propositional variable in Sub+(A). By M3, C ∈ v if and only if
σ(v,C) = �. This is further equivalent to (F , σ, v) � C by E0. This is (9.1).

24 A subformulaof A is a formula appearing in the inductive construction ofA.
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Consider a formulaF in Sub+(A) which is not a propositional variable. Now
we assume the induction hypothesis that for any immediate subformulaD of F ,
D ∈ v if and only if (K , σ, v) � D . Then we prove (9.1) forF . In each step of
(1)–(3), we use Lemma 9.1.

(1): Let the formulaF in question be expressed as¬C . Suppose¬C ∈ v. Then
C /∈ v. By the induction hypothesis, (K , σ, v) � C . Hence (K , σ, v) � ¬C .
The converse is similar.

(2): Let F be B ⊃ C . SupposeB ⊃ C ∈ v. Then¬B ∈ v or C ∈ v. By the
induction hypothesis, (K , σ, v) � B or (K , σ, v) � C . Hence (K , σ, v) � B ⊃
C . The converse is similar.
(3): Similarly, we can prove (9.1) in the case whereF is expressed as

∧
Φ or∨

Φ.
(4): Let the formulaF in question be expressed as Bi (C).

First, we prove that (K , σ, v) � Bi (C) implies Bi (C) ∈ v. Suppose
(K , σ, v) � Bi (C). We show the inconsistency ofv\Bi ∪ vBi ∪ {¬C}. Suppose
that this is consistent. There is a maximally consistent setu in Sub+(A) including
this set. Thus (v,u) ∈ Ri . However, (F , σ, v) � Bi (C) implies (K , σ,u) � C .
By the induction hypothesis, we haveC ∈ u, a contradiction to¬C ∈ u. By
the inconsistency ofv\Bi ∪ vBi ∪ {¬C}, there is a finite subset{D1, ...,D�,

Bi (D�+1), ...,Bi (Dk)} of v\Bi ∪vBi such that�CS D1∧ ...∧D� ∧ Bi (D�+1)∧ ...∧
Bi (Dk) ⊃ C . Then �CS Bi (D1 ∧ ... ∧ D�)∧ Bi (D�+1) ∧ ...∧Bi (Dk) ⊃ Bi (C).
Hence Bi (C) ∈ v.

Conversely, suppose Bi (C) ∈ v. ThenC ∈ w for all w with (v, w) ∈ Ri by
M2. Hence (F , σ, w) � C for all w with (v, w) ∈ Ri by the induction hypothesis.
This implies (K , σ, v) � Bi (C).

(5): Let F be expressed as C(D). Now we prove that C(D) ∈ v if and only if
(K , σ, v) � C(D).

Suppose C(D) ∈ v. We show by induction onk that if w is reachable from
v in k steps, thenD and C(D) are inw. Let k = 1. Observe that CA implies
Bi (D) ∈ v and Bi C(D) ∈ v. If w is reachable fromv in one step, i.e., (v, w) ∈ Ri

for somei , we haveD ∈ w and C(D) ∈ w. Now we assume the claim fork.
Suppose thatw is reachable fromv in k + 1 steps. Then there is au such that
is reachable fromv in k steps and (u, w) ∈ Ri . By the induction hypothesis,D
and C(D) are inu. By CA, Bi (D) ∈ u and Bi C(D) ∈ u. Since (u, w) ∈ Ri , we
haveD ∈ w and C(D) ∈ w. In sum, D ∈ w for all w reachable fromv. By
our main induction hypothesis, (K , σ, w) � D for all w reachable fromv. Thus
(K , σ, v) � C(D) by K6.

Conversely, suppose (K , σ, v) � C(D). We defineWD := {w : (F , σ, w) �
C(D)}. SinceWD is a set of subsets of Sub+(A), this is a finite set. Letϕw be∧
w, i.e., the conjunction ofw, and letϕWD :=

∨
w∈WD

ϕw. We are going to
prove

�CS ϕWD ⊃ D ∧ B1(ϕWD ) ∧ ... ∧ Bn(ϕWD ). (9.2)

