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1 Introduction
1.1 Aim and some basic notions in logic

This paper is written for economists and/or game theorists as an introduction to
epistemic logics and their applications to game theoretic problems. We believe
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that epistemic interactions play key roles in social behavior of people, and also
that symbolic expressions, manipulations and their interpretations are central in
such epistemic interactions. For these beliefs, we adopt the research strategy to
take and use basic concepts and results developed in mathematical logic.

The declaration of our ultimate aim may help readers understand our research
attitude: Our logic approach might be regarded as the pursuit of foundations of
extant game theories, as mathematical logic may be viewed as the study of foun-
dations of mathematics. Contrary to this, we have little intentions of pursuing
such foundations. A typical characteristic of an extant game theory is the pursuit
of “rationality” in outcomes assuming, often unintentionally, a lot of transcen-
dentalities. Although our approach shares target problems with extant theories,
we avoid and/or examine consciously transcendentalities involved in extant the-
ories. Instead, we view problems of finite nature as central in investigations of
human behavior. From this point of view, we develop our logical approach.

We follow the standard bases of mathematical logic. For such bases, there
are many entrance barriers which economists/game theorists may encounter, be-
cause of methodological differences between economics and logic. These barriers
may inhibit future economic and game theoretic research, but some of their con-
stituents may become important for future research itself. It is now timely to
give a systematic introduction, emphasizing such methodological differences, to
epistemic logics with some illustrations of game applications. We hope that this
introduction will induce further developments of the logical approach.

Economics and game theory have the tradition that their mathematical
methodology is based primarily on analysis such as topology, functional analysis
and probability theory. Also in logic, we can treat these mathematical fields, but
what we emphasize by the logical approach is the basic constructions of logic
rather than direct applications of extant results in the field of logic. Logic has
various unique constituents that are not found in other mathematical fields. This
paper introduces such unique constituents to economists/game theorists. In the
rest of this section, we mention several pairs of basic concepts unique to logic
and particular to epistemic logic, which would help the reader understand the
subjects better.

The very basic starting point of logic is the separation between symbolic ex-
pressions and their intended meanings. When we target human thinking seriously,
this separation is unavoidable. It is stated in the terminology of logic as:

Al: Syntax vs. semantics

As a syntactical notion, we definefarmulato be a symbolic expression based
on given primitive symbols. As a semantical notion, we define a truth valuation
of such a formula. This separation leads to two different theories:

A2: Proof theory vs. model theory

In the former, mathematical reasoning is captured as grammatical symbol manip-
ulations from given axioms, while in the latter, mathematical models satisfying
those axioms are considered. These theories are connected by the, so-called,
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soundness-completendglgorem. In this paper, we use the word “model theory”
as almost synonymous to “semantics”.

The above connection is important conceptually as well as technically. Model
theory talks about models, each of which is assumed todumerepletedescription
of a target situation in the sense that any sentence is ditieor false® A proof
theory talks about proofs, i.e., the provability of a formula from a given set of
(nonlogical) axioms. The given set of axioms may beaatial description of
the target situation. Since each model is complete, a single model is too much to
capture the partial description. Therefore, we considegtaf candidate models
for the partial description. If a formula is true for all the possible candidate
models, it is said to bealid. The soundness-completeness theorem is a bridge
between the syntactical provability and semantic validity.

We take the view that a player has only a partial description of a target
situation. Therefore, we cannot adopt a single model as a description of the
situation. We should treat a set of nonlogical axioms in a proof theoretic manner
or a set of models in a model theoretic manner. This differs from the game
theoretic literature of epistemic models since Aumann [1], where a single model
is usually assumed to be a description of the target situation.

Another relevant distinction here is:

A3: Object theorems vs. meta-theorems

A theorem whose provability and/or validity is discussesidea logical system
belongs to the former, and a theorem on a logical system belongs to the latter.
Since our purpose is to investigate the players’ inferences required for decision
making, meta-theorems on their decisions and inferences are our central concerns.
A translation of a result in an extant game theory into a logical system is an
instance of the former, and is not really our concern. The distinction will be
clear when some examples are given.

It is important to notice that mathematical logic is a mathematical theory
of mathematical theories. We use a standard mathematical method to handle a
logical system. The mathematical method to handle a logical system is called
meta-mathematicsThis will be pointed out when it is relevaht.

In this paper, we will discuss epistemic logics, which are variants of modal
logics originally targeting the investigation of “necessity” and “possibility”. We
can borrow a lot from this literatureln the case of epistemic logics, the above
distinction A2 becomes.

1 This completeness is assumed in the classical model theory, but not necessarily assumed in
general. For example, a Kripke model for intuitionistic logic does not assume this completeness. See
van Dalen [37].

2 See Aumann [2] for some use of logical apparatuses from the viewpoint of the recent game
theoretic tradition. For the recent game theoretical literature of epistemic models, see Bacharach-
Mongin [3] and Bacharach et al. [4].

3 See Kleene [21] for the distinction between object-mathematics and meta-mathematics.

4 Hughes and Cresswell [12] and Chellas [6] are standard textbooks of modal logic. The modern
literature of epistemic logic was started by Hintikka [10]. Fagin-Halpern-Moses-Verdi [7] and Meyer
and van der Hoek [25] are found as textbooks on epistemic logics and other subjects.
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A4: Hilbert-style proof theory vs. Kripke semantics

We discuss mainly these two theories in this paper. The Hilbert-style proof theory
is convenient in its concise presentation. A strength of the logical approach is
to showunprovability. In this respect, the Hilbert-style proof theory is difficult

to handle, and the Kripke semantics is unavoidable. We will mention the other
proof theory calledsentzen-stylewhich enables us to evaluate unprovability as
well as provability. In this paper, however, we give only a brief explanation of
it in Section 4.4.

Since the above two theories are deductively equivalent, which is stated
by the soundness-completeness theorem, the reader may wonder why we adopt
both theories. The answer is double-fold. First, technically speaking, since each
theory has some merits and some demerits, it would be more powerful to have
both theories. Second, conceptually speaking, both syntactical manipulations and
semantical interpretations are important in investigations of human-thoughts in
social contexts. Therefore, we keep the dualistic attitude. Note that there are other
proof and model theories in the literature of logics (cf., Kleene [21] and Chellas
[6]).

Another relevant distinction is
A5: Propositional logics vs. predicate logics

If a target problem has only a finite number of objects such as a finite game
with pure strategies, a propositional logic would suffice, and if it has an infinite
number of objects such as a game with mixed strategies, a predicate logic would
be unavoidable. A predicate logic is an extension of a propositional logic so that
it allows for quantificationsy (for all) and 3 (exists). When the problem treats
only a finite set, the quantifications,and 3, can be expressed by conjunction

A (and) and disjunction\/ (or), respectively. Therefore, as far as we confine
ourselves to finite games, only propositional logics suffide.this paper, we
discuss only propositional epistemic logics.

1.2 Logical approach to game theoretic problems

We now turn our attention from broad distinctions in logic to ones particular to
epistemic logics and their game applications. The first distinction is:

B1: Classical logic vs. epistemic logics

Classical logic is the logic used in the standard mathematical practices. We adopt
classical logic as the base logic for our epistemic logics. This means that the
investigator (observer)’s reasoning ability is described by classical logic. The
reasoning ability of each player is assumed to consist of the ability described by
classical logic and the additional inference ability of (self-)introspection.

5 Even if the problems have only finite objects, predicate logics may be relevant to some problems
such as complexities of expressions (which are relevant for some situations, e.g., communication
within language). Kleene [21] and Mendelson [24] are classical textbooks treating basics of predicate
logic.
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The second distinction is important for game theoretic applications:
B2: Logical axioms vs. nonlogical (mathematical) axioms

This distinction can be, more or less, arbitrary in classical logic, but it is crucial

in epistemic logics (modal logics in general). We take the research strategy of

separating game problems from logical problems as much as possible. To achieve

this separation, we will describe game theoretic axioms as nonlogical axioms.
The third distinction is:

B3: Beliefs vs. knowledge

We define “knowledge” as “true beliefs”, where truth is referred to the outside
thinker. Beliefs are also divided into basic and inferred ones. A justification of
a belief for a player is an argument (proof) for it frdmasic beliefs by himself.
We do not discuss “justifications” of basic beliefs, which is a limit of the logical
approach. We allovfalse beliefsrather than discuss whether a player can obtain
true belief$ False beliefs enable us to consider the emergence of beliefs from
other sources such as individual experiences. We will treatthiegfulness axiom
which makes beliefs true, as a possible axiom rather than a basic axiom. We will
discuss distinction B3 from the logical point of view in Section 6.

The following two game theoretical distinctions are important in our ap-
proach:

B4: Solution theory vs. performance-playability theory

A solution theory addresses what criteria are adopted for decision making, while
performance - playability theory takes a solution theory as given and addresses
how the theory performs and whether the player makes a decision. In this paper,
we discuss both theories.

A related distinction is:

B5: Decision vs. prediction

In a game, each player makes a decision under predictions about other players’
decisions. A decision is ultimately important for each player, and predictions
about others’ decisions are auxiliary. For some games, a decision may be made
without predictions. We do not need to assume the same decision criteria for
decision and prediction. These differ by nature. Traditional game theory has not
distinguished between them. In this paper, we make this distinction, but will not
have enough space to examine it fully. This distinction will be clearer in Kaneko
and Suzuki [19].

1.3 Konnyaku Mondl (Jelly dialogue)

Before starting our discussions on the logical approach to game theory, we men-
tion a Japanese traditional comic (rakugo) story suggestive for the distinctions

6 We do not relate individual beliefs wubjective probabilityThe reader may understand this by
reading the basic principles for beliefs in Section 4.2.
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mentioned above. This story is indirectly related to the main body of the paper,
but helps the reader understand the basic notions discussed in the rest of paper.

Konnyaku Mondd: A (devil's tongue) jelly maker lived in a Buddhist temple
pretending to be a monk. A real Buddhist monk came to visit the temple to have
a dialogue on Buddhism thoughts. The jelly maker first refused but eventually
agreed to have a dialogue. Since the jelly maker did not know how he could
communicate with the monk on Buddhism, he answered the monk’s questions in
gestures. The monk took this as a style of dialogue, and responded in gestures.
After some exchanges of gestures, both thought that the jelly maker defeated
the monk. After the dialogue, a witness asked the monk about the dialogue. The
monk said that the jelly maker had a great Buddhism thought shown by his
gestures and should be respected. Afterwards, the jelly maker was asked by the
same witnhess and answered: the monk started talking badly about jelly products
with his gestures, made the jelly maker angry, and thus the jelly maker beat the
monk. Thus, each of them believed that they had perfectly meaningful dialogue
and that it was common knowledge that the jelly maker defeated the monk in the
dialogue. However, the monk believed that they had a Buddhism dialogue, while
the jelly maker believed that they had discussed about jelly products (pp. 61-70
in [35]).

This story has various relevant points for the distinctions mentioned in this
section. First, the gestures exchanged and the associated beliefs are distinguished
as syntax and semantics — Al. Second, different people associate different inter-
pretations with the same gestures, and they develop false beliefs, which corre-
sponds to the distinction between beliefs and knowledge — B3. Third, the other
person’s mind is only imagined in the mind of a person. An implication is that
prediction about the other’s decision differs considerably from one’s own deci-
sion — B5. The story also suggests the possibility that an individual person may
develop a false belief of common knowledge from common observations. The
last point will be discussed in a game theoretical context in Section 8.3.

This paper is organized as follows: Section 2 gives basic game theoretic
concepts to be used for illustrations. Section 3 describes semantics and syntax of
classical logic CL, and states the soundness-completeness theorem. Its proof will
be given in the Appendix. Sections 4 and 5 give various epistemic logics and
Kripke semantics, which are connected, again, by the soundness-completeness
theorem. Section 6 discusses the relationship between “beliefs” and “knowledge”.
Section 7 discusses decision criteria. We show that in some case, a solution
for decision making involves common knowledge, and that the epistemic logics
introduced in Section 4 are incapable of treating such a problem. In Section 8, we
consider an extension of an epistemic logic to incorporate common knowledge.

2 Basic game theoretic concepts

To exemplify logical constructs, we will refer to a 2-person finite noncooperative
gameg = (g1, g2) in strategic form. Each player= 1,2 has/ pure strategies



Epistemic logics and their game theoretic applications: Introduction 13

(4 > 2). We assume throughout the paper that the players do not play mixed
strategies. Playér's strategy space is denoted By:= {s1,...,S¢ } fori =1 2.
His payoff functionis a real-valued functiog; on S =5 x S.

Let (51,%) € S. We say thask, is abest strategy tosiff gi1(s1, ) > g1(t1, S2)
for all t; € §. We say thas, is adominant strategyff s; is a best strategy ts
for any s, € S. Player 2's dominant strategy is defined in the parallel manner.
A strategy pairs = (s1, ) is called aNash equilibriumiff 5 is a best strategy to
§ fori,j =1,2 (i #£j). We say thats is aNash strategyor playeri iff (si,s)
is a Nash equilibrium for somsg, wherei,j =1,2 (i #j).

In the gamey® = (g, ¢2) of Table 1 (Prisoner’s Dilemma), the second strategy
s for eachi is a dominant strategy. In the game= (g2, g3) of Table 2 which
is obtained fromg! by changing the payoff 6 in the northeast corner to 2, only
player 1 has a dominant strate@y,. Either game has a unique Nash equilibrium,
(S12, S22), which is marked with asterisk.

Table L. g* = (%, g% Table 2. g% = (g2, g3
S1 S22 1 S22

s1 (55)  (1.6) su (5.5 (1.2

sz (61)  (33) sz (61) B3y

Here, we briefly describe in the standard game theory language what decision
criteria are candidates for these games. Later, we will see how such criteria are
more accurately described in epistemic logics.

We start with the following simple decision criterion:

DC1: Playeri should choose a dominant strategy.

In game g = (g1, g3), this criterion recommends a decision to either player.
However, it recommends a strategy only to player 1 in gagfe (¢2, g3), since

2 has no dominant strategies gh. One way out for 2 is to predict 1's decision,
assuming that 1 adopts DC1 for 1's choice. We write this criterion as follows:

DC2: Playeri, predicting that playey (j # i) would choose a strategy following
DC1 should choose a best strategy to his predicted strategy for player

This differs from DC1 in that it involves a prediction about the other player’
decision making. The application of DC2 to player 2 in gapfestates that
2 predicts that 1 would choosg, as the dominant strategy and then 2 should
chooses;; as the best strategy 89,. This argument may be regarded as a special
case of the procedure so called tterated elimination of dominated strategies
(cf. Moulin [28] and Myerson [29]). The main concern in this literature is the
consideration of a resulting outcome of such a procedure, but our concern is
the considerations of required epistemic aspects for such a decision criterion and
of its performance-playability relative to given beliefs. This point is clearer in
Kaneko and Suzuki [19].

We consider other two criteria, the first of which is auxiliary.
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DC3°% Playeri should choose a Nash strategy without thinking atytsibeliefs.

This differs considerably from DC2 in that playiethinks about playej’s beliefs

in DC2 but not in DC8. The gamey® = (¢°, ¢°), of Table 3 is obtained from?

by adding one strategy to player & this game, neither player has a dominant
strategy. Hence, neither DC1 nor DC2 gives a decision to a player’ B@Res a
recommendation, but does not guarantees that playelieves that his prediction

is taken by the other player. To guarantee each player to believe that his prediction
would be taken by the other player, we change P&8 follows:

DC3: (1) Player 1 should choose a best strategy to his prediction based on (2)
below;

(2): player 2 should choose a best strategy to his prediction based on (1)
above.

One problem is whether or not DC3 leads to a Nash equilibrium, but our main
concern is to consider the epistemic structure involved in DC3. In fact, if we
assume that player 1 adopts (1), that the player 2 in 1's mind adopts (2), and so
on, then we would meet the infinite regress:

D) +— @O (@

@ «— (M- -—-(V)e&=——.

That is, player 1 believes that in 1's mingdlayer 2's prediction is based on
(2), in 1's mind player 2 believes that in 2's mind, 1's prediction is based on
(1), and so on. This infinite regress is closely related to the common knowledge
of this criterion. When an individual player adopts this criterion, the infinite
regressappears in his mindand it takes only the form of aindividual beliefof
common knowledge. Here, we would like to differentiate common knowledge
from an individual belief of it. Here, the distinction B3 of Section 1 and the
Konnyaku Mon@ become relevant.

These criteria suggest that we could find a lot of decision criteria in that
a decision criterion is genuinely subjective and belongs to each player's mind.
Kaneko and Suzuki [19] discuss, stressing the bounded interpersonal introspec-
tions, the multitude of such decision criteria.

Here, we point out the difference of DC3 from the other criteria. Criteria DC1
and DC2 (as well as D3 can be discussed in an (purely finitary) epistemic
logic, but not DC3. To capture the infinite regress in DC3, we need an exten-
sion of an epistemic logic to incorporate common knowledge. Even if common
knowledge is included, it may be possible to allow false beliefs. For example,
player 1 believes the common knowledge of playing gajhewhile 2 does
the common knowledge of playing the gamé of Table 4. To discuss those
problems in meaningful manners, we need to develop epistemic logics carefully.
These problems will be discussed in Sections 7 and 8.
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Table 3. ¢* = (3, g3) Table 4. g* = (g7, 93)
S1 S22 3 S1 S22 3

su (55 (12 (43 su (63) (12 (05)
sz (61) (B3 (0.2 s (52 B3 41

3 Classical logic CL

In this section, we review classical logic CL and its semantics. The reader may
feel that this is a detour to the logical approach to game theory. However, we
will define epistemic logics as superstructures of classical logic CL, and will use
a lot of concepts and results from CL in the development of epistemic logics as
well as in applications to game theory. Therefore, the reader should become a
bit familiar to CL before going to epistemic logics.

In Section 3.1, we define two sets of formulae. In Section 3.2, we give
the classical semantics. In Section 3.3, we give one axiomatic presentation of
classical logic CL, and state the soundness-completeness theorem for CL.

3.1 The sets of formulaez’ and "

We start with the following list of symbols:

propositional variable symbal$g, py, -.-;

logical connective symboals: (not), > (implies) A (and) \/ (or) ;
unary belief operator symbal8;, By, ..., Bn;

parentheses( , ) ; braces { , }; andcomma, .