Once this is done, we have�CS ϕWD ⊃ C(D) by CI. Sincev ∈ WD , we have
�CS ϕv ⊃ ϕWD . Hence�CS ϕv ⊃ C(D). Thus C(D) ∈ v.
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In the remaining, we prove (9.2). First,�CS ϕWD ⊃ D is proved as fol-
lows. Let w be an arbitrary world inWD . Since (K , σ, w) � C(D) implies
(K , σ, w) � D by K6. This impliesD ∈ w by the induction hypothesis. Thus
�CS ϕWD ⊃ D . It remains to prove that�CS ϕWD ⊃ Bi (ϕWD ). Let w be
arbitrary in WD and i = 1, ...,n. It suffices to prove�CS ϕw ⊃ Bi (ϕWD ).
Since�CS ϕWD ≡ ¬

(∨
w′∈W−WD

ϕw′
)
, �CS ϕw ⊃ Bi (ϕWD ) is equivalent to

�CS ϕw ⊃ Bi (
∧

w′∈W−WD
¬ϕw′ ). The latter follows if we prove that for each

w′ ∈W −WD ,
�CS ϕw ⊃ Bi (¬ϕw′ ). (9.3)

Suppose that (9.3) does not hold for somew′ ∈ W − WD . Then ϕw ∧
¬Bi (¬ϕw′ ) is consistent. We will show that this impliesw\Bi ⊆ w′ andw\Bi ⊆
w′\Bi . Suppose that this is proved. Then we have (w,w′) ∈ Ri . Sincew ∈ WD

andw′ ∈W−WD , we have (K , σ, w) � C(D) but (K , σ, w′) � C(D). The latter
implies that somee ∈ N<ω>, (K , σ, w′) � Be(D). However, the former implies
(F , σ, w) � Bi Be(D), which together with (w,w′) ∈ Ri implies (K , σ, w′) �
Be(D), a contradiction. Overall, we have (9.3).

It remains to show thatw\Bi ⊆ w′ and w\Bi ⊆ w′\Bi follow from the
consistency ofϕw ∧¬Bi (¬ϕw′ ). There are two cases to be considered. Consider
case (a):E /∈ w′ for some Bi (E) ∈ w. Then ¬E ∈ w′. Thus, �CS E ⊃
¬ϕw′ . Then�CS Bi (E) ⊃ Bi (¬ϕw′ ), which contradicts thatϕw ∧ ¬Bi (¬ϕw′ )
is consistent, since Bi (E) ∈ w. Next, consider case (b): Bi (E) /∈ w′ for some
Bi (E) ∈ w. Then¬Bi (E) ∈ w′. Then�CS Bi (E) ⊃ ¬ϕw′ . This implies�CS

Bi Bi (E) ⊃ Bi (¬ϕw′ ), which implies�CS Bi (E) ⊃ Bi (¬ϕw′ ). Again, we have
a contradiction to the consistency ofϕw ∧ ¬Bi (¬ϕw′ ). After all, neither (a) nor
(b) holds. Thus,w\Bi ⊆ w′ andw\Bi ⊆ w′\Bi . ��

10 Conclusion

We have discussed both proof-theoretic and model-theoretic developments of
epistemic logics and their applications to game theory. The author intended to
show that the paper gives basic ideas of the logical approach and its scope, and
hopes that this is successful.

The paper itself covers a lot of basic concepts, but does not talk about many
relevant areas related to the logical approach. For example, extensions, such
as predicate logics, of epistemic logics and their applications to economics are
natural problems. Another related problem is the emergence of true or false
beliefs from different sources such as individual experiences. The introduction
of bounds to intrapersonal and interpersonal introspections for decision making
is another problem. Although these must be targets of the logical approach, the
present state of the logical approach is to wait for further research on these
problems.

The reader who want to study those areas or to do research in the logical
approach to economics and game theory may consult the papers in this issue as
well as their references.
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Over all, the author hopes that the reader finds some interests in this new
field.

11 Appendix: Proof of completeness for classical logic CL

Our formulation of CL is quite efficient as an axiomatization, but the cost for
an efficient axiomatization is practically difficult to prove some steps for the
completeness of CL. For example, the following three claims are needed, but
they need a lot of tedious steps, which is given in the end of this appendix.

Lemma 11.1.(a): �0 (¬A ⊃ ¬B) ⊃ (B ⊃ A); (b): A ⊃ (B ⊃ C) �0 A∧ B ⊃ C ;
(c): A∧ B ⊃ C �0 A⊃ (B ⊃ C).

Lemma 11.2 (Deduction theorem). Γ ∪ {A} �0 B impliesΓ �0 A⊃ B.

Proof. Let P be a proof ofB from Γ ∪ {A}. We prove by induction on the
tree structure ofP from its leaves thatΓ �0 A ⊃ C for any C in P. Let C
be a formula associated with a leaf ofP. ThenC is an instance of L1–L5 or a
formula in Γ. In either case,Γ �0 C . Since�0 C ⊃ (A ⊃ C) by L1, we have
Γ �0 A⊃ C .

Now, letC be a formula associated with a non-leaf node inP. We assume the
induction hypothesis that the induction assertion holds for the upper formulae of
C in P. We should consider three cases: MP,

∧
-Rule and

∨
-Rule. We consider

MP and
∧

-Rule.
Suppose thatC is inferred from D and D ⊃ C by MP. The induction

hypothesis is thatΓ �0 A ⊃ D andΓ �0 A ⊃ (D ⊃ C). By Lemma 3.1.(1) and∧
-Rule,Γ �0 A⊃ A∧D , and by Lemma 11.1.(b),Γ �0 A∧D ⊃ C . By Lemma

3.1.(2), we haveΓ �0 A⊃ C .
Suppose thatD ⊃ ∧Φ is inferred from{D ⊃ E : E ∈ Φ}. The induction

hypothesis is thatΓ �0 A ⊃ (D ⊃ E) for all E ∈ Φ. By Lemma 11.1.(b),
Γ �0 A∧ D ⊃ E for all E ∈ Φ. By

∧
-Rule,Γ �0 A∧ D ⊃ ∧Φ. By Lemma

11.1.(c),Γ �0 A⊃ (D ⊃ ∧Φ). ��
Then we have the following lemma.

Lemma 11.3. Γ �0 A if and only if Γ ∪ {¬A} is consistent in CL.

Proof. We denoteΓ∪{¬A} by Γ ′. SupposeΓ �0 A. ThenΓ ′ �0 A andΓ ′ �0 ¬A.
HenceΓ ′ �0 (A ⊃ A) ⊃ A andΓ ′ �0 (A ⊃ A) ⊃ ¬A by L1. Thus,Γ ′ �0 (A ⊃
A) ⊃ ¬A∧A. By Lemma 3.1.(1), we haveΓ ′ �0 ¬A∧A, i.e.,Γ ′ is inconsistent.

Suppose thatΓ ′ is inconsistent. ThenΓ ′ �0 ¬C ∧ C . By Lemma 11.2 and
L4, we haveΓ �0 ¬A ⊃ ¬C andΓ �0 ¬A ⊃ C . These together with L3 imply
Γ �0 A. ��
Proof of the Equivalence of the if Parts of Theorem 3.3. Suppose theif part of
(1). We prove the negative form that of (2). Suppose that there is no modelκ of
Γ. ThenΓ � ¬C ∧ C for someC . By (1), we haveΓ �0 ¬C ∧ C .
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Suppose theif part of (2). LetΓ �0 A. ThenΓ ∪ {¬A} is consistent with
respect to�0 by Lemma 11.3. By (2), there is a modelκ of Γ ∪ {¬A}. This
meansVκ(A) = ⊥. HenceΓ � A. ��
Proof of Completeness for CL. It suffices to prove that ifΓ is consistent, there
is an assignmentκ such thatVκ(B) = � for all B ∈ Γ. In the following, we
suppose thatΓ is consistent in CL.

We order the setP as follows:A1,A2, ... We construct a sequenceΓ0, Γ1, ...
by induction onA1,A2, ... as follows:

G-0: Γ0 = Γ ;

and for anym > 0,

G-1: Γm =




Γm−1 ∪ {Am} if Γm−1 ∪ {Am} is consistent

Γm−1 if Γm−1 ∪ {Am} is inconsistent.
We defineΓ̃ =

⋃
m Γm.

Lemma 11.4.
(1): EachΓm is consistent andΓ0 ⊆ Γ1 ⊆ ...;
(2): Γ̃ is consistent.