We stress that these are pure symbols and are used to be elements of more
complex expressions, called formulae. We will associatartteendedmeanings,
“not”, “implies”, “and”, “or”, with =, D, A, V/, respectively. The implication
symbol O should be distinguished from the set-theoretic inclusion These
intended meanings will be defined operationally by logical axioms and inference
rules. Unary belief operator symbol B the belief operator of playerand is
applied to each formula. We denote the set of playerblby {1, ...,n}. The set-
theoretic brackets, } are used to express a finite set of formulae. It is assumed
that the number of propositional variables is at least one and at most countable.
The set of propositional variables is denotedRy.

Based on the above list symbols, we defioamulaeinductively as follows:

F1: anyp € PV is a formula;

F2: if AandB are formulaeso are ¢A),(A D B) and B(A) (i € N);

F3: if {Ag, Aq, ..., Am} is a finite set of formulae witln > 0, then A\ {Ao, Ay, ...,
An}) and (/{Ao, Ay, ..., An}) are also formulae;

F4: every formula is obtained by a finite number of applications of F1, F2 and
F3/

7 This definition deviates from the standard textbook definition of formulae in that conjunc-
tive and disjunctive connectiveA and\/ are applied to a finite nonempty set of formulae, e.g.,
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Po P1 Po P1
N N\ v
Po (Po D p1) (Po D p1)
hV v \
(Po > (P1 2 Po)) B1((Po D p1))
Figure 1 Figure 2

For example, §o D (p1 D po)) is obtained by applications of F1 and F2
three times and twice, respectively, and is intended to mean tha fifolds,
then p; implies po. The construction of two formulagod > (p1 O po)) and
B1((po D p1)) are described as Figures 1 and 2.

In general, a formula has finite tree structure where each terminal node
corresponds to a propositional variable and each nonterminal node corresponds
to a logical connective or a belief operator. This tree structure will be used to
construct inductive proofs. We denote thet of all formulaeby .

By a formula B(A), we intend to mean that playebelieves formula. The
behavior of the belief operators is of our central interests. In classical logic CL,
however, we first ignore these formulae, and later, will give a remark (Remark
3.5) on a somewhat nominal treatment of belief operators. We say that a fokmula
is nonepistemidf A contains no B, ..., B,. We denote the set of all nonepistemic
formulae by="". Of course, " C &.

In this paper, we do not fix exact rules of abbreviations of parenthegebit
follow standard practices of abbreviations so that we could recover the original
expressions when necessary. For exampg X (P1 D Po)), Bi((p1 O po)) and
(/\ @) are abbreviated g% D (p1 D Po), Bi(p1 O po) and A\ &, respectively. We
will also abbreviateA{A,B},\/{A,B,C} asAAB,AVB Vv C, etc® We denote
(ADB)A(B DA byA=B.C

To discuss the game theoretic problems of Section 2, we adopt the economics
practice to represent a payoff function in terms of preference relations. We start
with:

strategysymbols s, ..., Sig,; 21, -+, 20
4-ary symbols Py, Ps.

Strategy symbols are identical to those given in Section 2. By a 4-ary sy#nbol
we mean that the expressi®h(s;, S : t1,1o) is allowed for &, ), (t1,t2) € S.
These 4-ary expressions are caldmic formulaeand the set of them is denoted

/\{AO,Al, ...,Am}, rather than to an ordered pair of formulae. We take this deviation to facilitate
game theoretical applications. However, the resulting logical systems are equivalent (with respec-
tive to provabilities or validities defined in the systems). This formulation does not fit t6delG
numbering. If one wants to take a&d@el numbering, then he should return to the standard formulation.

8 In the definition of formulae, we presume the identity of a finite set. Herﬁ@{ﬁ(l,Ag}) is
identical to V\{Az,Al}) as a formula.

9 We introduce four logical connectives;, O, /\ and \/ In fact, some of them are enough
and the others can be defined as abbreviations. These abbreviations may be convenient for some
presentation purposes, but not necessarily so for other purposes. This is rather a matter of taste.
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by AF. When/; = ¢, = 2, AF consists of 32 atomic formulae. When we discuss
game theoretic problems, we regard alwAysasPV . Also, the sets of formulae
2 and " are defined based okF as the replacement &V. We see presently
how some game theoretic concepts are descrilbesthould be noted that atomic
formula Pi(s1, s : tg,t2) is intended to be aveak preferencdor (s, ;) over
(t2, t2).

The statement thad; is a best strategy ts, is described as the formula
A{Pi(s1, S : t1, ) : t1 € S}, which we denote by Begks,; | s2). The statement
thats; is a dominant strategy for 1 is expressed/eBest(s; | ) : & € S}
This means thad; is the most preferable whatever 2 would choose. The formula
A{Pi(s1, 2 : t1, 1) : t1 € S andt, € S} is equivalent to\{Best(s; | &) : & €
S} in the logic we will define. We denote the former by Dgs). In the parallel
manner, we define the formulae, Bf£st | s;) and Dom(s,). The statement that
(s1, ) is a Nash equilibrium is described as Bést | s;)ABesb(s, | 51), which
is denoted by Nask{, s;). The statement thag; is a Nash strategy for player 1
is described a¥/{Nashé,,s;) : s, € $}. This is abbreviated ay  Nashéy, s;).

Recall that a payoff function; of player 1 was given as a real-valued func-
tion. Here, we express a payoff functign by the following set of preferences:

{Pi(s:t) 1 g1(s) =2 ga()} U {=Pu(s : 1) 1 ga(s) < ga(D)}- (3.1)

This is a set of symbolic expressions and is denoted;byWe can take the
conjunction, A\ g1, of this set. In the parallel manneg, and A g, are defined.
Thus, the payoff functions for both players are described as the s€h U g,
or as the formulg\ (g1 U g2).

3.2 Classical semantics

So far, we have defined formulae expressing logical or game theoretic ideas,
but we have not considered a way of evaluating them. In this subsection, we
define semantical notions, “truth” and “falsity”. From these, we define another
semantical notion, “validity”, which will be connected to a syntactical notion,
“provability”.

First, we give the definition of a semantical valuation of each formula’ih
In Remark 3.5, we mention the modification of this definition fat.

A function x : PV — {T, L} is called an (classica@ssignmentwhere T
and_L are the symbols designating “true” and “false”. We extend each assignment
 to the functionV, : " — {T, L} by the following induction on the length
(tree structure) of a formula:

CO: for anyp € PV, V.(p) = T iff x(p)=T;
Cl:V,(—A) =T iff V,(A) =1,
C2:V.,(ADB)=Tiff V,(A)=LorV,B)=T;
C3: V. (AP)=TIiff V,(A)=T forall Ae &;
C4:V.(\V®) =T iff V,(A)=T for someA € &.
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By induction, the valueV,(A) is defined for everyA € &°". That is, each
step defines its left-hand side by the right-hand side. For example, RMen
{Po,P1} andk(po) = T andk(p1) = L, we calculateV,(po O (p1 D po)) from
the leaves of Figure 1, and obtaify(po O (p1 O Po)) = T. In fact, the valuation
of this formula isT independent of. Such a formula is a classical tautology.
More precisely, we say thah € &”" is a classical tautologyiff V.(A) = T
for all assignments:. In fact, A > (B D A) is a tautology for any formulae
A B € 7" : Indeed, for any, if V,,(A) = L, thenV.(AD (B D A)) =T by C3,
and if V.(A) =T, thenV,(B D A) =T by C3 and thusy.(AD> (B D A)=T.

To describe game theoretic assumptions, we will nselogicalaxioms. Let
I" be a subset o#”". We say thak is amodel of[" iff V,,(C) =T forall C € I.
For anyA € ", we say thatA is asemantical consequencé I iff V. (A) =T
for all modelsx of I, in which case we writd” £ A. When I is empty, we
write simply E A. In this caseA is a classical tautology. We writE ¥ A iff not
I' E A. Note that this differs fromi” £ —=A. This means that the relatioh F is
not necessarily complete.

Let us return to game problems. Consider the gafe (g, g3) of Table 1.
Recall that the payoff functiong and g3 are described ag: "and g3 defined by
(3.1). Sinceg? contains eitheP; (s : t) or —P;(s : t) for eachP;(s : t) € AF, the
value of a modek of Gt on Pi(s : t) is uniquely determined, that ig; U g3 has
a unique modek, in which sensg/f U g3 is a completedescription of game?!
(up to the orderings determined by the payoff functignsand g,).

Consider a modek of gi. In this case, since is arbitrary onP(s : t), g1
allows 26 models. For any modet of gi, we haveV,(Domy(sz)) = T and
V. (-Domy(s11)) = T. Thus,

g1 E Domy(so) andgi E ~Domy(sp1). (3.2)

That is, if g‘% is assumed, Donfs;2) and -Domy(s; derived as unantical
consequences ofi” Also, it holds thatg} F Domy( nd gi F —~Domy(
When gt U g3 is assumed, it holds that

91U 33 F Nashéi,, ).
Unlessg? is assumedy,.(Besb(sy2 | s12)) = L for some modek of g1, and thus,

91 ¥ Nashéyy, 52). (3.3)

That is, unless enough information is assumed, it is not concludedsthas,f)
is a Nash equilibrium.

The above are, more or less, standard game theoretic arguments. Standard
arguments can be expressed in the logical structure discussed so far. However,
the current structure is limited in that it cannot address arguments like DC2
of Section 2. They involve beliefs about the decision of the other player. To
adequately describe them, we need to introduce epistemic conditionsvamdh
come in Section 4.
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3.3 Classical logic CL and its provabilityg

As yet we have discussed basic notions such as formulae and semantical conse-
guences. Here, we introduce a proof-theoretic system of classical logic CL. The
proof-theoretic system formulates mathematical inferences as pure symbol manip-
ulations, while the consequence relatiois formulated by considering meanings
or possibilities of symbolic expressions. We denote this proof-theoretic system
also by CL. We find out soon that the provability and consequence relations are
intimately related.

Classical logic CL consists of five axiom schemata and three inference rules,
which describe the possible ways of manipulating formulaez8t The notion
of a proof will be defined by means of such components. More concretely, those
five axiom schematand threeinference rulesare as follows: for any formulae
A, B, C and finite nonempty seb of formulae ino"",

L1l: AD(BDOA);

L2: AD(BD2C)D((ADB)D(ADC));
L3: -AD-B)D((-ADB)DA);

L4: AP DA whereAc &;

L5: AD V&, whereA e &,

%A (Modus Ponens)
{ADB:Bed} {ADB:Acd}
AS N\ (/\-Rue) Voo B (V/ Rute) .

Modus Ponens is abbreviated as MP. These axioms and rules are schemata in the
sense that formulad, B, C and the set> can be arbitrary. A particular formula
or inference rule of them is called anstance for example,pg O (p1 D po) is
an instance of L1°
Let A be a formula in="" and I" a subset of”". A proof of A from I" in
CL is a finite tree with the following properties:

(1): a formula ino”" is associated with each node;

(2): the formula associated with each leaf is an instance of the above axioms or
is a formula inI™;

(3): adjoining nodes together with their associated formulae form an instance of
the above three inference rules;

(4): Ais associated with the root nodie.

10 There are many other formulations of classical propositional logic (see Mendelson [24], pp. 37—
38). The present axiomatization is given in Kaneko and Nagashima [16].

11 More explicitly, a proof is given as a tripleX( <: ), where K, <) is a finite tree in the sense
of graph theory ang is a function fromX to " associating formula(x) with a each node € X.
An ending nodex is called aleaf, and the initial node is called theot.
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We say thatA is said to beprovable fromI” in CL, denoted byl" ¢ A, iff there
is a proof of A from I'. When I" is empty, we write simply— A. We write
FJ’éoAlff not I" ko A

The following lemma gives simple examples of provable formulae.

Lemma 3.1.
D: FoADA
(2: {A>B,BODC}+gADC.
Proof.
(2): The following is a proof tree oA D A.
L2 L1
[AD(ADADAIDIADADA)D(ADA] AD((ADADA
| MP L1
(AD(ADA))D(ADA AD(ADA
| MP

ADA

(2): The following is a proof ofA > C from {AD> B,B D C}.
Ass. L1
B>C B>C)>(A>(B>CQ))
| MP L2
AD (B D>C) [AD(BDC)DI(ADB)D(ADC)
Ass. | MP
ADB (ADB)D(ADC)
| MP
ADC O

The next lemma will be used without mentioning.
Lemma 3.2.

(1): I"CTrandI” g Aimply I' g A;
(2): if 'oBforallBeI”andI” oA, thenI'qA.

Here, we find the distinction A3 stated in Section 1. The claims of Lemma
3.1 are object theorems, while those of Lemma 3.2 are meta-theorems on object
theorems. The latter are not formulated in CL but in metamathematics.

We would like to have a bridge between the classical semantics of Section 3.2
and the syntactical system CL. To have this connection, we need a key concept:
We say that a sef’ of formulae ino"" is inconsistentin CL iff "'y -C AC
for someC, and thatl" is consistenin CL iff it is not inconsistent in CL.

Theorem 3.3 (Soundness-completeness for classical logic CL). Let I" be a set
of formulae andA a formula. Then

(D: I'oAifand only if I" E A,
(2): there is a modek of I" if and only if I" is consistent in CL.

Assertions (1) and (2) (with the quantifications of &lland A for each)
are actually equivalent. Thenly-if part of each is calledsoundnessand theif
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part iscompletenessThe term “soundness” means that the syntactical formula-
tion of symbolic inferences provides nothing other than the semantical validity,
and “completeness” means that the former captures the latter. Thus, the two ap-
proaches are equivalent. In this sense, our description of “logic” is complete.
This gives the bridge between model theory and proof theory stated as A2.

The above completeness differs from the “completeness” in the sense that
I' o Aor I' -9 —A. The former is the completeness of a logic, but the latter is
the completeness of nonlogical axiorfis'?

Theorem 3.3 is quite standard, and the above syntactical system turns out to
be equivalent to the other formulations of classical logic (see Mendelson [24] for
other formulations of CL). Nevertheless, the above axiomatization is modified to
facilitate game theoretic arguments, and no textbook for this version is found.
Thus, we should state its proof. The soundness part can be proved without much
difficulty, following a proof in a textbook, but the completeness part is quite
complicated. We give a proof of completeness in the Appendix.

By Theorem 3.3, we can use any tautologies as provable formulae in CL. For
example~AVA, =(-AAA), -\ P = A{-A:Acd}, - NP=V{-A:Ac P}
and @A D B) = (—B D —A) are provable in CL. In the subsequent sections, we
use such tautologies without mentioning

It follows from the soundness part of Theorem 3.3.(2), by taking the empty
I', that CL is contradiction-free.

Corollary 3.4. There is no formul& such that-g A A A.

Let us return to the game example. Using Theorem 3.3, (3.2) and (3.3) can
be written as
g1 Fo Domy(s12) andgi o ~Domy(sya). (3.4)
31 Fo Nashéip, ). (3.5)
In fact, (3.4) can directly be proved in CL, which is easier than (3.2). On the
other hand, it is difficult to obtain (3.5) directly in CL. For a direct proof of
(3.5), we should show that there is no prdbf Nashé;,, Sz2) from gi. This is
a difficult task, since there are an infinite number of candidate protdeever,
Theorem 3.3 enables us to show unprovability by constructing a countermodel.

Remark 3.5. When we adopy” rather thare”", we need no essential modifica-
tion of syntactical system CL; just we replagé” by &°. On the other hand, the
classical semantics should be slightly modified: the domain of each assignment
k becomesPV U {B;j(A) : A € & andi € N} with the same imagd T, L}.
Accordingly, CO is replaced by

CO*: for anyC € PV U {Bj(A): A€ & andi € N}, V.,(C) = T if and only if
k(C)=T.

Then all the other definitions are the same. HerdABis treated in the same
manner as a propositional variable. Theorem 3.3 holds with these modifications.
In the subsequent sections, we use this modified CL with the set of forrdlae

12 The latter is the completeness of a theory in the sense of the logic literature.
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The following tautologies will be used, often without mentioning: for any
A B,C € & and any finite nonempty subsétof =,

(1):+0 (AABDC)=(AD(BDC));
2):Fo(ADB)ABDC)D(ADC);
B):Fo-A®=V{-A:Acd}andto -\ P = A\{-A:Ac &};
(4): Fo (A D B) = (=B D —A).

In the classical logic CL of Remark 3.5, it turns out that B; (A) for any
A € &’. Thus, we cannot discuss how a player arrives at his beliefs or his
reasoning ability. On the other hand, game theory is particularly interested in the
construction of beliefs and the reasoning ability of a player, which is the subject
of the next section.

4 Various epistemic logics. proof-theoretic approach

In this section, we present various epistemic logics from the proof-theoretic point
of view. There are many possible logical systems and their different formula-
tions. We discuss some of them, following the standard logic literature. However,
the basic principles for epistemic logics are not be clearly seen in the standard
formulation. Thus, we discuss general ideas for beliefs. In doing so, the logical
system KD4 emerges as central in various systems. For future purposes, we
present also the sequent formulation KDih Gentzen-style. The reader may
skip Sections 4.2 — 4.4 for reading the rest of the paper.

4.1 Standard axiomatizations of epistemic logics

In this subsection, we follow the standard axiomatizations of epistemic logics.
We obtain various logical systems determined by combinations of axioms, which
are treated in a somewhat parallel manner.

We consider the following list of axiom schemata and inference rule, for
whose names we follow the literature of modal logic: for any N, anyA, C €
2’ and any finite nonempty subsétof & :

K:Bi(AD C) D (Bi(A) D Bi(C));*®

D: =Bi(-A A A);

T:Bi(A)DA-———————— —truthfulness;

4: Bi(A) D BiBi(A) — - — —— - positive introspection;

5: =B;i(A) D B;(—B;(A)) — — —negative introspection;
and

13 K and D come from Kripke” and “deontic logic”. See Chellas [6].
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ﬁﬂj (Necessitation).
1

By Remark 3.5.(1), Axiom K is equivalent toj& D> C)AB;(A) D B;(C).
This is interpreted as meaning that playecan use Modus Ponens. Axiom D
means that player does not have a contradictory belief. Axiom T means that
beliefs are true to the outside thinker. Axiom T implies Axiom D. Axiom 4 means
that if playeri believesA, then he also believes that he beliepeg\xiom 5 means
that if he does not believd, he believes that he does not. These two axioms
look parallel, but we will argue in Section 4.2 that they differ substantively. The
Necessitation rule states thatAfis already proved, then;BA) is also provable.
Some examples of proofs are given below.