Proof.
(1): This follows the definition ofΓm.
(2): Suppose that̃Γ is inconsistent. Then there is a proof of¬A∧A from a finite
subsetΓ ′ of Γ̃ . This implies¬A∧A ∈ Γm for somem, a contradiction to (1). ��
Lemma 11.5. The setΓ̃ defined above is maximally consistent, i.e., there is no
other consistent set strictly including̃Γ , and satisfies the following properties:

(0): Γ̃ �0 A⇔ A ∈ Γ̃ ;

(1): eitherA ∈ Γ̃ or ¬A ∈ Γ̃ ;

(2): A⊃ B ∈ Γ̂ ⇔ A /∈ Γ̃ or B ∈ Γ̃ ;

(3):
∧
Φ ∈ Γ̃ ⇔ A ∈ Γ̃ for all A ∈ Φ;

(4):
∨
Φ ∈ Γ̃ ⇔ A ∈ Γ̃ for someA ∈ Φ.

Proof. The maximality ofΓ̃ follows from the definition of eachΓm.

(0): ⇒: immediate. The other direction follows from the definition ofΓ̃ .

(1): It is impossible that bothA and¬A are inΓ̃ by Lemma 11.4.(2). IfA = Am /∈
Γ̃ , thenΓm−1 ∪ {Am} is inconsistent. By Lemma 11.3, we haveΓm−1 �0 ¬Am.
By (0), we have¬A ∈ Γ̃ . The other case is symmetric.

(2): Let A⊃ B ∈ Γ̂ . If A ∈ Γ̃ , thenB ∈ Γ̃ by MP. Conversely, letA /∈ Γ̃ or B ∈
Γ̃ . First, consider the case:B ∈ Γ̃ . Then by L1, we haveA⊃ B ∈ Γ̂ . Second, let
A /∈ Γ̃ . Then¬A ∈ Γ̃ by (1). Since¬A∧A /∈ Γ̃ , we have¬(¬A∧A) ∈ Γ̃ . Hence
¬B ⊃ ¬(¬A∧ A) ∈ Γ̃ by L1. By Lemma 11.1.(a), we have¬A∧ A ⊃ B ∈ Γ̃ .
This is equivalent to¬A⊃ (A⊃ B) ∈ Γ̃ . Hence (A⊃ B) ∈ Γ̃ .
(3): Suppose

∧
Φ ∈ Γ̃ . Since�0

∧
Φ ⊃ A for all A ∈ Φ, we haveΓ̃ �0 A for all

A ∈ Φ.
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Conversely, suppose thatA ∈ Γ̃ for all A ∈ Φ. By (0), Γ̃ �0 A for all A ∈ Φ.
By L1, we haveΓ̃ �0 (C ⊃ C) ⊃ A for all A ∈ Φ. HenceΓ̃ �0 (C ⊃ C) ⊃ ∧Φ.
(4): SupposeA /∈ Γ̃ for all A ∈ Φ. Let C be any formula. By (2),A ⊃ C ∈ Γ̃
andA⊃ ¬C ∈ Γ̃ for all A ∈ Φ. By (0) and

∨
-Rule, we have

∨
Φ ⊃ C ∈ Γ̃ and∨

Φ ⊃ ¬C ∈ Γ̃ . By L3, we have¬∨Φ ∈ Γ. Conversely, suppose thatA ∈ Γ̃
for someA ∈ Φ. By L5, we have

∨
Φ ∈ Γ̃ . ��

Now we can define an assignmentκ by κ(p) = � iff p ∈ Γ̃ . Using thisκ, we
haveVκ by E0–E4 of Section 4. It remains to proveVκ(A) = � for all A ∈ Γ.
For this purpose, it suffices to show thatVκ(A) = � if and only if A ∈ Γ̃ . This is
proved by induction on the structure of a formula: Lemma 11.5 is used for the
following steps.