We abbreviate the Necessitation rule as Nec. It is important to notice that
Nec may be repeatedly applied even with different players, e.g.,

Thus, onceéA is provable, then it becomes common knowledyeffect Note that
Nec differs fromA O B;j(A) as an axiom. This difference will be clearer when
we introduce nonlogical axioms. The treatment of nonlogical axioms differs from
that in classical logic CL, which will be explained presently.

The most basic system is defined as

K™ CL + K + Nec (within &).

A proof P in epistemic logic R is defined in the same manner as in CL except:
(1) instances of K and Nec are allowed and (2) nonlogical axioms are not allowed
in the proof.

Consider player 1's inference in the gameof Table 1. Diagram 1 gives a
proof of Bi(A §1) D Bi(Domy(si2)) in K", where the uppermost formulae are
instances of L4, the uppermost inferencg\jsRule, the second is Nec, the right-
hand formula of the third line is an instance of Axiom K, and the last inference
is MP. Note that\-Rule has|S| = 4 upper formulae.

{1 D Pils12,% : 51, %) : (51,%) € S}
/\ 41 O Domy(s12)
B1 (A 4i D Dom(si?)  Bi (g} D Domi(siz)) O (Br (A\33) O Ba(Domu(siz)))
By (A1) > Ba(Domy(s2)).

Diagram 1

That is, if 1 believes that his payoff function /3, then he infers the belief that
s12 is @ dominant strategy. There is also a proof @{/831) O Bi(—Domy(s11)),
which is derived fromA gi > —Domy(s;;) in the same manner, byt gi >
—-Domy(s;1) needs a bit longer proof.

Various epistemic logics can be defined based 8rbi( choices of some of
the above axiom schemata. In this paper, we consider the following list of logics:
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K" CL + Nec + K; KD": K" + D; KT K"+ T;
KD4": KD" + 4; A" KA + T
KD45" : KD4" + 5; S5":S4" + 5.
Diagram 2

We will argue that KD4 and KD take central positions in this list of logics. It
will be discussed in Section 6 that a logic including Axiom T, say,3&n be
discussed in one without it.

Let . be a logic in the above listA proof in . is defined in a similar
manner to that in K Let A be a formula in&°. We write - A iff there is
a proof of A in .. The following is a simple observation, which will be used
without mentioning: for amyA € &,

Fo Aimplies o A. (4.2)

Note that the provability oA € & in CL is mentioned in Remark 3.5.

In the above definition of a proof, we do not allow nonlogical axioms as
initial formulae in proofs. To describe game theoretic assumptions, we introduce
nonlogical axioms in a way different from in Section 3.3. Letbe a subset of
2’ andA € &. We definel" o Aiff ko Aorko A® D A for some finite
nonempty subsep of I". For the reason to avoid a nonlogical axiom in a proof,
see the remark about the Necessitation rule in Section 4.3.

In classical logic CL, for a nonempty finite sét of formulae,I" F A is
equivalent toF A I" O A, which together with the soundness-completeness for
CL implies I" ¢ A is equivalent ta—o A I" O A. Hence it follows from (4.1)
that

I'Fo AimpliesI" o A (4.2)

The strengths of the provabilities of the above logics are described as follows:

K" — KD" — KT

+ +
KD4" — sS4
+ +

KD45" — S5

Diagram 3

where the expressiorty” — ./, means that the provability 0%’ is stronger
than that of/, for examplef~kpg4» Aimplies-gp A. Diagram 1 is a legitimate
proof in all .”’s.

The following are basic properties of the epistemic logics of the above list

Lemma 4.1. For anyA,C € & and a nonempty finite subsétof -,
(1): Fo Bi(AD C)ABi(A) D Bi(C);
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(2): o VBi(®) D Bi(\/ ), where B(®) = {Bi(A) : A € &};
Q): k. Bi(A®) = \Bi(®);

@: Fo Bj(—A) D —-B;j(A), where.¥ includes Axiom D;
(5):if I' o A then B(I') Fo Bi(A).

Proof. We prove (1) — (4).

(2): This follows from Axiom K and Remark 3.5.(1).

(2): Let A be an arbitrary formula imb. Sinceo A D \/® by L5, we have
F.o Bi(AD V@) by Nec. By K, B;i(A) D Bi(\/ ®). Since this holds for any
A€ @, we have o \/B;i(®) D Bi(\/ ®) by \/-Rule

3):F Bi(A ®) D ABi(®) is the dual of (2). We prove the converse only dfox
{A,C}. Sincel-~ A D (C D AAC), we have- B;(A) D (Bi(C) D Bi(AAC)),
using Nec, K and MP a few times. This is equivalent-tg- B;(A)AB;(C) D
Bi (AAC). Whend® has more than two formulae, we should préve AB;(®) D
Bi (A @) by induction on the number of formulae @

4): By (3), Fo -Bi{(-A A A) = —(Bi{(—-A)AB;(A)). By Axiom D, we have
Fo —(Bi (—A)AB; (A)). This is equivalent to- Bi(—A) D —B;(A). O

We will use the following facts extensively without mentioning.
Lemma 4.2. For anyA,B,C € & and subset$’, ¢ of &,
OD:I'rADBandI'+BD>Cimply 'y ADC,;

2: 'ty Aforall Ae @ if and only if I" o A @, where® is a nonempty
finite set

Proof. (1) follows from Remark 3.5.(2). Thié part of (2) follows from L4 and
MP. The converse is proved by usifigRule and MP (L1 in the case df = ().
O

Let us see how the decision criteria DC1 and DC2 of Section 2 are expressed
in epistemic logic¥”.

Sincet» Bi(A g}) O Bi(Domy(siz)) by Diagram 1, we have, by Lemma
4.1.(3),.» AB1(3}) D Bi(Domy(s12)). Following our convention of nonlogical
axioms in epistemic logic”’, we have

B1(g1) . B1(DOMy(S12)). (4.3)

Similarly, B;(31) .o B1(~Domy(s11)). In logic.#” including Axiom D, we have,
by Lemma 4.1.(4),
B1(31) o —Bi(Domy(s1y)). (4.4)

Hence 1's belief on his own payoff function is enough to dedigeto be a
unique dominant strategy.
The counterpart of (3.5) i” is expected to be:

B1(91) ¥.» Bi(Nashéiz, 52)). (4.5)



26 M. Kaneko

In fact, it would be difficult to prove this kind of unprovability withitr”". One
way of showing such annprovabilityis to use semantics, which is discussed in
Section 5.2.

As will be seen in Section 7.1, we formulate criterion DC2 as:

D2a(s2) = B, <\/ Bl(Doml('[l))> A /\ Bz (B1(Domy(t1)) O Besh(sz | ta)) -

t1 t

That is, player 2 believes that 1 has a dominant strategy and that 2's deci-
sion is a best strategy to 1's dominant strategies. Consider the decision making
of player 2 with this criterion in gameg?. Suppose that”” includes Axiom

D. Since g2 = g7, we have B(3%) . V,Bi(Domy(ts)) by (4.3) and thus
B2B1(7%) o Ba(V, Bi(Domy(t1))) by Lemma 4.1.(5). Also, we havg; T
Besb(s2 | s12), and sog5 Fo Bi(Domu(si?) O Besk(s | s12). Hence
B2(3%) Fv Ba(Bi(Domu(si2)) O Besh(sz | s12)) by Lemma 4.1.(5). It fol-

lows from (4.4) that B@f) k.o Bi(Domy(si1)) D Besh(S | s11), and thus
B2B1(3%) . Ba(B1(Domy(s11)) D Besk(Szz | s11)). Combining all the results,

we have

B2B1(32), B2(33) F.r D22(22), (4.6)

where we abbreviate MB1(§?)UB(33) as BB1(32),B2(g5). That is, player 2
would chooses, as a recommended strategy by DC2 under the belighs @),
B2(33).

4.2 Basic principles for beliefs

Here, we state the general principle for a belief abdut order to have a clearer
view on what we would like to express by a belief absufThe reader may skip
this subsection to go to the subsequent sections.

The general idea for the notion of “a belief ab@\itis stated as:

G: playeri believesA if and only if he has an argument fés from his basic
beliefs.

From the proof-theoretic point of view, we formulate “having an argument for
A’ as “having a proof ofA.” There are still various options for a formulation

of “having a proof”. Since our investigator (observer) is assumed to have the
reasoning ability described by classical logic CL, we take the following:

G1: Playeri has the reasoning ability described by classical logic CL.

That is, playeri has at least the same reasonglgjlity as the investigator’s.
Hence, player can infer what the investigator can infer. This does not imply that
the players and investigator share the same basic beliefs. Since players’ beliefs
and reasoning abilities are described inside the investigator's logical system,
some descriptions are made purely from the investigator's viewpoint and may
not be shared with players, which will be seen below.
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Besides G1, we add other three components to players’ beliefs and reasoning
abilities: (1) Basic beliefs taken as given; (2) Intrapersonal introspective abilities;
and (3) Interpersonal introspective abilities. Basic beliefs of playare given
as nonlogical axioms in the terminology in Section 3, and their emergence is not
discussed in this papét.Regarding (2) and (3), intrapersonal introspection may
be still regarded as a problem of individual inferences, but interpersonal ones are
largely hypothetical. For these problems, there are a great spectrum of options.
Here, we adopt simple and clear-cut options for these.

For the intrapersonal introspection ability, we assume:

G2: Playeri has the introspection ability on his own abilities described by G1
and G2.

This requires player only to be conscious of “having a proof”. This conscious-
ness of “having a proof” is now regarded as “having a proof of “having a proof”.
Therefore, we regard G2 as forming part of basic principle G. However, some
subtlety is involved in G2: G2 itself is involved in G2. To see the feasibility of
G1-G2, we need an explicit mathematical formulation of them.

The nature of beliefs about other players and/or their beliefs considerably
differs from that of beliefs about himself and/or his own. Beliefs about other
players are based on projecting and are hypothetical constructs. There are many

options for this problem. Here we consider only the following.

G3: When player thinks about other players’ beliefs, playieassume G1, G2
as well as G3 for the other players in a symmetric manner.

This means that a player imagined in the mind of a player (imagined in the
mind of another player ...) follows G3. Thus, the situation is very complicated,
but, we obtain the symmetric interpersonal beliefs by assuming the limit case of
complications. Note that G3 appears in G3 itself, again.

To materialize our basic principle G, we need specific assumptions on the
above three steps. We should keep immarkin mind: Principle G1 is the most
basic, G2 is still basic, but G3 is one possible and convenient choice for our
research strategy. More restrictive possibilities of G2 and G3 are discussed in
Kaneko and Suzuki [19].

To formulate G1, it suffices to assume the beliefs about the instances of
Logical Axioms L1-L5, and the axioms expressing the reasoning ability of player
i corresponding to inference rules MR;Rule and\/-Rule:

B-L: Bj(A), whereA is an instance of L1-L5;
B-MP: B;(A D C)AB;(A) D B;(C);
B-A: A{BiI(ADC):Ced} DBi(ADAD);
B-V: A{Bi((CDA):Ced} DBi(VPDA),
14 The literature of belief revisions is related to the development of basic beliefs. For this literature,

see Schulte [33] in this issue. Also, the development of basic beliefs is considered from the viewpoint
of experiences in Kaneko and Matsui [15].
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where A/C in B-MP, B-A and BY/ are any formulae and is any finite
nonempty set of formulae i””. Note that B-MP is equivalent to Axiom K.
We denote the set of all instances of B-L -\Bby A?. The following holds:

Theorem 4.3 (Classical reasoning ability). Let I" be a set of formulae i’
andA a formula in=. ThenI I A if and only if B (I") U A? ¢ Bi(A).

Sketch of a ProofConsider theonly-if part. LetP be a proof ofA from I". We
prove B(I") U AP I B;(C) for any C occurring inP by induction onP from
its leaves It suffices to show that for any initial formul@ in P, B (I") U A? I
Bi(C), and that the probability relation; ") U A° -5 goes down from the upper
formulae of each inference rule to the lower formula.

Theif part needs some new concept: We define the eras#rB;: This goes
into a formula and erases the outer &hly oncewhenes; meets B. Let P be a
proof of B (A) from B;(I") U A?. Then it suffices to show by induction on the
tree structure oP from its leaves that for any formul@ in P, I' ¢ ¢, C.O

That is, A is provable fromI" in classical logic CL if and only if player
can deriveA from his basic beliefd” with his reasoning ability described by?.
Playeri has given the same (potential) reasoning ability as the investigator’s.
Thus, we have succeeded in formulating G1 explicitly by this method.

For the connection of playefs inner logic to the investigator’s, we add

B-D: —B; (-A A A).

This is Axiom D. It holds with B-D thatl” is consistent if and only if RI") U
APUB-D is consistent, where B-D is now regarded as the set of instances of B-D.
In this sense, Axiom B-D connects playiés inner logic with the investigator's
logic up to their consistencies. Note that this axiom also enables us to show that
Bi(I") U APUB-D ¢ Bi(—A) implies B (I") U A°UB-D o —B; (A).

We formulate G2 by the following two axioms:
B-4: Bi(A) D BiBj(A);
B-I: Bj(A), whereA is an instance of B-L, B-MP, By, B- <D and B-4.

Axiom B-4 is Axiom 4, and states that if playebelievesA, then he believes that

he believedA. Recalling basic principle G, this is described as thistconscious

of “having an argument foA from his basic beliefs”. Axiom B-| states that

is conscious of the reasoning and introspective abilities described by B-L — B-4.
We denote, by);, the set obtained from\’UB-D by adding all the instances of
B-4 and B-I. The assumption sgY; is the formulation of principles G1 and G2.
This is essentially what an individual player is given. In the single player case,
we have the following, whose proof is found in Kaneko and Nagashima [16]

Theorem 4.4.(Reasoning ability described by G1 and G2). Letn = 1. For any
Aec &, Ao Aif and only if Fkpat A
Thus, KD4 corresponds to the logic describing basic principles G1 anéfG2.

15 From Theorem 4.3 and Theorem 4.4, we can regard Kista logic of provability and intro-
spection. However, this differs slightly from the logic so calf@dvability logicin the literature (see
Boolos [5]).
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Whenn > 2, the set of axiomsA; U... U A, does not yet describe the inter-
personal beliefs of players described in G3. Principle G3 requires interpersonal
assumptions on reasoning and introspective abilities, e.g., piayelieves that
playerj has the abilities described ky;, etc. The entire assumption set is given
as

A* ={B;,..Bi,(A): A€ AU ...UA,, im,...,i1 € N andm > 0}, 4.7)

where B, ...Bi,(A) is A itself if m = 0. This set states that the reasoning and
introspection abilities of players described By U ... U A, are common knowl-
edge. We show that this gives the same provability as epistemic logi¢' KB4
proof is also found in Kaneko and Nagashima [16].

Theorem 4.5.(Reasoning abilities described by G1, G2 and G3). Letn > 2.
Then for anyA € %, A* =g Aif and only if Fxpgr A

Theorem 4.5 helps us understand the basic principle for our epistemic logics,
especially, KD2, but, it does not help us evaluate the axioms themselves. On
the one hand, Theorem 4.5 would hold even if we add each or both of Axioms
T and 5 to both sides. On the other hand, if we delete Axiom 4 from both sides,
then the left-hand side needs to be modified for the above equivalence. In this
case, G2 has a slightly different content. To evaluate various axioms, we should
return to the original principle G.

4.3 Evaluations of epistemic axioms

Let us return to the formulations of epistemic logics in Section 4. Our purpose

is to consider epistemic aspects of decision making in game situations. For this,
it does not suffice to consider only mathematical properties of such logics. We
would like to choose some logics as more appropriate than others. We adopt
the Inference Rule Nec, Axioms K and D as very basic. We reject Axiom 5 as

inappropriate: this rejection is made by recalling our basic principle G. We avoid

Axiom T to allow false beliefs, but can treat Axiom 4 inside our logics.

Here, we give remarks on Nec and Axioms D, T, 4, 5.

NecessitationWhen nonlogical axioms are involved afgd® > A is provable,
Nec is applied to the whole formuj§ & O A and yields B(A\ & D A). Since Nec
can be applied arbitrarily many timeA,& > A becomes common knowledge in
effect in the sense that B..Bi,(/A @ D A) are all derived. Nevertheless, this does
not means that the assumptigp® becomes common knowledge, but that only
the implication/\ & > A becomes common knowledge. This note is related to the
reason for the introduction of nonlogical axion®sin the present form. On the
other hand, if\ @ is assumed as an initial formula in a proof, thg becomes
common knowledge. To avoid this, we have introduced nonlogical axioms as the
antecedent of\ ¢ O A.

Axiom K changes B(A\ ¢ D A) into B; (/A ¢) D B;(A). The former states that
i believes\® D A, while the latter states that if believes A\ &, he believes
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A too. Thus, Axiom K transforms a statement frais viewpoint into one from
the investigator’s.

The difference between Nec amdl O B;(A) as a logical axiom may be
now clear. IfA D Bj(A) is assumed as a logical axiom, then frormp AP D
A, we obtaink, A® D Bi(A), and similarly-o A @ D B;,...Bi,(A) for all
im,.--,11 € N. Hence, any logical consequence frofpd could be common
knowledge. WithoutA O B;(A) as an logical axiom, however, we can obtain
only o B;_...Bi,(A®) D B;,...Bi,(A). Hence

{Bi,---Bi,(C) : C € &,im,...,i1 € N andm > 0} o B;,...Bj,(A)

for anyjy, ...,j1 € N. Thus, if A @ is common knowledge, then any consequence
from @ is common knowledge.

Axiom D: The basic principle G states that playeshould not have a proof of
a contradiction. If his beliefs are contradictory, then he would have a proof of a
contradiction. Thus, Axiom D excludes contradictory basic beliefs.

Axiom T: This distinguishes knowledge from beliefs. With this axiom, beliefs are
always true relative to the thinker (ultimately to the investigator), and without
it, beliefs may be false. It is important to discuss the truth and/or falsity of
beliefs in the future studies of economics and game theory. Axiom T prohibits
the possibility of talking about the falsity of beliefs. In Section 6, we argue that
Axiom T can be captured in an epistemic logi€¢ without it.

Axiom 4: Although we have adopted this axiom to describe a part of G2, we
do not think that this is so basic as Nec, K and D. It will be used once in
game theoretic arguments in Section 7, but is avoidable with a slightly longer
argument. The reasons for this reservation are: First, if we want to examine the
role of self-consciousness, we should do it in a logic without Axiom 4. Also,
a logic without Axiom 4 would be easier to handle in meta-theoretic respects.
So far, we do not have enough developments in theory and applications to give
clear distinctions between logics with and without Axiom®4.

Axiom 5: We do not take this as a basic axiom. Axiom 5 is equivalentj{&\B/
Bi (—B;j(A)) for any A, which is easier to be evaluated. According to the basic
principle G, this states: for ang

(*): playeri has either a proof oA or a proof that he has no proof &f from
his basic beliefs.

That is, when he has no proof objectively, he has also a proof of “no proof of
A’. This does not allow thehird possibility that there is no proof objectively
but playeri does not notice it. Unless his basic beliefs are very rich, we expect

16 We treated intrapersonal and interpersonal introspections separately in Section 4.2. In game theo-
retical practices, assumptions of interpersonal beliefs play significant roles but not much intrapersonal
introspection. In the human history, however, self-consciousness might be evolved as the ability to
derive interpersonal beliefs (Mithen [26], pp.217-219). This may give a hint to reconsider the role
of Axiom 4 and/or the principle G2.
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that this third possibility could be the case. We would like to allow the third
possibility as natural. Thus, we exclude Axiom 5 from the basic axioms.

Finally, we note that if Axiom T is additionally assumed, theB; (—B; (A))
and B(A) are equivalent.

4.4 Gentzen-style formulation of KD4

This subsection is written for the reader who wants to go further to advances
in the logic approach. We give the sequent calculus formulation of'Kib4he
Gentzen-style. Some other papers in this issue adopt this style. Although it is
deductively equivalent to the Hilbert-style formulation, it adds another sense of
“logical reality”. The following is a very brief introduction. The interested reader
may consult some textbooks such as Kleene [21] and Takeuti [34] (in the case of
classical logic). Nevertheless, the best introduction may be still Gentzen’s [11]
original article.

We introduce the concept of a sequent. L&t be finite (possibly empty)
subsets 0f”. Using auxiliary symbols,[], and—, we introduce a new expression
I' — O, which we call asequentWe abbreviatd"UA — AUO and{A}UI" —
OU{C}asl,A— A6 andA I — O,C, etc.

A sequentl” — © is associated with each node in a proof. Hefejs a
set of nonlogical axioms. Thus, a set of nonlogical axioms appears in every
step in a proof. The counterpart éf — © in the Hilbert-style formulation is
AT D\ 6, whereA () and\/ () are meant to be:p\p and—p Ap, respectively.
For a moment, the reader may interpfet—+ © asI” Fgpge \/ © in the previous
formulation. We will explain presently the relationship of the present formulation
with the Hilbert-style epistemic logic KD

In the following, I",©, A, A, & are finite sets of formulaéy, B formulae and
@ is also assumed to be nonempty.

Axiom (Initial sequent): A — A,
Structural rules:
I — o I —6,A AA—A

Arsealm A=64 (Cup.
Operational rules:
Ir-6A (= =) Al'-6 (— )
AT 56" I 50,-A'
I'— 6A B,F—>@(D_>) ATl —-6,B (=)
ADB,[ > 6 I >6,ADOB
ATl — 6

Hx%QAZAG@}G%A)

(/\ %) whereA € & oA

AN, I — 6O
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{AI' -0:Acd} I = 6.A
Vo,I — o (\/_)) F—>@,V¢(_>v)’ whereAc @ .
Epistemic Rule (Necessitation rule):
I'Bi(4) — O

B.(1).B:(2) = B:(©) (Bi — Bi), where |©| <1 andi € N,
where|©] is the cardinality ofo.

A proof P of I" — © in the present system is defined to be a tree in the
same manner as in the previous Hilbert-style. That is, a sequent is associated
with each node oP, the sequent associated with each leaPois an instance
of the axiom sequent, some instances of the inference rules connect ndeles of
and [’ — © is associated with the root &f. We say thatl” — © is provable in
KD4", denoted by-kpg~ I' — O, iff there is a proofP of I' — ©.

We may regard sequent@1) — Bi(Domy(s;2)) as a counterpart of A g1)

D Bi(Domy(syp)) of (4.4), which is proved as follows:

{Pl(slz,sZ 151.8) = P1(512.%2 1 S1. %) (Th)}
~1 .
91 = Pi(s12,% 1 51, %)

g1 — Domy(s12)
B2(3) = Ba(Domy(s9) 7 BY

From the last sequent, we can derive sequent Bi(/ §3) D Bi(Domy(s2)),
which is also regarded as a counterpart @f/Bg1) D Bi(Domy(s2)).

The relation between the Gentzen-style of and Hilbert-style of 'Ki3das
follows.

(s1,%2) (*> /\)

Theorem 4.6 (Relation to KD4" in the Hilbert-style). Let I" and © be finite
sets of formulae. Therkpyr I' — O ifand only if Fkpgar A" D'\ ©. Recall
that\/® and A ) are—-p A p and-p V p.

Thus,-kpg» I' — © corresponds td” Fxpg» \/ © in the previous formu-
lation.

Note that-kpgr I' — is equivalent to-kpgr I" — —pAp. This is proved
by (Cut) and the fact thatgpgr -p A p —

The following cut-elimination theorenis the main theorem for the Gentzen-
style formulation KD24. It makes the system meta-theoretically different from
the Hilbert-style formulation of KD%.

Theorem 4.7 (Cut-élimination). If Fxpgr I' — O, then there is a cut-free proof
PofI"'— 6.

The cut-elimination theorem was first proved for classical logic by Gentzen
[11], and then it was proved for many other systems. The above one is a variant of
the cut-elimination theorem for $4nd some others given by Ohnishi-Matsumoto
[30]. One remark is that it is not successful to have cut-elimination fdr S5

The cut-elimination theorem states that if a sequent is provable, then we can
find a proof of the same endsequent without using (CAlf)the inference rules
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given above except (Cut) add new symbols from the upper sequent(s) to the
lower sequent. Therefore, in a cut-free préafany formula occurring in some
sequent inP also occurs as a subformula in the endsequent. This is called the
subformula propertyOn the other hand, the Hilbert-style formulation has Modus
Pones, at which one formula is eliminated. In this case, we cannot trace back
from a given provable formula what have happened in a proof.

To illustrate the cut-elimination theorem with an example, we use the fol-
lowing stronger version{—)* of (O—), which is, in fact, equivalent tox{—)
with the presence of (Th) :

I' = 6A B,A—> A
ADB,[NA— 06,4

O=)

The fact that {—)* is admissible in the above sequent calculus is proved as

follows:
r A B,A— A
e A ™ g (M
ADB,[NA— 06,4

The following is a proofA, A> B,B D C — C with (Cut).

(>—).

A— A B—B * B—+B cC—>C *
AASB=SB O BBoCoC . O7)

Cut
AASBBSC 5C (Cuy
This can be proved without (Cut)
B—B cC—-C
A—A BHC,B(Th)(D_)),k A—-A B,C—C (Th) (O—)*
AADB—C,B AADB,C—=C (o—)*

AASDB,B5C —C

5 Kripke semantics: model-theoretic approach

In this section, the basic principle G: “having an argument Aofrom basic
beliefs” is formulated asA is a true in all the possible models of the basic
beliefs”. Mathematically, this is formulated in the Kripke semantics. Here, the
basic principle G1 of Section 4.1 is clear-cut, but G2, G3 are less clear-cut.
Nevertheless, this model-theoretic approach has some technical advantages over
the proof-theoretic approach given in Sections 4.1 and 4.2. As already stated, it is
difficult to prove unprovability assertions such as (4.5) directly in epistemic logic
.. The more complex a formula is, the more difficult to evaluate provability is

in .. The Kripke semantics enables us to evaluate such unprovabifities.

17 Chellas [6] and Hughes and Cresswell [12] are good textbooks on Kripke semantics, which treat
uni-modal logics. For multi-modal epistemic logics, see Fagiral [7] and Meyer and van der Hoek
[25].
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5.1 Kripke models and completeness

We say that am + 1 tuple V; Ry, ..., R,) is aKripke frameiff W is an arbitrary
nonempty set and eadR is a binary relation oW. Each elementv in W is
called apossible world and eachR, an accessibility relationIn each worldw,
we assume the classical truth valuation, i.e., the logical connectiyes A, \/
are valuated in the manner CV0-CV4. This means that each player has the
reasoning ability described by the classical logic in each possible world, which
expresses the basic principle G1 of Section 4.2. The other principles G2 and G3
are expressed by the relationships to other possible worlds definBg by R;.
EachR, describes the accessible worlds from each warlénd the truthfulness
of Bj(A) is evaluated by referring to the truthfulnessfoin the accessible worlds
from w.

An assignment in a Kripke frame. 72" = (W; Ry, ..., R,) is a function from
W x PV to {T, L}. A pair (77, o) of a Kripke frame 72" and an assignment
is called aKripke model We define thevaluation relation(.7", o, w) F and its
negation (77, o, w) ¥ for eachw € W by induction on the length of a formula:

KO: for eachp € PV, (7, 0,w) E p iff o(w,p) =T;

K1: (7, 0,w) E -Aiff (', 0,w) ¥ A

K2: (7, 0,w) E AD B iff (7 ,0,w) ¥ Aor (7, 0,w) E B;
K3: (7, 0,w) E \® iff (F,0,w) E Aforall Ae &

Ka: (T, 0,w) E\/ D iff (T, 0,w) E A for someA € §;

K5: (72, 0, w) E Bi(A) iff (.72, 0,u) E A for all u with wR;u.

The above inductive definition works simultaneously over the possible worlds.
We say thatA is true at worldw in (77, o) iff (.77, 0, w) E A. This valuation
is complete in the sense that for anye W andA € &,

either (77, o, w) E A or (7, 0, w) E —A. (5.1)

Step K5 expresses the idea that the truth ofAB in world w is defined by
referring to the truth oA\ in the accessible worlds from. Accessibility relation
R describes the possibilities that playiecan imagine at eachv. We note that
when (77, o,u) E —A for someu with wRju, we have (ZZ', o,u) ¥ B;j(A) by
K5, and then.¢Z", o,u) E =B, (A) by K1.

Note that the following does not necessarily hold:

either (77, o, w) k= B (A) or (', 0,w) = Bi(—A). (5.2)

If (5.2) was assumed, then playemwould have determinate beliefs about ev-
ery aspect of the model. The consideration of possibilities in a Kripke frame
T2 = (W; Ry, ...,R,) enables us to avoid (5.2However, (5.1) still implies that
either (77", o, w) E Bj(A) or (77, o, w) E =B (A). Thus, the third possibility is
excluded in each model. To avoid this completeness, we consider the validity
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defined by asetof Kripke models. This enables us to have a connection to the
proof theoretic approach as well as to erase the superfluous information included
in each model. Such a set of Kripke models is defined by conditions on the
accessibility relationdy, ..., R,. Then we have an explicit connection to each
syntactical system in Section 4 to the Kripke semantics.

Specifically, we consider the following conditions By ..., R,, each of which
corresponds to an epistemic axiom:

no condition +~—— K
seriality : for anyw € W, there is somar € W with wRu +~— D
reflexivity : wRw for all w € W +—— T
transitivity : for all w,u,v € W, wRu anduRv imply wRv +— 4
euclidean: for all w,u,v € W, wR U andwRv imply uRv +— 5.

We postpone seeing the reasons for these correspondences after the main re-
sult. Let.”” be an epistemic logic in Diagram 4.2. Ther* is the set of

all Kripke frames satisfying the conditions on the accessibility relations corre-
sponding to.¥”. For example, it is KD4", .* is the set of Kripke frames

7 = (W;Ry,...,R,) whoseRy, ..., R, satisfy seriality and transitivity® Using

this notation, we can state the following soundness-completeness theorem. It can
be regarded as a special case of Theorem 8.2, which will be proved in Section
9. Here, we discuss only the soundness part of Theorem 5.1.

Theorem 5.1 (Soundness-completeness). Let . be an epistemic logic in Dia-
gram 2, andA a formula in=.

D: o Aif and only if (#,0,w) F A for all Kripke frames.7Z =
(W;Ry,...,Ry) in.* all assignments and allw € W.

(2): There is a Kripke framez' = (W; Ry, ..., Ry) in .7*, an assignment and
a worldw € W satisfying (72", o, w) E A if and only if A is consistent in logic
S

Note that the consistency éfin . meansA > -C A C for a@ € .

Let I' be a finite nonempty set. Sindét - A is defined by AT D A,
Theorem 5.(1) implies

(IMN: I' o Aif and only if for all .72 = (W; Ry, ...,R,) in .¥"*,0 andw € W,
(7, 0,w)EC forall C € I'imply (7, 0, w) E A.

In the present context, a model &f is (77, o) making all assumptions i@
true at some worldv. Using this terminology, (2) is written: there is a Kripke
model of A in .%* if and only if A is consistent in logic” .

18 We find the reason for the popularity of S&mong game theorists. Reflexivity and euclidean
imply symmetry If . is S8, then eachR; in (W;Ry,...,Ry) in .¥"* becomes an equivalence
relation. Hence the quotient spa@é/R, = {{w € W : wRiu} : u € W} is a partition ofW. The
n + 1-tuple W; W /Ry, ..., W/Rs) may be regarded as an information partition model (of Aumann
[1]). However, a Kripke model describes the possibilities perceived by players but not information
processing.
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By Theorem 5.1, we have the equivalence between the provahiitdefined
by means of symbol manipulations and the consequence relatidefined in
terms of a set of possible models. This equivalence is important and useful not
only in understanding players belief onA as “having an argument fok from
basic beliefs” but also in investigating the propertiestgf andF . In fact,
without the Kripke semantics, we would not go much further than the results
in Section 4. The usefulness of the Kripke semantics will be shown by some
examples and some other results below.

Let us see the reasons for the correspondences between the epistemic axioms
and the conditions on the accessibility relati&n In the Kripke semantics, the
basic idea is that the truthfulness of(B) at w is determined by looking at the
truthfulness ofA in all possible worlds accessible from. Also, in each world,
the classical valuation is assumed. Axiom KZ{, o, w) F B; (A D C)AB;(A) D
Bi (C) is derived only by this fact, that is, in any referred world, the truthfulness
is closed under Modus Ponens.

The other axioms impose some restrictions on accessibility relations. Axiom
D: (77, 0,w) E —-B;(-AA A) is derived by the fact that a contradictory formula
is not true in any accessible world from, but needs at least one world, which
needs seriality. Axiom T:.%2", o, w) F Bj(A) D A requires that the accessible
worlds fromw include w itself: otherwise, the truthfulness of,@) should be
independent of that oA. Axiom 4: (77", o, w) E Bi(A) D B;iB;j(A) requires that
the accessible worlds be closed wiRhin the sense that ifi is accessible fronw
by finite steps oR;, u is already accessible directly . In the same manner,
the corresponding conditions to Axiom 5 is understood.

Now we exemplify the above theorem by proving the unprovability assertion
(4.5) with Kripke models. The gamey, g3) of Table 5, called theMatching
Pennies has no Nash equilibrium, and the gamg,3) of Table 6 has the
unique Nash equilibriums(y, S;1).

Table 5. (g2, ¢3) Table 6. (7, 93)
$1 S22 S21 S22

su (L,-1) (<11 su (G- (1D
sz (11 (E-1) sz (61) B-1

Oz w1 g7 U g3
T1.2
wo : §7U G5
Diagram 4. (.72, o)

Consider the Kripke model#/’, o) described as Diagram 4. It is read as fol-
lows: Each arrow indexed by connects the possible worlds witR, i.e.,
R = {(wo, w1), (w1, w1)} fori = 1,2, and the assignment is determined by the
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set associated with each world, i.e., for any atomic fornpaAF, o(wo,p) = T
iff p e g3uUgs ando(wy,p) =T iff p € gFUgG5. This.Z is serial and transitive.
Since (77, 0, w1) E —Nash§,z, 522), we have 7', o, wo) ¥ —-Bi(Nashéz, $2)).
Also, (7', o, wo) F B1(g1). Hence, B(41) ¥kpa» Bi(Nashéiz, s20)) by (1#). On
the other hand, %7, o, wo) F B1(Nashé,2, 5;1)) but (7, o, wo) ¥ Nashéiz, $1).
Hence, player 1 derives the false belief from his beligfs) 35 that 612, $1) is
a Nash equilibrium.

The two claims of Theorem 5.1 are equivalent. Thpart of either claim is
called completenesswvhich will be proved in Section 9. Thenly-if part, called
soundnessis proved as follows:

Lemma 5.2. Let . be an epistemic logic in Diagram 2% = (W; Ry, ...,Ry)
in .* ando any assignment i7",

(2): Let A be an instance of L1-L5 or an instance of an epistemic axioniAor
Then (77, o, w) E A for any worldw € W.

(2): For anyw € W, (77, 0, w) E satisfies MP A-Rule, and\/-Rule, e.g., MP:
if (7,0,w)EADB and (77, 0,w) E A, then (77, o, w) E B.

@3): If (I, 0,w) E Afor all w € W, then (7%, o, w) E B (A) for all w € W.

Proof. (1): Consider .¢Z,0,w) E Bi(A D C) O (Bi(A) D Bi(C)). Suppose
(F,0,w) E Bi(ADC) and (7', 0, w) F Bi(A). These imply ZZ",o,u) F AD
C and (77, o, u) E A for all u with wR u. Hence, ZZ", o, u) E C for all u with
wRu. lLe., (7, 0,u) E B;(C).