(1): for anyp ∈ PV , Vκ(p) = � ⇔ κ(p) = � ⇔ A ∈ Γ̃ ;
(2): Vκ(¬A) = � ⇔ Vκ(A) =⊥⇔ A /∈ Γ̃ ⇔ ¬A ∈ Γ̂ ;
(3): Vκ(A ⊃ B) = � ⇔ Vκ(A) = ⊥ or Vκ(B) = � ⇔ A /∈ Γ̃ or B ∈ Γ̂ ⇔ A ⊃
B ∈ Γ̂ ;
(4): Vκ(

∧
Φ) = � ⇔ Vκ(A) = � for all A ∈ Φ⇔ A /∈ Γ̃ for all A ∈ Φ⇔ ∧

Φ ∈
Γ̂ ;
(5): Vκ(

∨
Φ) = � ⇔ Vκ(A) = � for someA ∈ Φ ⇔ A ∈ Γ̃ for someA ∈ Φ ⇔∨

Φ ∈ Γ̂ . ��
Proof of Lemma 11.1.25 (a),(b) and (c) are proved as (7), (18) and (19). In the
following, we use Lemma 3.1.(2) without mentioning.

(1): �0 (B ⊃ C) ⊃ ((A⊃ B) ⊃ (A⊃ C)).
*): Since (B ⊃ C) ⊃ (A ⊃ (B ⊃ C)) and (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃
C)) are instances of L1 and L2, we have, by Lemma 3.1.(2),�0 (B ⊃ C) ⊃
((A⊃ B) ⊃ (A⊃ B)).

(2): A⊃ (B ⊃ C) �0 B ⊃ (A⊃ C).
*): By L2, we haveA ⊃ (B ⊃ C) �0 (A ⊃ B) ⊃ (A ⊃ C). This together with
B ⊃ (A⊃ B)(−L1) implies A⊃ (B ⊃ C) �0 B ⊃ (A⊃ C) by Lemma 3.1.(2).

(3): �0 (A⊃ B) ⊃ ((B ⊃ C) ⊃ (A⊃ C)).
*): RegardingB ⊃ C , A⊃ B andA⊃ C asA,B andC of (2), we have, by (1),
�0 (A⊃ B) ⊃ ((B ⊃ C) ⊃ (A⊃ C)).

(4): �0 A⊃ ((A⊃ B) ⊃ B).
*): RegardingA ⊃ B andA asA andB of (2), we have, using Lemma 3.1.(1),
�0 A⊃ ((A⊃ B) ⊃ B)).

(5): �0 (A⊃ (A⊃ B)) ⊃ (A⊃ B).
*): Since (A ⊃ ((A ⊃ B) ⊃ B)) ⊃ ((A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)) is an instance of
L2 and�0 A⊃ ((A⊃ B) ⊃ B) by (4), we have�0 (A⊃ (A⊃ B)) ⊃ (A⊃ B).

(6): �0 ¬¬A⊃ A (the law of double negation).
*): Since ¬¬A ⊃ (¬A ⊃ ¬¬A) and (¬A ⊃ ¬¬A) ⊃ ((¬A ⊃ ¬A) ⊃ A) are
instance of L1 and L3, respectively, we have, by Lemma 3.1.(2),�0 ¬¬A ⊃

25 The following proof is due to T. Nagashima.
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((¬A ⊃ ¬A) ⊃ A). Hence we have, by (2),�0 (¬A ⊃ ¬A) ⊃ (¬¬A ⊃ A). By
Lemma 3.1.(1), we have�0 ¬¬ A⊃ A.

(7): �0 (¬A⊃ ¬B) ⊃ (B ⊃ A).
*) Since�0 B ⊃ (¬A⊃ B) by L1 and�0 [B ⊃ (¬A⊃ B)] ⊃ [((¬A⊃ B) ⊃ A) ⊃
(B ⊃ A)] by (3), we have�0 ((¬A ⊃ B) ⊃ A) ⊃ (B ⊃ A). This and L3 imply
�0 (¬A⊃ ¬B) ⊃ (B ⊃ A).

(8): �0 A⊃ ¬¬A (the converse of (6)).
*): Since �0 ¬¬¬A ⊃ ¬A by (6) and�0 (¬¬¬A ⊃ ¬A) ⊃ (A ⊃ ¬¬A) by (7),
we have�0 A⊃ ¬¬A.

(9): �0 (¬A⊃ B) ⊃ (¬B ⊃ A).
*) Since�0 (B ⊃ ¬¬B) ⊃ ((¬A⊃ B) ⊃ (¬A⊃ ¬¬B)) by (1) and�0 B ⊃ ¬¬B
by (8), we have�0 (¬A ⊃ B) ⊃ (¬A ⊃ ¬¬B). This together with�0 (¬A ⊃
¬¬B) ⊃ (¬B ⊃ A) by (7) implies�0 (¬A⊃ B) ⊃ (¬B ⊃ A).