Next, consider (3). Let%Z’, o,v) E Afor all v € W. Let w be any world in
W. Since (77, 0, u) E A for all u with wR u, we have @', o, w) E Bj(A). O

Proof of the only-if part of (1) of Theorem 5.Let P be a proof ofA. Then we
show, by induction on the tree structure Bffrom its leaves, the assertion that
for any C occurring inP, (72, o, w) E C for any.7Z" in .* assignment and
world w in .7Z". Each of the inductive steps is verified by Lemma 5.2. 0O

The contradiction-freeness of follows from the soundness part of Theorem
5.1.(1).

Theorem 5.3 (Contradiction-freeness). Each.#” in Diagram 2 is contradiction-
free, i.e., there is no formulA in & such that- -AA A

Proof. Supposé- . —AAATfor someA. By Theorem 5.1.(1), we haveXl', o, w) F
-AAAforallwe W in. 72, all o in .72 and all.7ZZ" in .*. However, this is
impossible by (5.1). O

As already stated, if ¢ A, thenI" o A. WhenI" andA are nonepistemic,
the converse follows from the definition of the semantical valuation and Theorem
5.1. In this sense¥” is said to be a@onservative extensioof CL.

Theorem 5.4 (Conservativity of . upon CL). Let I' C 2" and A € "
ThenI'o Aif and only if I" g A.
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5.2 Decision criterion DC1 with false beliefs

Here, let us return to a game problem. Specifically, consider DC1 of Section 2
from the viewpoint of false beliefs. In DC1, neither player predicts the other’s
decision, and each player’'s own decision making is relevarit fot, 2. Here we
adopt the dominant strategy criterion,(Bom (s )), which we denote b; (s).
Let us applyD; (s) to the gamey* of Table 1 By combining (4.3) and (4.4),
we have

B1(91). B3(33) o /\ (ﬁf)ii (s1) A Di(s 2)) - (5.3)

|

That is, each player infers from the belief on his payoff function that his
decision is his second strategy.

The obijectivity of the payoff functions is not included in (5.3). If epistemic
logic . includes Axiom T, beliefs B(g1),B3(33) imply that the game to be
played isg! = (g7, g3). Now, let us adopt KD# as.&”. Then it is possible to add
any payoff functiong; on {sll, S12} X {S12, &2} to (5.3) as an objective one. In
other words, the beliefs 851), B3(g3) are false in most cases. For example, we
can assume that the true gameyis= (¢2, g2) rather tharng® = (¢1, g3) :

9%, B1(31). B3(33) For /\ (-Dii (s1) A Dii (s2)) - (5.4)

In this case, 1's belief is true but 2’s is false.
Assertion (5.4) is meaningful only i?UB; (g1)UB(3) is consistent in KDBr
This consistency can be proved by constructing a modefoB1(51)UB3 (g3

a1
Orpw1:g

T1,2

- 02
wo . g

Diagram 5. (.72, o)

whereo assignsT to each atomic formula included it atw; and to one iny?
atwg. This.ZZ" = (W; Ry, Ry) is serial and transitive frame. Thegd, o, wg) F A

for any A € §2UB1(gH)UB2(G2). Henceg?UB1(31)UB3(33) is consistent by (1)

after Theorem 5.1. Since this fram#& does not satisfy reflexivity, %", o) is

not a model in S% Hence the above consistency proof cannot be converted to
sS4

6 Beliefs vs. knowledge

As mentioned as B3 in Section 1, we adopt the distinction betvbetiefs and
knowledgethat knowledge is a true belief, while a belief may be false. Here,
truth is referred to the outside thinker, ultimately, the investigator. For example,
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in B; (A), the thinkeri only believes the truth oA\, and the investigator determines
the truth ofA. In B; B; (A), thinkerj can determine the truth of playgs belief A
by referring toj’s belief aboutA. In this case, the investigator may determine the
truths of A, B;(A) as well as BB;(A).1° Once Axiom T is assumed, beliefs are
true to any outside thinkers. To take human interpersonal epistemic interactions
seriously, we would like to allow false beliefs. The situation with Axiom T must
be a special case.

In fact, Axiom T can be treated inside an epistemic logic without it. Let
. be an epistemic logic without Axioms T and 5, and’ the logic obtained
from . by adding Axiom T. Then it holds tha¥” is faithfully embedded into
.. This result guarantees that we capture the distinction between beliefs and
knowledge in.¥". In this section, we show the embedding theorem fdt &b
KD4". This embedding would not hold with the presence of Axiom 5.

In epistemic logic#”, we denote formula §A) A A by B (A). It means that
playeri believesA and thatA is true to the outside thinker. For example, in
B; B (A) = B;(Bi(A) A A), playerj thinks about the truth of's belief comparing
with his belief onA. The formula B(A) satisfies

T ko Bf(A) DA

K*: ko Bi(AD C) D (Bf(A) D B (C));

4"+ B (A) D BB (A), when Axiom 4 is included in¥’;
Nec*: if o A, thento B (A).

Thus, if.# includes Axiom 4 the operator B(-) behaves like an operator in 'S4

In this definition, however, only the outermost(B) is replaced by B(A), but A
may include other B Hence, we cannot yet regard Bxactly as the operator in
S4'. To have the exact relationshipve need a more accurate translation. Now,
we focus on the case of $S4nd KD4'.

To avoid confusions, we differentiate the formulae in"Sdom those in
KD4". We denote, by, the set of all formulae generated by the same list of
symbols of Section 3 except for the replacements of operator symhols,B,
by new ones K ....K,. Here K (A) is intended to mean that playeknowsA.

Now we define the translatab : &% — &’ by the following induction:

TO: for anyp € PV, 4(p) = p;

TL1: (—A) = YA,

T2: (A D C) = A D yYC;

T3: (A D) = N{vA: Ac o} andy(V P) = V{vA: Ae O}

19 According to philosophical literature, knowledge is defined as “justified true beliefs”. In this
definition, justification needs some different sources of authority such as experiences or community
(see Moser [27] for debates on justifications of beliefs). Objects targeted by epistemic logics are
beliefs inferred from basic beliefs. Justifications for inferred beliefs are traced back to those on the
basic beliefs. However, when we consider justifications for basic beliefs, we cannot go further to any
other sources. To have such justifications, we need a general framework including experiences.
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T4: (Ki (A) = Bf (vA) fori =1,...,n.

That is, any formulaA in &% is translated into the corresponding formula in
&’ which is obtained fromA by replacing all occurrences of subformulae of the
form K;(C) by Bf(C*), whereC* is obtained fromC by the same principle.
For examplep(K2K1(Domy(s12)) = B3B7(Domy(siz)), which is equivalent to
B2B1(Domy(s12))A Bi(Domy(s2))A B2(Domy(si2))A Domy(syo).

We have the following theorem, which will be proved in the end of this
section.

Theorem 6.1 (Faithful embedding of S4" into KD4"). For anyA € 7k, Fggq A
if and only if Fxpgn YA

Thus, we can discuss logic S4nside KD4'. When we can forget false
beliefs for some game theoretic problems, discussions tha®d simpler than
in KD4" in that Axiom T can be used in 84 Such results in S¥4can be
translated into more general discussions with the presence of false beliefs in
KD4" by Theorem 6.1. Conversely, Theorem 6.1 may be used to translate some
meta-theorems obtained for KD4nto S4': KD4" is easier than S4from the
meta-theoretic point of view. One example will be mentioned in Section 7.2. The
same embedding assertion holds betweer! Kidso K') and KT'. Over all, S4
and KT can be considered inside KD4and KD, respectively

The above embedding theorem fails with the presence of Axiom 5. For ex-
ample, S8 cannot be embedded into KDA5A counterexample is“xpgsr
-Bi(—=p) D Bi(-Bi(-p))), wherep € PV. This unprovability is proved by
constructing a Kripke model.

Logic KD4" is capable of distinguishing between knowledge and beliefs,
while S4' is not. For example, the following holds:

I' Fkpgr Bi(Domy(s12)) A B2B1(Domy(si2)) A Ba(Besh(Szz | S12))-

where I' = §°UB1(52)UB,(33)UB,B}(32) and ¢° is the game of Table 5. In
I', each playei believes that his payoff function ig?, and player 2 believes
that player 1 has true beliefs on 1's payoff functiph Nevertheless, these
basic beliefs of both players are all false objectively, since the true gagte is
Accordingly, player 2 believes that 1's inferred belief;(Bomy(s12)), is true,
but this inferred belief is also false objectively.

Proof of Theorem 6.1 he only-if part of this theorem can be proved by induction
on a proof in S& from its leaves, using the abové TK*, 4* and Nec.

The if part needs two steps. We define another translator”” — 4 by
TO-T3 and T4 ¢(B;i(C)) = Ki(¢C) fori = 1,...,n. That is, ¢ is the operator
which simply substitutes Kfor all occurrences of Bin A. Then, for anyC € &7,

Fkpgr C implies Fggp ©(C). (6.1)

This can be proved by induction on a proof in KD4
The second step is the following assertion: for @&y o4,
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Fsg @ (A = A (6.2)

This is now proved by induction on the structure of a formula. For gryPV
@ -(p) is p itself, which implies-g4 ¢ - Y(p) = p.

Suppose the induction hypothesis that (6.2) holds for any immediate subfor-
mulae ofA. We should consider the cases:D, A,\/ and K. Here we consider
only — and K.

(=): Let A= —C. By the induction hypothesis, we haveggy ¢ - (C) = C.
Thenkgg —¢ - (C) = -C. Since—y-9(C) is ¢ - (=C) by the definitions of
¢ andy, we havetl-gg ¢ - ¢(-C) = -C.
(Ki): Let A= K;(C). By the induction hypothesis, we havgp ¢ - (C) =C.
Hencet-g4 Ki(¢-¥(C)) = K;i(C) by Nec, MP and Axiom K. By the definition
of p andy, we havep-(Ki(C)) = ¢(Bi (:(C))A¥(C)) = Ki(p-4(C))Ap-1(C).
sincel-gg Ki(p-(C) Ap-1(C) = Ki(p-1(C)), we have-gg ¢- (K (C)) =
Ki(C).

It follows from (6.1) that for anyA € =&, Fkpg» YA impliest-gg ¢ - (A,
and the latter is equivalent togp A by (6.2). O

7 Solution theories for DC2 and DC3

As yet our game theoretic consideration was about performance-playability rela-
tive to a player’s beliefs, taking criterion DC1 as given. Here, we discuss solution

theories for DC2 and DC3. In the game theoretic terminology, these are axiomatic
considerations of decision makingrom the descriptive point of view, there must

be a lot of possible prediction-decision criteria in that a lot of arbitrary structures

may be considered in such criteria, particularly, in predictions about others’ de-
cision making. In this section, we consider only D2 and DC3. More criteria are

discussed in Kaneko and Suzuki [19].

Although we give somewhat tedious proofs of an axiomatic characterization
of DC2, the point is neither in the characterization nor in the proof, but is in
the comparisons with DC3. For DC3, we meet a difficulty caused by an infinite
regress of beliefs. This difficulty leads us to an extension of epistemic lggic
to incorporate common knowledge, which is the subject of Section 8.

Throughout this section, we assum¥ = KD4". Let {Dj(s):s € § and
i,j =1,2} be a given set of formulae indexed By € § andi,j = 1,2. For
j =1, Dii(s) is intended to mean tha is playeri’s decision, and foj # i,

Dj (s) thati predicts thats would be a decision of playgr.

7.1 Decision criterion DC2
Leti = 2 andj = 1. Only player 2 predicts 1's decision. We assume that

1's decision criterion ig11(s;) = Bi(Domy(s;)). We require 2's decision and
prediction to satisfy:
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DC21L: A s, (D22(S2) A Daa(s1) O Ba(Besh(s | 1)) ;
DC22%: A (D21(s1) D B2(D21(s1))) A A, (D22(S2) D B2(D22(s2))) ;
DC23%: \/, D2a(s2) = Vg, D21(s1);

DC24: A\, (D21(s1) O B2(D1(s1))) -
The first states that if 2 predicts that 1 would chosgethen 2 believes that
his decisions, is a best strategy against. The second requires player 2 to be
conscious of his prediction and own decision. The third states that 2's decision
is possible if and only if so is 2's prediction, and the last that 2’s prediction
implies his belief ofD11(s;) = B1(Domy(sy)).

Our problem is to find appropriate formul®g1(s;) andD2x(s,) (51 € S and
s, € $) satisfying the above four requirements. In fact, contradictory formulae,
i.e., thedeductively strongesbrmulae, satisfy these requirements in the sense
that if we substitute-p A p for D2y(s2) andD2i(s;), these would be provable in
. = KD4", wherep is any atomic formula. However, we would like to find
the deductively weakegbrmulae satisfying these requirements, since they have
no additional properties other than what the requirements describe. One set of
candidates is given as:

D21(s1) := B2B1(Domy(sy));

D22(sp) 1= B2V, B1(Domy (1)) A A\, B2 (Ba(Domy(ty)) O Besb(sz | ).

The fOfmU'af)zz(Sg) states that 2 has a predictibnabout 1's decisionand that
whatevgr his predictiom is, 2’s decisions; is a best response tg. Note that
in ., D2y(sp) is equivalent to

B2 <\/ B1(Domy(t1)) A /\ (B1(Domy(t:)) D Besb(s; | tl))) :

tl tl

TheseDy(s1) and Dox(sy) (51 € S ands, € ) satisfy the above re-
quirements DC24 ..., DC24 in the following sense. First, we denoted, by
DC21,(D), ..., DC24(D), the formulae obtained from DCZ21.., DC24 by
plugging D1(s1) and D2y(s;) to Dyi(s) and Dox(sy). Theorem 7.1 is proved
below.

Theorem 7.1.

(1): Fo DC21,(D)ADC22(D)ADC24(D).
(2): Let g = (91, 92) be any 2-person game having a unique dominant strategy
for player 1 Then BB1(91), B2(g2) F.o» DC23%(D).

Thus, D,1(s,) and D2y(s;) are candidate formulae for the axioms DG21,
DC24. Conversely, the following theorem states t@aﬁ(sl) and 522(52) are the
deductively weakest formulae satisfying DG21., DC24,, under the assumption
that 1 has a unique dominant strategy. Heridga(s,) and D,x(s,) are what we
look for. This theorem is proved also below.
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Theorem 7.2 (Personalized characterization of DC2). Let g = (g1, g2) be any 2-
person game having a uniqgue dominant strategy for playdrB,(g2),B2B1(g1)
Fo DC2L A ... ADC24, then

B2(92), B2B1(g1) F.or /\ (Daa(s1) D |521(91)) A /\ (D22(s2) D [522(52)) - (7.1)
s )

It follows from Theorems 7.1 and 7.2 that the deductively weakest formulae
{Ds(s) : 5§ € § andj = 1,2} satisfying DC2% A ...ADC24, are uniquely
determined to b€Dy(s) : 5 € § andj = 1,2}.

The assumption that a gange= (g1, g2) has a unique dominant strategy for
player 1 can be relaxed as follows:

gto /\ /\ (Domy(ty) A Besh(tz | ti) A Domy(t]) O Besh(tz [ 1)) . (7.2)

ty,t] t2

In this case, though player 2 predicts multiple dominant strategies for player 1
this multiplicity would cause no problem for player 2 in= (g1, g2). If (7.2)
is violated, then we should modify player 2's decision criterion or add more
information to guarantee him to have a decision. Condition (7.2) corresponds to
the interchangeability condition of Nash [3f].

Since the above characterization is purely personalized, this axiomatization
is compatible with false beliefs discussed in the previous sections relative to the
investigator as well as to the other player.

Proof of Theorem 7.1 .
(1): We prove onlyt- DC21,(D). Let (s1,s,) be any strategy pair. Then,
Dzz(sz) D By(B1(Domy(sy)) D Besk(s, | s1)) by the definition ofD,,(s;). Hence
Fo D22(SQ) D (B2B1(Domy(s1)) D Bz(Besb(s; | s1))). This is equivalent to
o Da2a(s2)AB2B1(Domy(s1)) D Ba(Besk(s; | s1)). Thus,, DC2L(D).
(2) We prove 381(91)782(92) Fo V51 D21(S_|_) D \/52 D22(SQ). Let tl be
the unique dominant strategy for player 1 ¢n and t; a best response to
ty. Since B(g1) ks Bi(Domu(t)) and Bi(g1) Fo —Bi(Domy(ty)) for any
tp # tf, we have B(g1),g2 o Bi(Domy(t)) D Besh(ty | ty) for all tj.
Thus, BB1(g1), B2(g2) F Ba(Bi(Domy(t1)) O Besh(t; | t1)) for all t;.
Hence, BB1(g1), B2(g2) .o A B2(Bi(Domy(t1)) O Besk(t; | t1)). Hence
B2B1(71).B2(d2) Fo Vg Daas) O Ay Ba(Bi(Domu(ty) O Besb(ts | t):
Sincel o \/51 621(31) D Bz(\/SlBl(Doml(sl)), we have BBl(gl),Bz(gz) Fo
Ve, D21(s1) D Ba(V Ba(Domy(sy)) A A, Ba(Bi(Domy(ty)) D Besh(ts | 1)),
e, BoB1(91)B2(32) For Vs Dar(st) O Daa(ty). Hence BBy(31).B2(32) For
\/s,l |521(31) OV, Ij22(52)-

Since BB1(j1) Fs Vs, Dau(s1), we have BB1(§1).B2(2) v Vs, Daa(s2) O
\/Sl D21(s1), using L1 and MP O

20 see Kaneko [13] for such modifications in the case of the decision criterion of a common
knowledge Nash strategy.
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Proof of Theorem 7.2T'he former half follows from DC24 Let I" = B,(g2)UB2B1
(91). For the latter, it suffices to show o D2y(s;) D 522(&), wheres; is any
strategy for 2 By the former half,I" ko D2y(s) D \/Sl 521(51). This further
implies I" o D2a(s2) O Ba(V/g Bi(Domy(s1)) by Lemma 4.1.(2). Hence, it re-
mains to show’" o Da2x(s2) D A\, B2(B1(Domy(t1)) O Besb(s: | tr)). Letty be
the dominant strategy for.1

Sinceg>,B1(91) - Besb(tz | t7) D A, (B1(Domy(t1)) D Besb(ts | tr)) , we
have B(g2),B2B1(g1) F Ba(Besh(tz | t7)) D A, B2 (Bi(Domy(t1)) O Besh(t: |
t1)). ThenI" o Ba(Besh(tz | s1))A B2Bi(Domy(sy)) O A B2 (Bi(Domy(ty)) O
Besb(tz | t1)). Sincel” -y D2a(s2) A Da2i(s1) O Ba(Besk(sz | s1))AB2B1(Domy
(s1)) by DC2L and DC24, we have ' ko D2yS) A Dai(s)) O AyB2
(B1(Domy(t;)) O Besb(s; | t1)) . This is written asl” o D2i(s1) D (D22(S2) D
Ay, B2 (B1(Domy(t1)) D Besb(s; | t1))), and thenl” o \/ Da1(s1) D (Dax(s2) D
/\tle (Bl(Doml(tl)) D BeSE(SQ | t]_))). Sincet o Dzz(SQ) D \/SZ D22(Sg) by L5
and I o Vg, Daas2) O Vg Dai(s1) by DC23, we havel’ ko Da(s?) O
A B2 (B1(Domy(t1)) O Besh(s, | t1)) .O

7.2 Decision criterion DC3 for playe?

Recall that criterion DC2 does not recommend a decision in the ggref
Table 3. Suppose that player 2 starts believing that his criterion DC2 is inade-
guate, and that he adopts DC3 for his criterion. In the following, we consider
criterion DC3 from the viewpoint of player. Zhough we treat also 1's prediction-
decision making, it occurs in the mind of player 2.

In DC3, we assume that prediction-decision making is reciprocal between 1
and 2 and thus,D11(s1), D12(S2), D21(s1), D22(s2) are all relevant now. We can
keep the requirements for playercorresponding to DC21- DC23, which are
denoted by DC31- DC33, but we modify the fourth one into

DC34.: A\, (D12(S2) D B1(D22(2))) A A, (D1a(s1) D B1(D21(s1)));

DC34%: A, (D21(s1) D B2(D11(s1))) A A\, (D22(2) D B2(D12(s2)))-

The former conjunct of each means that plaisr prediction is based on his
belief about the decision criterion fgr and the latter that believes that his
decision is predicted by. The reciprocity of DC3 stated in Section 2 is involved
here.

We focus on the prediction-decision criterion for playef2r his own crite-
rion, we assume DC31...,DC34. Since player 2 makes also his prediction about
1’s prediction-decision, we assume(BC31), ..., Bo(DC34). Our problem is
to find formulae{Dj(s) : 5 € § andi,j = 1,2} satisfying the requirements
DC3l,, ..., DC34 and B(DC3L), ..., Bo(DC34). In fact, we would meet a se-
rious difficulty. The following theorem states that only trivial formulae would be
candidates for DC3\ B,(DC34,), which is proved in Section 7.3.

Theorem 7.3 (Reciprocal failure). Suppose-o DC34 A B2(DC34). Then for
each §,9) € S, by =(D21(s1) A D22(s2)) Or o D21(S1) A D2a(S2)-
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Thus, as soon as we assume DE3,(DC34;), D,1(s1) A D2a(s) becomes a
trivial formula. Hence, the above axiomatic system is a failure as a description of
prediction-decision making. In fact, this failure is not caused for a game theoretic
reason but for a reason in our logical system. It is closely related to the problem of
the infinite regress involved in DC3 pointed out in Section 2. Epistemic légic
is incapable of capturing the reciprocity or infinite regress involved in DG&34
B,(DC34). This leads us to an extension of epistemic logfc to incorporate
the concept of common knowledge, which is the subject of Section 8.

Notice that Theorem 7.3 is a meta-theorem evaluating the axiomatic system
DC34A B,(DC34y) in logic . = KD4", while Theorems 7.1 and 7.2 are object
theorems in¥.

Before going to the next subsection, we mention one lemma (cf., Chellas [6],
p.99). To illustrate a model-theoretic argument, we give a proof of this lemma.

Lemma 7.4. For anyA, o B;(A) if and only if - A.

Proof. Theif part follows from the Necessitation rule. We prove the contrapositive
of theonly-if part. Supposg . A. By Theorem 5.1, there is a serial and transitive
Kripke frame.7Z" = (W; Ry, ..., R,) and an assignmentsuch that.zZ", o, u) ¥ A

for someu € W. Let wp be a symbol not inW. We extend .¢7', o) into
(F",0")=(W";Rg, ..., R}), o) as follows:

1): W =W U {wo};
(2): R =R U{(wo,w) :w e W} fori € N;
(3): for anyp € PV, ¢'(w, p) = o(w, p) for all w € W ando’(wo, p) is arbitrary.

EachR is serial and transitive. It holds also that for anye W and any formula
C, (7 ,0,w)ECifandonlyif (7", o', w) E C. Hence Z", o', u) ¥ A. Since
woR U, we have FZ’, o', wp) ¥ Bj(A). By Theorem 5.1, we havé, A. O

Thus,t B,(DC34) is equivalent td- DC34,. After all, the assumption
of Theorem 7.3 is equivalent to,, DC34ADC34;.

7.3 Epistemic depths and the depth lemma

To prove Theorem 7.3, we consider the epistemic depth of a formula. First, let
N<“> = {(imy ..., i1) : im,...,iz € N andigsg # ix for k = 1,...,m — 1}, where
we stipulate thaN <“~ includes the null sequencei.e., the sequence of length
0. Fore = (im,...,i1) € N<¥>_ B ...Bi,(A) is denoted by B(A), and B(A)
is stipulated to beA. We define the following concatenation: fore N and
€=(im,...,i1) EN<> leti xe=(i,in,...,i1) if | #im andi xe = (iy, ..., i1) if
i =im. Also, we leti xe = (i).

Let A € 2. We define the dpistemi depthd(A) of A by induction on the
length of a formula:

DO: 4(p) = {e} for anyp € PV;
D1: §(—C) = 4(C);
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D2: 6(C D D) =46(C)ud(D);

D3: (A @) = 5(V @) = Uc e 9(C);
D4: 6(Bi(C)) ={i xe:ec i(A)}.

For examplej(po O B2B3(p1)) = d(Po) U 6(B2B3(p1)) = {¢,(2,3)}. We define
0(I") = Ucer 9(C). The following theorem is due to in Kaneko and Suzuki [18]
and a weaker form was given by Kaneko and Nagashima [17].

Theorem 7.5 (Depth lemma for KD4"). Let I" be a subset of” and B.(A) =
Bi,...Bi,(A) a formula in=’. Supposee € N<“~ ande ¢ 6(I"). ThenI +
Be(A) if and only if I" is inconsistent in¥” or o A.

When I" = {C}, the assertion is written as;» C D Be(A) if and only if
Fo -Corko A

The reader may find that Theorem 7.5 (hence, Theorem 7.3, too) is translated
into S4' by Theorem 6.1.

Now, let us return to the proof Theorem 7.3.

Lemma 7.6. Suppose the assumption of Theorem 7.3. Then, for anynoddd
(im,.-,i1) € N<Z with i = 2, Fo Dai(s1) A Daa(s2) D Bi,...Bi, (D2a(s1) A
D22(s2))-

Proof. The claim form = 1 follows from DC34. Suppose the claim for odd
m. Thenty Bi1(D21(s1) A D22(s2)) O BiBi,... Bij(D21(s1) A D22(s2)). Hence,
Fo BZB]_(DZ]_(S]_)/\ D22(Sg)) D) BZBlBim---Bil(D21(Sl) A D22(Sz)) It remains to
show - D2i(s1) A D22(S2) D B2Bi(D2i(s1)A Dax(s2)). Since ko Dai(sy) A
Di12(s2) D Bi(D2i(si)A D2o(s2)) by Fo DC34 by Lemma 7.4, we have o
B2(D11(s1) A D12(2)) D B2B1(D21(s1) A D22(S2))- Sincet o Day(s1) A D2a(s2) D
Bz(Dll(Sl)/\Dlz(Sg)) by DC34, we have- o D21(Srl)/\ D22(SQ) D BzBl(D21(81)/\
D22(s2))- o

Proof of Theorem 7_.3Take an oddm large enough so tha = (in,...,i1) ¢
0(D21(s1) A D22(s2)) with iy = 2. Applying Theorem 7.5 to the assertion of
Lemma 7.6 we havet- o —(D21(S1) A D22(S2)) 0O by D21(s1) A D2a(s)- o

8 Common knowledge logic &%

The difficulty we met in DC3 is caused by the limited capability of epistemic
logic . to express common knowledge. I#, the common knowledge of a
formula A is expressed by as the set(8) := {Be(A) : e € N<¥>}. However,
when this is used as nonlogical axioms, e.g:(A} - B, only a finite subset
of C*(A) is used as initial formulae in a proof & from C*(A). The entirety

of C*(A) is never captured itt”, which is the reason for the difficulty. In this
section, we extend” to capture the entirety of ‘@A). We find two approaches
in the logic literature: thdixed-pointand infinitary approachesin this section,
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we follow the former due to Halpern and Moses [8]. We also discuss decision
making criterion DC3 in the extensidh.

8.1 Common knowledge logic

We add one more unary operator symbol,t€ the list of primitive symbols
given in Section 3.1. In F2 of the definition of formulae, we allowALC{o be a
formula. We denote this extended set of formulae4gy. Note that this CA) is
a formula and is syntactically different from*@\).

Let.¥ be an epistemic logic in Diagram ¥Ve define the extensioi’”” as
follows:

¢y .. + CA + Cl within 7,
where CA and CI are the following axiom schema and inference rule:

CA: C(A) D AAB1C(A) A ...ABaC(A):

- D DAABi(D)A ... ABr(D)

' D > CMA) '
whereA andD are any formulae. The provability &f° is denoted by~ .
Lemmas 4.1 and 4.2 hold also f@gt".

Axiom CA is the fixed-point propertythat if A is common knowledge, then
A holds and each player believes the common knowledgk afsing CA, Nec
and MP a finitely many times, we have

o C(A) O Be(A) for all € = (i, ..., 1) € N<“>. (8.1)

Thus, the single formula @] includes all the content of CA) = {Be(A) : e €
N<«>}in . On the other hand, Cl states that if formi@llahas the fixed-point
property of the same form as CA, thénincludes the common knowledge Af
Thus, CR) is the deductively weakest formula having the fixed-point property.

The following fact may help understand the term “fixed-point”: By CA and
Cl, we have, reading botB andA as C@) in Cl,

Fz C(A) D CCA). (8.2)

The converse is provable, too.

To see that G¥) captures really the entirety of(A) = {Be(A) : e € N<¥>}
in 7 with no superfluous properties, we prove the following lemma using
semantics after stating the completenes&6f:

21 For the fixed-point approach, see also Fagin-Halpern-Moses-Vardi [7], Lismont-Mongin [22],[23]
and Meyer and van der Hoek [25]. For the infinitary approach, see Kaneko and Nagashima [16]
(including the predicate case) and also Heifetz [9]. Kaneko [14] proved in the propositional case
that these approaches can be regarded as equivalent as far as the definition of common knowledge
is concerned. However, Wolter [36] proved that this equivalence does not hold in the predicate case.
See Kaneket al [20] for a map of common knowledge propositional and predicate logics.
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Lemma 8.1.
(1): If Fyr D D Be(A) for all e € N<“> thent-y D D C(A).

(2): If F#» D D BjBe(A) for all e e N<“~, thent D D B;C(A).

We would like to regard &) effectively as equivalent to the conjunction of
C*(A) = {Be(A) : € € N<«~} though the infinitary conjunction is not allowed
in .. This effective equivalence can be seen by compafifg with classical
logic CL. In CL, A @ is determined by Axiom L4 an@\-Rule. Fact (8.1) corre-
sponds to L4, and Lemma 8.1.(1) does/teRule. Thus,Z.%* succeeds in having
the parallel structure to that of CL. In order to prove Lemma 8.1, however, we
need to extend the Kripke semantics and to prove the completeness theorem. The
present author has no direct syntactical proof of Lemma 8.1.

Now, consider the semantical counterpart ©f”. For Z°, we can use
the same Kripke semanticand need only to extend the valuation relation
(7, 0,w) F to A from 7.

Let (7, 0) = (W; Ry, ..., Ry), o) be a Kripke model. We extend the valuation
relation (77, o, w) = from =’ to (- by KO-K5 and

K6: (77,0, w) E C(A) if and only if (77,0, u) E A for all u reachable fromw,

whereu is reachable fromw iff there is a sequenceg = w, wy, ..., wn = U such
that for eactk = 0,1,...,m — 1, wxR wy+1for somej € N. K6 is equivalent to

K6*: (7 ',0,w) E C(A) if and only if (7,0, w) E Be(A) for all e € N<«~,

This equivalence can be proved by induction on the lengté. of
We state the soundness-completenesg.if, which is proved in Section 9.

Theorem 8.2 (Soundness-completeness of 7). Let.”” be an epistemic logic
in Diagram 2, and””* the set of the Kripke frames satisfying the corresponding
conditions on the accessibility relations. L&be a formula in/-.

(D: Feor Alif and only if (72, o, w) E A for all Kripke frames.7Z" in .*, all
assignments and allw € W.
(2): There is a Kripke framezZ" in .*, an assignment and a worldw € W
satisfying (77", o, w) F A if and only if A is consistent inz”.

Claims (1) and (2) are equivalent as in Theorem 5.1. ®hiy-if part of

(1) is proved by modifying the corresponding proof for Theorem 5.1 adding the
following steps to Lemma 5.2.

Lemma 8.3.

D): (7, 0,w) E C(A) D AAB1C(A) A ...ABRC(A) for any. 72" = (W; Ry, ...,Rn)
in .*, assignmentr in .7 andw € W.

(2): Let .72 be any frame in* ando any assignment ivZ'. If (7,0, w) F
D > AAB1i(D) A ...ABR(D) for any w € W, then (7', 0,w) E D D C(A) for
anyw € W.

Proof. We prove only (2). Leu be any world. SupposeX’,o,u) E D. Then
(7 ,0,u) E Aand (77 ,0,u) E Bi(D) fori =1,....n. Let uy, be any world so
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that it is reachable byn steps (n > 0). We assume the inductive hypothesis that
(F,0,un) E Aand (72, 0,uy) E Bi(D) fori = 1,...,n. Now let uyR Un+1.
Then (77, 0, Un+1) E D. Since (77", o, w) E D D AAB1(D) A ...AB,(D) for any
w € W, we have 7', 0,Un1) F A and (77, o, Un+1) E Bi(D) fori =1 ....n.
Thus, we have proved#',0,v) E A for any v reachable fromu. By KB,
(7 ,0,u) E CA). 0

One possible use of the above soundness-completeness is to prove Lemma
8.1.

Proof of Lemma 8.1We prove only (2). Supposeys D D BjBg(A) for all
e € N<¥>, Let (7, 0) be any Kripke model. ThenZ’', o, w) = D D BiBe(A)
for any world w. Then letu be any world. Suppose#’,o,u) £ D. Then
(77 ,0,u) F BiBe(A). Let U’ be any world withuRu’. Then (77, o,U’) F
Be(A). Since this holds for ang € N<“>_ we have @7, o, u’) E C(A) by K6*.
Since this holds for any’ with uR u’, we have (7', o, u) E B;C(A). We proved
(#,0,u) E D D B{C(A). By Theorem 8.2, we havez D D B;C(A). O

The following is an immediate but important consequence from Theorem 8.2.

Theorem 8.4 (Conservativity of % upon .¥). Let A be a formula in".
Thenk o Aif and only if Fyo A

This theorem guarantees that f6f = KD4", the Reciprocal Failure Theo-
rem and Depth Lemma (Theorems 7.1 and 7.3) can be converted into common
knowledge logicZ” with the restrictions of the target formulae 5.

Remark 8.5. In 2277, the common knowledge operator C enjoys the properties
K, T, 4 and Nec. Hence?Z. may be regarded as S4vith respect to G?
Therefore, the assertions of Lemma 4.1 hold for Czir’, e.g., (3) of Lemma
4.1 becomest-~ C(A ®) = AC(®) for a finite nonempy seb of formulae in
S

8.2 Solution theory for decision criterion DC3

In Section 7.2, we formulated Axioms DCgZ1..,DC34,B,(DC31),...,
B,(DC34) for decision criterion DC3 for player,2and showed that Axioms
DC34, and B,(DC34) lead to the reciprocal failure. By the conservativity of
the extensiorz.¥” upon.¥”, the Reciprocal Failure Theorem (Theorem 7.3) still
holds for&” in €, where.” = KD4". Now, however, we can look for can-
didates in¢ rather than in’. Here, we show that DC3 can be a meaningful
criterion in the common knowledge extensiar” .

To define the candidate formulae, we first modify Naglg) into

22 |n 7, we are treating commoknowledge, rather than common beliefs, in the sense that it
has the propertyt-.~ C(A) D A. As in Section 6, common beliefs can be expressed in common
knowledge logicZ¥". Specifically, the common belief & is defined as/\i BiC(A) in . See
Kaneko et al. [20]. However, it will be seen in the following that the individual belief of common
knowledge plays an important role in our game theoretical application rather than common beliefs.
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Bi(Best(s: | 52)) A Ba(Besk(s; | s1)), (8.3)

which we denote by Nasls,s;). This differs from Nashg, s;) in that each
individual payoff function is taken up to his beliefs in Naéh,s;). Then we
define the candidate formulae: fa (s,) € S,

Dii(s1) = By (\/ C(NasH (sy, &))) andD1a(s) = B (\/ C(NasH(sy, SQ))>

2 S1

(8.4)
Dai(s1) = By (\/ C(NasH(s1, s@)) andDy(s;) = B, (\/ C(NasHi(s1, 52))) :
S2 S1
(8.5)

Now, we have to see that these formulae satisfy Axioms DGR B(DC34%).
We denote by DC34D) and DC34(D), the formulae obtained by plugging
liij (s) into Djj (5) in DC34; and DC34. The proof of the following lemma will
be given in the end of this subsection.

Lemma 8.6. -y DC34(D)AB,(DC34,(D)).

In fact, requirements\{DC3X, ...,.DC34} and B(A{DC3L,...,.DC34})
hold for the above candidatg®;j(s) : 5 € §,i,j = 1,2}. Only DC3% and
B,(DC31) need a game theoretic assumption, which is proved below.