(10): �0 (A⊃ B) ⊃ (¬B ⊃ ¬A).
*): Since �0 (B ⊃ ¬¬B) ⊃ ((A ⊃ B) ⊃ (A ⊃ ¬¬B)) by (1) and�0 B ⊃ ¬¬B
by (8), we have�0 (A⊃ B) ⊃ (A⊃ ¬¬B). This together with�0 (A⊃ ¬¬B) ⊃
(¬B ⊃ ¬A) by (7) implies�0 (A⊃ B) ⊃ (¬B ⊃ ¬A).

(11): �0 (A⊃ ¬B) ⊃ (B ⊃ ¬A).
*) Since�0 (¬¬A ⊃ A) ⊃ ((A ⊃ ¬B) ⊃ (¬¬A ⊃ ¬B)) by (3) and�0 ¬¬A ⊃ A
by (6), we have�0 (A ⊃ ¬B) ⊃ (¬¬A ⊃ ¬B). This and (7) imply�0 (A ⊃
¬B) ⊃ (B ⊃ ¬A).

(12) �0 A⊃ (B ⊃ ¬(A⊃ ¬B)).
*) Since �0 A ⊃ ((A ⊃ ¬B) ⊃ ¬B) by (4) and�0 ((A ⊃ ¬B) ⊃ ¬B) ⊃ (B ⊃
¬(A⊃ ¬B)) by (11), we have�0 A⊃ (B ⊃ ¬(A⊃ ¬B)).

(13): �0 ¬A⊃ (A⊃ B).
*) Since¬A⊃ (¬B ⊃ ¬A) is an instance of L1, we have, by (7),�0 ¬A⊃ (A⊃
B).

(14): �0 ¬(A⊃ ¬B) ⊃ A.
*): Since �0 ¬A ⊃ (A ⊃ ¬B) by (13) and�0 (¬A ⊃ (A ⊃ ¬B)) ⊃ (¬(
A⊃ ¬B) ⊃ A) by (9), we have�0 ¬(A⊃ ¬B) ⊃ A.

(15): �0 ¬(A⊃ ¬B) ⊃ B.
*): Since�0 ¬B ⊃ (A⊃ ¬B) by L1 and�0 (¬B ⊃ (A⊃ ¬B)) ⊃ (¬(A⊃ ¬B) ⊃
B) by (9), we have�0 ¬(A⊃ ¬B) ⊃ B.

(16): �0 ¬(A⊃ ¬B) ⊃ A∧ B.
*): Using

∧
-Rule, it follows from (14) and (15) that�0 ¬(A⊃ ¬B) ⊃ A∧ B.

(17): �0 A⊃ (B ⊃ A∧ B).
*) Since�0 (¬(A⊃ ¬B) ⊃ A∧B) ⊃ [(B ⊃ ¬(A⊃ ¬B)) ⊃ (B ⊃ A∧ B)] by (1),
we have�0 (B ⊃ ¬(A ⊃ ¬B)) ⊃ (B ⊃ A∧ B) using (16). This and (12) imply
�0 A⊃ (B ⊃ A∧ B).

(18): A⊃ (B ⊃ C) �0 A∧ B ⊃ C .
*): Since�0 A∧ B ⊃ A by L4, we haveA⊃ (B ⊃ C) �0 A∧ B ⊃ (B ⊃ C). By
(2), A⊃ (B ⊃ C) �0 B ⊃ (A∧B ⊃ C). This together with�0 A∧B ⊃ B by L4
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implies A⊃ (B ⊃ C) �0 A∧ B ⊃ (A∧ B ⊃ C), soA⊃ (B ⊃ C) �0 A∧ B ⊃ C
by (5).

(19): A∧ B ⊃ C �0 A⊃ (B ⊃ C).
*) Since�0 (A∧B ⊃ C) ⊃ ((B ⊃ A∧B)) ⊃ (B ⊃ C)) by (1) andA∧B ⊃ C is
an assumption, we haveA∧ B ⊃ C �0 (B ⊃ A∧ B) ⊃ (B ⊃ C). This and (17)
imply A∧ B ⊃ C �0 A⊃ (B ⊃ C). ��
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