Theorem 8.7. Let g = (g1, g2) be a game with a unique Nash equilibrium. Then
(8): B2C(§) .y DC31,(D)AB(DC31(D));
(b): s A{DC32(D), ...,DC34(D)}AB2(A{DC32(D), ...,.DC34(D)}).

The next theorem states that formulﬁ@(s), i,j =1,2 are the deductively
weakest formulae satisfying our requirements. The proof is given below.

Theorem 8.8 (Personalized characterization of DC3). Let g = (g1,92) be a
2-person game with a unique Nash equilibrium. TH&(s),i,j = 1,2 satisfy
our requirements in the sense of (a) and (b) of Theorem 8.7. ThEWPB- v
As, (D21(s1) D D2a(s1)) A A, (D22(S2) D D22(s2)) -

These theorems correspond to Theorems 7.1 and 7.2 for DC2. As in the
case of DC2, Theorems 8.7 and 8.8 imply that the deductively weakest formulae
Dow(s1), D2a(s2), (51, %) € St x S are uniquely determined.

We have succeeded in avoiding the reciprocal failure by incorporating com-
mon knowledge into epistemic logie” = KD4". Nevertheless, we should rec-
ognize that epistemic logi&.” involves two levels of infinities: first” allows
formulae of any epistemic (finite) depths, e.g.(® = B;,,...B;,(A) for anym, and
secondZ. allows C@) to capture the entirety of GA) = {Be(A) : € € N<¥~}.

After all, common knowledge is an infinitary concept of an idealization, though
CA and CI avoid infinitary treatments in an ingenious way.

For the analysis of human decision making, it seems more natural to avoid

such infinitary concepts. Probably, this depends upon a situation. If the rules
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of the game including payoff functions are visible for the players and if they
are standing face-to-face, then these constituents may be regarded as common
knowledge between these players. This is due to the special property of vision:
Since the speed of light can be regarded as infinity, the mutual verification can
be made almost instantaneously (it is reminiscent ofAhalogy of the Suf
Plato [32], Book VI). On the other hand, payoff functions for games are usually
not visible but belong to individual subjectivity. Visions do not help to obtain the
common knowledge of payoff functions. This was already seen in the Konnyaku
Mondb in Section 1.3: the exchanged gestures were common knowledge between
the jelly maker and monk, but the subjective interpretations of the gestures were
very different.

The above characterization is made from the viewpoint of playefhis
personalized characterization makes sensé€# with . = KD4". If we adopt
. =S4 then BC(NasH(s,, s2)) is equivalent to C(Nask(, s;)) in .. Fur-
thermore, y

Fz D () = \/ C(Nashéy, sp)), wheret #]. (8.6)
S

This is what is described often informally by some game theofidis this case,
subjectivity disappearsa fortiori, false beliefs cannot be discussed. The false
beliefs on common knowledge will be discussed in a game theoretic example in
Section 8.3.

PNroof of Lemma 8.6We provet., DC341([~)~), which impIie§|—(wr Bz(DC§41
(D)). Recall DC34(D) is A4, (D11(s1) D B1(D21(s1))) A As, (D12(S2) D B1(D22
(2))). We prove only the first half. Sinde, C(Nask (s, s)) D B1C(Nasli(s,
s2)) by CA, we havety, C(Nasti(sy,s)) O V,,BiC(Nash(s, ) by L5,
which implies ¢~ C(Nasli(s,)) D B: (\/SZ C(NasH(s;, s2)) by Lemma
4.1.(2). l.e.;-z» C(Nasli(s1,s2)) D D11(s1). Since this holds for ang,, we have
P Vs, C(Nashi(sy, ) IS31(31) by V-Rule, and-z, Ba(V,C(NasH(sy,
$))) O B2(D11(s1)). 1.e., Fzr Daa(s1) O B2(D1i(s1))- 0

Proof of Theorem 8.7AWe prove BC(9) Fyo DCSJQ(f)). Since B(g1),B2(92)
Foor Nash'(sy, )A Nash (t1, t;) D Nash (t1, S) using the uniqueness of a Nash
equilibrium, we have CHg1), CB2(g2) F«» C(Nasti(sy, s2))A C(Nashi(ty, t2))

D C(NasH (t1, s2)) by Remark 8.5. Since Gt CB;(A) for all A € g andi =

1,2, we have Cff ¢ C(Nasti(s,s2)) AC(NasH((ty,t2)) D C(NasH(t1, s)).
Hence C§) -+ C(Nasti(si,s)) AC(Nasli(t1,t2)) D Ba(Besk(s; | t1)). Since
C(9) F#» C(Nash(ry,rp)) if and only if § 4o Nash¢y,ry) for any (1, r2),

we have C{J -« C(Nasli(s1,s)) AC(Naslti(ty,t2)) D Besk(s, | t1). We can
introduce\/ to the premise: indeed, the following is equivalent to the last formula,

~rr C(Nasti(s1, ) O (/\ CG) A C(Nash(t, 1)) © Best(sz | 1)

Sinces, is arbitrary, we have, applying/-Rule,

23 This set of decision criteria is considered in Kaneko and Nagashima [16] with the mixed strate-
gies, and is considered in Kaneko [13] with pure strategies.
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ke \/ C(Nash (s, s)) D (/\ C(§) A C(NasHi (1, to)) O Besh(s; | t1)> .
s

This is equivalent to G-« \/g C(NasH(s1, s)AC(NasH (11, t2)) D Besb(s; |
t1). Using a similar argument, we have J(F« \/s C(Nash(s, ) A V,,C
(Nash (t1,t2)) D Besb(s; | t1). Hence, BC(9) vy Bz(\/slg(NasH(g,sg)))/\
B2(V,,C(Nast(t1, t2))) D Ba(Besk(s, | 1)), i.€., BC(9) Frv D2a(S2)AD2a(t1) O
B2(Besk(s; | t)). Thus, BC(§) v DC3L(D).

S|m|IarIy, B1C(9) I_/y Dll(Sj_)/\Dlz(tg) D Bi(Best(s: | t2)). By CA, we have
C(g) Foo D]_]_(Sj_) A Dlz(tz) D B]_(BGSE_(S[L | tz)) Thus, Cg) Foo DC311(D)
Hence EC(g) Foy BZ(DC311(D)) O

For the proof of Theorem 8.8, we first prove the following lemma.
Lemma 8.9. B,C(g) Fror D21(s1) A D2a(s2) D B2C(Nasti(sy, sp)) fori =1, 2.

Proof. Denote Dj1(s;) A Dij2(s2) by Di(sy,sp) for i = 1,2. First, by DC3%,
B2C(9) e Da(s1,s2) D Ba(Besh(s: | s1)). Hence BC(9) Fryr Dao(st,s2) O
B,B,(Besk(s, | s1)). Second, by B(DC31), B,C(G) Frw Ba(Di(s1,s)) D
B2Bi(Besi(s: | 8)). Since BC(9) Fry Da(s1,S2) O Ba(Di(s1,s2)) by DC34,
we have BC()) Fzy Da(s1,%) O B2Bi(Besi(s: | ). Thus, BC() ey
Da(s1, S2) O Ba(Nash (s1, ).

In the same manner, we have®_g) ¢+ B2(D1(s1,S2)) D B2Bi(Nash (s,
). For this, we use BC(9) vy B2(Da(s1, S2)) O B2B1(D2(s1, %2))-

Suppose the induction hypothesis that}) -« D2(s1,S2) D B2Be(Nash
(s1,%2)) for all @ = (im, ...,i1) and BC(9) F#» B2(Di(s1, S2)) O B2B1Be(Nash
(s1,%)). We prove these forifs1,im,...,i1). Since BC(9) Fuy Da(s,S) D
B2(D1(s1,%2)), we have BC(9) vy Da(s1,S2) O B2BiBe(Nash (s, s)) as well
as BC(g) Fzy» Da(s1,s) D BaB2Be(Nash(s1, ). Finally, since BC(9) Few
B2(D1(s1, $2)) D B2B1(D2(s1, 2)), and BC(9) v« B2B1(D2(s1,S2)) O B2B1B2
Be(Nash (s1, s2)), we have BC(9) kv Ba(Di(s1,)) D B2BiBaBe(Nash
(s1, %2)) O

Proof of Theorem 8.8Since Lemma 8.9 is equivalent to®(g) v D2i(s1) D
(D22(s2) D B2C(Nasti(sy, 52))). Thus BC(9) s D21(s1) O (D2a(s2) O
V,B2C(Nash (1, %)), and then BC(9) Fz Vg D21(s1) O (D22(s2) D
Vy,B2C(Nash(tg, 52))). By DC33, B2C(9) Fzy Dao(s2) OV, B2C(Nash(ty,
2)). By Lemma 4.1.(2), we have(g) Fvy D2a(s2) D Ba(\/,, C(Nash(ty, 52)).
O

8.3 Konnyaku Mondl phenomena:
mutual misunderstanding of common understanding in DC3

We have relativized the concept of common knowledge to individual beliefs of
common knowledge. In particular, we have the individual belief of common
knowledge of a Nash strateg@,ij (s) = Bi(V4C(NasH(s, s))), wheret # j,

as decision and prediction criteria. This relativization enables us to discuss the
phenomenon in a game situation like the Konnyaku Moneentioned in Section
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1.3. That is, each of two players falsely believes that a different game is common
knowledge between the players.

Consider the assumption set®g%)u B,C(§%), where ¢* and ¢g* are the
games of Tables 3 and 4. That is, player 1 believes that it is common knowledge
that gameg® is played, while 2 believes that it is common knowledge tfais
played. We can prove that;B(3%)U B,C(3%) is consistent inZ.” with . =
KD4", and that

B1C(5°%), B2C(5*) s D11(S12) A D1a(S22) A D21(S12) A D2a(S22).

This states that both players’ predictions behaviorallycorrect. Nevertheless,
decisions and predictions are based on the mutual misunderstanding of com-
mon understanding. Neither player would find this misunderstanding by seeing
the resulting choice of the other player, since the predictions are behaviorally
correct. This argument cannot be done in logi¢” with . = S4' since
B1C(3%)UB,C(3*) becomes inconsistent.

The consistency of BC(G%)UB,C(G%) in 2. with . = KD4" is verified
by constructing the following model:

Oz wy & §° Oz wy & §*

Ny 2

Wo
Diagram 6

Then, since.¢7', o, w1) E C(A\ g% and (77, o, wp) E C(A\ §%), we have 7, o,
wo) F B1C(A §3)AB2C(A §%).

The above mutual misunderstanding of common understanding may be ob-
served in our life. The point here is the possibility that each player develops
a false and different belief of the common knowledge of the situation. This is
exactly the point suggested by the Konnyaku Mamd Section 1.3.

9 Proof of the completeness of 2.7

Here we prove the completeness part for Theorem 8.2A4or KD4". In other
cases, we need some modifications (see Halpern and Moses [8]A beta
formula, which is assumed to be consistentdn”. We are going to show
that there is a serial and transitive Kripke fram& = (W;Ry,...,R,) and an
assignment such that for somev € W, (77, o, w) E A.

If common knowledge operator C does not occurAinthen the following
proof becomes also a proof of the completeness of Theorem 5.2.(2¥foin
which case we can ignore the step (5) of the induction proof of (9.1). We suggest
that the reader who is not familiar with proofs in logic should read the proof of
the completeness for CL given in the Appendix before this subsection.
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We denote(D : D is a subformula oA} U J; ., {Bi(D), BiC(D) : C(D) is a
subformula ofA} by Sub@).?* Then we define SulfA) = Sub@) U {-D :D ¢
Sub@)}. We say that a subsdf of Subf(A) is maximally consisteniff it is
consistent in&” and I U {D} is inconsistent for anyp € Sub'(A) — I. We
denote the sefl" : I' is a maximally consistent subset of S@h) in 2} by
Con@).

Each maximally consistent sét of Subf(A) has the following properties.

Lemma 9.1. Let I' € Con(@). Then

(1): for any—B in Sub'(A), eitherB € I" or =B € T

(2): for anyB in Subf(A), -Be ' =B ¢ I

(3): foranyB > C in Sub(A),B>Cel'< -BelorCel,
(4): forany A @ in SUb'(A), A\éeI"=B eI forall B € &;
(5): for any\/ & in Sub’(A), \/ & € I' & B € I" for someB € &.

For a setu of formulae, we writeuB := {Bi(C) : B{(C) € u} and u\Bi =
{C : Bi(C) € u}. We define a Kripke modelZZ" = (W;Ry,...,R;) and an
assignment by
M1: W = Con();

M2: R = {(u,v) €W x W : u\B U uBi ¢ v} foralli € N;
M3: for any @w,p) e W x PV, o(w,p) =T iff p € w.
First, we verify that eaclr; is serial and transitive.

Lemma 9.2.
R is serial and transitive.

Proof. Consider seriality. Leti € W. Consider the set\B U uB. we prove
that this is a consistent set. Suppose not. Then there is a finite d@set, Cy,
Bi(Cri1), ...,Bi(Ci)} of u\B U uB such that-,. Cy A ... A Cy A B;i(Cran) A
...A\B;j (Ck) D -D AD. Thent4y B; (Cl VANPYRAN C[) AB; (Cg.q.]_)A ... \Bj (Ck) D)
Bi(—=D A D). However, by Axiom D, —B;(—=D A D). This means that
itself is inconsistent. Hence\B' UuB' is consistent. Then we have a maximally
consistent subset of Subf(A) including u\B U uBi. Then b,v) eR.

Consider transitivity. Lety,v) € R and @,w) € R. Take B(C) from u.
Then B(C) € v. This implies B(C) € w andC € w. O

Now we prove by induction on the length of a formula that for ahye
Sub’(A) and anyv € W,
C ewifandonly if (7, 0,v) E C. (9.2)
Suppose that (9.1) is proved. Sinkés consistent, there is@ € W with A € w.
Thus, (77", 0,w) E A by (9.1)
The 0-th step for (9.1) is the basis of the induction proof.

(0): Let C be a propositional variable in Stf#). By M3, C € v if and only if
o(v,C) =T. This is further equivalent to¥ , o, v) £ C by EQ. This is (9.1).

24 A subformulaof A is a formula appearing in the inductive constructionfof
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Consider a formulde in Suld’(A) which is not a propositional variable. Now
we assume the induction hypothesis that for any immediate subfoinoliaF,
D ewvifand only if (7, 0,v) E D. Then we prove (9.1) foF. In each step of
(1)-(3), we use Lemma 9.1.

(2): Let the formulaF in question be expressed a€. Suppose-C € v. Then
C ¢ v. By the induction hypothesis,# ", o,v) ¥ C. Hence (7', 0,v) E —-C.
The converse is similar.

(2): LetF beB D C. SupposeB D C € v. Then—-B € v or C € v. By the
induction hypothesis, %", o, v) ¥ B or (77, 0,v) E C. Hence (77, 0,v) F B D
C. The converse is similar.

(3): Similarly, we can prove (Q) in the case wher€ is expressed ag, & or
\V .

(4): Let the formulaF in question be expressed ag®).

First, we prove that. %7, 0,v) F B;(C) implies B(C) € v. Suppose
(7, 0,v) E B;i(C). We show the inconsistency otB B U {—-C}. Suppose
that this is consistent. There is a maximally consistentigetSub’(A) including
this set. Thus«,u) € R. However, (7,0, v) F B;(C) implies (7, o,u) F C.
By the induction hypothesis, we ha¥& <€ u, a contradiction to-C € u. By
the inconsistency ob\B U B U {—-C}, there is a finite subsefD;, ..., Dy,
Bi(Dy+1), -...Bi (Dk)} of v\Bi UvB such that-» DyA...AD; A Bi(Dest) A...A
Bi(Dk) O C. Thentgy Bi(D1 A ... A Dg)A Bi(De+1) A ...ABi(Dx) D Bi(C).
Hence B(C) € v.

Conversely, suppose; ) € v. ThenC € w for all w with (v, w) € R by
M2. Hence (7, o, w) E C for all w with (v, w) € R by the induction hypothesis.
This implies (7', 0,v) E B;(C).

(5): Let F be expressed as Bf. Now we prove that dj) € v if and only if
(77, 0,v) E C(D).

Suppose P) € v. We show by induction oik that if w is reachable from
v in k steps, therD and CD) are inw. Let k = 1. Observe that CA implies
Bi(D) € vand BC(D) € v. If w is reachable fromv in one step, i.e.x(w) € R
for somei, we haveD € w and CD) € w. Now we assume the claim fdx.
Suppose thatv is reachable fromv in k + 1 steps. Then there iswasuch that
is reachable fromv in k steps andy, w) € R;. By the induction hypothesi®
and CD) are inu. By CA, B{(D) € u and BC(D) € u. Since (,w) € R, we
haveD € w and CD) € w. In sum,D € w for all w reachable fromv. By
our main induction hypothesisZ', o, w) E D for all w reachable fromv. Thus
(7, 0,v) E C(D) by K6.

Conversely, supposeZ’, o,v) E C(D). We defineWp = {w : (¥ ,0,w) F
C(D)}. SinceWp is a set of subsets of Su#), this is a finite set. Letp,, be
Aw, i.e., the conjunction ofw, and letpw, =V cw, »w- We are going to
prove

Feow ows D D A Bl(QPWD) VANPVAN Bn(‘pWD)- (9.2)
Once this is done, we have, oy, D C(D) by Cl. Sincev € Wp, we have
Feo oo D pw,. Hencel#o ¢, D C(D). Thus CD) € v.
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In the remaining, we prove (9.2). Firstyy @ow, O D is proved as fol-
lows. Let w be an arbitrary world in\p. Since (72, 0,w) F C(D) implies
(7, 0,w) E D by K6. This impliesD € w by the induction hypothesishus
Fzo ow, D D. It remains to prove thatyy ow, DO Bi(pw,). Let w be
arbitrary inWp andi = 1,...n. It suffices to provel«» v, DO Bi(pw)-
Sincel—gy Pwp = 7 (\/w,ewiwD (pw/), Foo Ow O Bi (SOWD) is equivalent to
Fow o D Bi (/\w’€W7WD = ). The latter follows if we prove that for each
w eW — Wp,

Feo Pw D B; (ﬁsow’)' (93)

Suppose that (9.3) does not hold for somé € W — Wp. Then ¢, A
—Bi (~.) is consistent. We will show that this implies\B' € w’ andw\Br €
w'\Br Suppose that this is proved. Then we have«’) € R. Sincew € Wp
andw’ € W—Wp, we have 7', o, w) E C(D) but (7, o, w') ¥ C(D). The latter
implies that some € N<“> (97", o, w’) ¥ Be(D). However, the former implies
(7, 0,w) E B{Be(D), which together with ¢, w’) € R implies (7, o, w') F
Be(D), a contradiction Overall, we have (9.3).

It remains to show thats\B' C v’ andw'\B' < w\Bi follow from the
consistency ofp,, A =Bj(—p,). There are two cases to be considered. Consider
case (a)E ¢ w’ for some B(E) € w. Then—-E € w'. Thus,l¢y E D
—py. Thentgo Bi(E) D Bi(—,), which contradicts thap,, A —Bj(—¢.)
is consistent, sinceBE) € w. Next, consider case (b):ifE) ¢ w’ for some
Bi(E) € w. Then—B;(E) € w'. Thenkyy Bi(E) D -y, . This impliest
BiBi (E) D Bi(—¢w), which impliesk#o B;i(E) D Bj(—y.). Again, we have
a contradiction to the consistency @f, A =B;(—.,). After all, neither (a) nor
(b) holds. Thusw\B' C w’ andw\Bi c «/\B:. O

10 Conclusion

We have discussed both proof-theoretic and model-theoretic developments of
epistemic logics and their applications to game theory. The author intended to
show that the paper gives basic ideas of the logical approach and its scope, and
hopes that this is successful.

The paper itself covers a lot of basic concepts, but does not talk about many
relevant areas related to the logical approach. For example, extensions, such
as predicate logics, of epistemic logics and their applications to economics are
natural problems. Another related problem is the emergence of true or false
beliefs from different sources such as individual experiences. The introduction
of bounds to intrapersonal and interpersonal introspections for decision making
is another problem. Although these must be targets of the logical approach, the
present state of the logical approach is to wait for further research on these
problems.

The reader who want to study those areas or to do research in the logical
approach to economics and game theory may consult the papers in this issue as
well as their references.



Epistemic logics and their game theoretic applications: Introduction 57

Over all, the author hopes that the reader finds some interests in this new
field.

11 Appendix: Proof of completeness for classical logic CL

Our formulation of CL is quite efficient as an axiomatization, but the cost for
an efficient axiomatization is practically difficult to prove some steps for the
completeness of CL. For example, the following three claims are needed, but
they need a lot of tedious steps, which is given in the end of this appendix.

Lemma 11.1.(8): Fo (FAD-B) D (BDA); (b): AD(BDC)FAAB D C;
(©:AABDCHFyAD (B DC).

Lemma 11.2 (Deduction theorem). I" U {A} ko B impliesI" o A D B.

Proof. Let P be a proof ofB from I" U {A}. We prove by induction on the
tree structure oP from its leaves that” o A O C for any C in P. LetC
be a formula associated with a leaf Bf ThenC is an instance of L1-L5 or a
formula in I'. In either case]" ko C. Sincet-g C D (A D C) by L1, we have
I'ADC.

Now, letC be a formula associated with a non-leaf nod® inMe assume the
induction hypothesis that the induction assertion holds for the upper formulae of
C in P. We should consider three cases: MR Rule and\/-Rule. We consider
MP and A-Rule.

Suppose thaC is inferred fromD and D > C by MP. The induction
hypothesis is thal' o AD> D andI" o A D (D O C). By Lemma 3.1.(1) and
A-Rule,I" =g AD AAD, and by Lemma 11.1.(b); o AAD D C. By Lemma
3.1.(2), we havd" o AD C.

Suppose thab > A @ is inferred from{D > E : E € &}. The induction
hypothesis is thal” o A D (D D E) for all E € ¢. By Lemma 11.1.(b),
I'toAAND DE forall E € . By A-Rule,I" - AAD D AP. By Lemma
11.1.(c),'Fo AD (D D A\ D). O

Then we have the following lemma.
Lemma 11.3. I" ¥o Aif and only if I" U {—-A} is consistent in CL.

Proof. We denoted"U{—A} by I'". Supposd™ k¢ A. ThenI” o Aandl"” o —A.
Hencel" o (AD A) D Aandl” o (AD A) D -A by L1. Thus,I” o (A D
A) D -AAA. By Lemma 3.1.(1), we havé” ko —AAA, i.e., I is inconsistent.
Suppose thaf” is inconsistent. Thed” o -C A C. By Lemma 11.2 and
L4, we havel' o -A D =C and I o —=A D C. These together with L3 imply
I'Ho A O

Proof of the Equivalence of the if Parts of Theorem. Z8ppose thé part of
(1). We prove the negative form that of (2). Suppose that there is no nroofel
I'. ThenI'E —-C A C for someC. By (1), we havel" - -C A C.
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Suppose théf part of (2). LetI” ¥y A. ThenI' U {-A} is consistent with
respect to—o by Lemma 11.3By (2), there is a modek of I' U {—-A}. This
meansV,.(A) = L. Hencel ¥ A. O

Proof of Completeness for Clit suffices to prove that if” is consistent, there
is an assignment such thatV,(B) = T for all B € I'. In the following, we
suppose thaf is consistent in CL.
We order the set/” as follows:A;, Ay, ... We construct a sequendg, I, ...
by induction onAy, A, ... as follows:
G-0: =T,
and for anym > 0,
I'm—1U{An} if I'm—1U{An} is consistent
Tt if Im—1U{An} is inconsistent.
We definel” = |J,, I'm.
Lemma 11.4.
(1): Eachrl}, is consistent andp C I C
(2): I is consistent.
Proof.
(1): This follows the definition of .

(2): Suppose that’ is inconsistent. Then there is a proof-eA A A from a finite
subsetl™” of I'. This implies—AAA € Iy, for somem, a contradiction to (1). O

Lemma 11.5. The set/” defined above is maximally consistent, i.e., there is no
other consistent set strictly including, and satisfies the following properties:

(0):]~“F0A<:>Ae I

(1): eitherAe I" or -A e I
(2:A>Bel'wA¢l orBel;
B:ANPel < AcT forall Ac &
(4):\/® el < Ae for someAc .

Proof. The maximality of I" follows from the definition of eacl,.
(0): =: immediate. The other direction follows from the definitionof

(1): Itis impossible that botA and—A are inl” by Lemma 11.4.(2). IA = Ay, ¢
I, thenl_1 U {An} i§ inconsistent. By Lemma 11.3, we havg_; ko —An.
By (0), we have—A € I'. The other case is symmetric.

(2:LetADB € I 1fAel thenB eI’ by MP. Conversely, lef\ ¢ I'orBe
I". First, consider the cas&: € I". Then by L1, we havé\ © B € I". Second, let
A¢ I'. Then-Ae I’ by (1). Since-ANA ¢ I", we have~(-AAA) € I". Hence
-B D> =(-AAA) € I by L1. By Lemma 11.1.(a), we haveAANAD B € I.
This is equivalent to-A D> (A D B) € I'.Hence ADB) e I

(3): Suppose\ @ € I". Sinceto A @ D A for all A € @, we havel - A for all
Ae .
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Conversely, suppose thAte I forall Ae &. By (0), I'FoAforall Ac &.
By L1, we havel’ Fo(C D C) D AforallAc . Hencel o (C D C) D A®.
(4): SupposeA ¢ I" for all Ac ®. Let C be any formula. By (2JAD> C € I"
andA > —C e I for all A € . By (0) and\/-Rule, we have)/ & > C e I" and
V@ > -Ce I". By L3, we have-\/ @ ¢ I". Conversely, suppose thate I
for someA € &. By L5, we have\/ & ¢ I |

Now we can define an assignmenby «(p) = T iff p € I". Using thisx, we
haveV,, by EO-E4 of Section 4it remains to provev,(A) = T for all A € I
For this purpose, it suffices to show that(A) = T if and only if A € I". This is
proved by induction on the structure of a formula: Lemma 11.5 is used for the
following steps.

(1): for anyp € PV, V,.(p) = T < k(p) = T < Ae I,

@)V, (A =T e V,A=LeoA¢ T -AcT; N A
R):Vu(ADB)=T & V,(A=LorVyB)=TeA¢gl'orBel & AD
Bel,

@): Vi (ANP)=T &V, (A =Tforal Ac = A¢ IforallAcd < \d e
r;

(5): Vn()/ P)=T & V., (A) =T forsomeAec & < Ac I for someA € ¢ <
Voer. O

Proof of Lemma 11.% (a),(b) and (c) are proved as (7), (18) and (19). In the
following, we use Lemma 3.1.(2) without mentioning.
Q):+Fo(BDC)D((ADB)D(ADCQC)).
*):SinceBO>C)D(ADBOC))andADBDOC)D((ADB)D(AD
C)) are instances of L1 and L2, we have, by Lemma 3.13)(B > C) D
((W> B) D (ADB)).

2:AD>DBDOC)FHBDO(ADC).

*): By L2, we haveA D (B D C) k¢ (A D B) D (A D C). This together with
B O (ADB)(—L1) impliesAD> (B > C)FoB D (ADC) by Lemma 3.1.(2).
B)xFo(ADB)D(BD>C)D(ADC)).

*): RegardingB > C, AD B andA D> C asA,B andC of (2), we have, by (1),
Fo(ADB)D((BD>C)D(ADC)).

4):+oAD((ADB)DB).

*): RegardingA > B and A asA andB of (2), we have, using Lemma 3.1.(1),
Fo AD ((A D B) D B)).

5):Fo(AD(ADB)) D (ADB).

*): Since A D ((A D> B) D B)) D ((AD> (AD B)) D (A D B)) is an instance of
L2 and¢ A D ((A D B) D B) by (4), we have-o (AD (ADB)) D (ADB).
(6): Fo ——A D A (the law of double negation).

*): Since =——A D (-A D ——A) and (A D —=—A) D ((-A D —-A) D A) are
instance of L1 and L3respectively, we have, by Lemma 3.1.(2y -——A D

25 The following proof is due to T. Nagashima.
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(A > =A) D A). Hence we have, by (2);0 (-A D —=A) D (-—A D A). By
Lemma 3.1.(1), we haveg -—— AD A

™):Fo("AD-B)D> (B DA).

*) Since-oB D (-AD B)byLland-¢[B D> (-ADB)]D[((FADB)D>A)D

(B o A)] by (3), we have-q (FA D> B) D A) D (B D A). This and L3 imply
Fo (FAD —B) D (B D A).

(8): o A D ——A (the converse of (6)).

*): Since kg =——A D —-A by (6) andrq (———A D —=A) D (A D ——A) by (7),
we havetg A D ——A,

9):Fo(-ADB)D(—B D A).

*) Sinceto (B D =—B) D ((-A D> B) D (-A D> ——B)) by (1) and-, B > -—B

by (8), we have—, (-A D B) D (—-A D ——B). This together with—, (-A D

-—-B) D (=B D A) by (7) implieskq (-A D> B) > (-B D A).

(10): o (AD B) D (-B D —A).

*): Sincetq (B D =—B) D ((A > B) D (A D =—B)) by (1) and-¢ B > -—B

by (8), we have-o (A D B) D (A > ——B). This together with- (A > =—-B) D

(=B D —A) by (7) impliesk¢ (A D> B) D (-B D —A).

(11):Fo (AD -B) D (B D —A).

*) Sincet (——A D A) D (A D -B) D (A D —B)) by (3) and-g ——A D A
by (6), we haveo (A D —-B) D (——A D> —B). This and (7) implyq (A D

=B) D (B D —A).

12)Fo AD (B D =(A D —B)).

*) Sincetg A D ((A D —-B) D —-B) by (4) andtq ((AD> -B) > -B) > (B D
—(A D —-B)) by (11), we havé-¢ A D (B D —~(A D —B)).

(13): o =A D (A D B).

*) Since -A D (—-B D —A) is an instance of L1, we have, by (F)y ~AD (AD
B).

(14):Fo -(AD -B)D A

*): Since ko -A D (A D —-B) by (13) andto (-A D (A D -B)) D (~(
A D -B) D A) by (9), we have-o -(AD> —B) D A

(15) Fo ﬁ(A D ﬁB) D B.

*): Sinceto -B > (A D —-B) by L1 and-q (-B > (AD> -B)) D (-(AD> —B) D
B) by (9), we have-o -(A D> —-B) D B.

(16): Fo =(AD> —B) D AAB.

*): Using A-Rule, it follows from (14) and (15) that, =(A D> —B) D AA B.
A7):FoAD (B D AAB).

*) Sinceto (-(A D> —-B) D AAB) D [(B D =(A D —-B)) D (B D AAB)] by (2),
we havelq (B D =(A D —B)) D (B O AA B) using (16). This and (12) imply
FoAD (B D AAB).

(18:A>(BDO>C)FoAAB DC.

*): Since-o AAB D Aby L4, we haveAD (B D C)FHoAAB O (B D C). By
(2),A> (B D>C)FoB D> (AAB D C). This together with-o AAB D B by L4
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impliesAD(BD>C)FoAABD((AABDC),soAD(BDOC)FgAABDC

by (5).

(19:AABDOCHFHyAD (B DC).

*) Sincet AAB D C)D ((BDAAB)) D (B DC)) by (1) andAAB D C is

an assumption, we haveAB D C o (B D AAB) D (B D C). This and (17)

imply AABDCHFyAD (B DC). O

References

1. Aumann, R. J.: Agreeing to disagree. Annals of Statigtjck236—-1239 (1976)

2. Aumann, R. J.: Interactive epistemology |: knowledge. International Journal of Game Theory
28, 261-300 (1999)

3. Bacharach, M., Mongin, P.: Epistemic logic and the foundations of game theory. Theory and
Decision37, 1-6 (1994)

4. Bacharach, M., €rard-Varet, L. A., Mongin, P., Shin, H. S.: Epistemic logic and the theory of
games and decisions. Boston: Kluwer 1997

5. Boolos, G.: The unprovability of consistency. Cambridge: Cambridge University Press 1979

6. Chellas, B.: Modal logic. Cambridge: Cambridge University Press 1980

7. Fagin, R., Halpern, J. Y., Moses, Y., Verdi, M. Y.: Reasoning about knowledge. Cambridge:
The MIT Press 1995

8. Halpern, J. H., Moses, Y.: A guide to completeness and complexity for modal logics of knowl-
edge and beliefs. Artificial Intelligenced, 319-379 (1992)

9. Heifetz, A.: Iterative and fixed point common belief. Journal of Philosophical L2gi&1-79
(1999)

10. Hintikka, J.: Knowledge and belief. Ithaca: Cornell University Press 1962

11. Gentzen, G.: Untersuchungéber das logische Schliessen. Mathematische Zeits@%;ift 76—

210, 405-431 (1935). English translation: Investigations into logical deduction. In: Szabo, M.
E. (ed.)The Collected Papers of Gerhard Gentzen. Amsterdam: North-Holland 1969

12. Hughes, G. E., Cresswell, M. J.: A companion to modal logic. London: Methuen 1984

13. Kaneko, M.: Epistemic considerations of decision making in games. Mathematical Social Sci-
ences38, 105-137 (1999)

14. Kaneko, M.: Common knowledge logic and game logic. Journal of Symbolic 164gi&85—700
(1999)

15. Kaneko, M., Matsui, A.: Inductive game theory: discrimination and prejudices. Journal of Public
Economic Theoryl, 101-137 (1999)

16. Kaneko, M., Nagashima, T.: Game logic and its applications. Part I: Studia L8giG&25-354
(1996). Part II: Studia Logica8, 273—-303 (1997)

17. Kaneko, M., Nagashima, T.: Axiomatic indefinability of common knowledge in finitary logics.
In: Bacharach, M. et al. (eds.) Epistemic logic and the theory of games and decision, pp. 69-93.
Boston: Kluwer 1997

18. Kaneko, M., Suzuki, N.-Y.: Epistemic models of shallow depths and decision making in games.
IPPS. DP. No. 828, University of Tsukuba (1999)

19. Kaneko, M., Suzuki, N.-Y.: Bounded interpersonal inferences and decision making. Economic
Theory (this issue)

20. Kaneko, M., Nagashima, T., Suzuki, N.-Y., Tanaka, Y.: A map of common knowledge logics.
Studia Logica (to appear) (2001)

21. Kleene, S. C.: Mathematical logic. New York: Wiley 1967

22. Lismont, L. Mongin, P.: On the logic of common belief and common Knowledge. Theory and
Decision37, 75-106 (1994)

23. Limont. L., Mongin, P.: On the logic of common belief and common knowledge. In: Bacharach,
M. et al. (eds.) Epistemic logic and the theory of games and decision, pp. 3—-34. Boston: Kluwer
1997

24. Mendelson, E.: Introduction to mathematical logic. Monterey: Wadsworth 1987



62

25.

26.
27.

28.
29.
30.

31
32.

33.

34.
35.

36.
37.

M. Kaneko

Meyer, J.-J. Ch., van der Hoek, W.: Epistemic logic for Al and computer science. Cambridge:
Cambridge University Press 1995

Mithen, S.: The prehistory of the mind. London: Thames and Hudson 1996

Moser, P. K.: Empirical knowledge — readings in contemporary epistemology. Chicago: Rowman
& Littlefield 1986

Moulin, H.: Game theory for the social sciences. New York: New York University Press 1982
Myerson, R. B.: Game theory. Cambridge: Harvard University Press 1991

Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi I. Osaka Mathematical Journal
9, 113-130 (1957)

Nash, J. F.: Noncooperative game. Annals of Mathem&tc286—295 (1951)

Plato: The Republic of Plato. Translated by: Cornford, F. M. London: Oxford University Press
1941

Schulte O.: Minimal belief change, Pareto-optimality and logical consequence. Economic Theory
(this issue)

Takeuti, G.: Proof theory. Amsterdam: North-Holland 1987

Terutoshi, Y., Okitsu, K., Enomoto, S. (eds.): Collections of Meiji-Taisho comic stories (in
Japanese), Vol. 3. Tokyo: Kodansha 1980

Wolter, F.: First order common knowledge Logics. Studia Lo§;a249—271 (2000)

van Dalen, D.: Intuitionistic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of philosoph-
ical logic, Vol. lll. Amsterdam: Reidel 1986



