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Summary. Individual decision making is based on predictions about other play-
ers’ choices as well as on valuations of reactions to predictions. In this sense,
a player has a prediction-decision criterion for decision making. We develop a
theory of prediction-decision criteria, which enables us to capture new phenom-
ena on individual decision making in games. The decision making situation is
described in the epistemic logic GLEF of shallow depths. There, each player
considers his and other players’ decision making down to some shallow depths.
It is a point of our theory to investigateinferential complexities of interpersonal
introspections. In particular, we can discuss aminimal epistemic inferential struc-
ture for prediction-decision making. We will find parallel structures in decision
making and prediction making, which is called aninner parallelism. The cli-
max of the paper is the consideration of inner parallelisms of prediction-decision
making.
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1 Introduction

It is a central theme of game theory to investigate how people behave in in-
teractive situations. Asolution concept describes decision (behavior) criteria of
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people and the resulting outcomes from these criteria. Such an investigation is
called asolution theory, and various theories have been considered in the litera-
ture of game theory. Each solution theory may involve two types of interpersonal
considerations: (a) interpersonal introspections in the mind of a player; and (b)
interpersonal interactions at physical levels. Exchanges of messages in an ex-
tensive game are examples for (b). In this paper, we restrict our attention to
(a). That is, we consider structures of interpersonal introspections required for
decision making in game situations.

A typical characteristic of extant solution theories is the pursuit of “ratio-
nality” in resulting outcomes. This imposes payoff maximization for a decision
maker andsymmetrically for the other players even in the mind of the decision
maker. We take the different view that decision criteria are more arbitrary than
ones typically considered in game theory. Such an arbitrariness is due the fact
that other players’ minds are largely hypothetical. Under this view, we inves-
tigate structures ofinterpersonal introspections required for individual decision
making, putting emphasis on the shallowness of interpersonal introspections.

The different view we adopt liberates us from the pursuit of “rationality” in
decision making and its resulting outcomes. Rather than talking about “rational-
ity” in outcomes, we would like to retain the term “rationality” to describe an
attribute of the reasoning ability of a player. We call this thelogical rationality
of a player.

Extant solution theories typically involve some or many transcendental fac-
tors. This is caused by the fact that a simple decision criterion often fails to
recommend a decision. The avoidance of such a failure leads to the pursuit of
“rationality”. Here, we treat rather simple and naive decision criteria. First, we
exclude mixed strategies from our consideration, anda fortiori, we do not con-
sider solution concepts related to the literature of “perfection”. Even for epistemic
requirements, we also avoid assumptions containing transcendentalities such as
common knowledge. Thus, we find only a few simple and naive decision criteria
in the literature of game theory, but can find a lot from our real life. In this
paper, we investigate the structure of such simple and naive criterion from the
viewpoint of the logical rationality of players.

Since decision making may involve predictions about what other players
would choose, decision criteria are more accurately described asprediction-
decision criteria. Different prediction-decision criteria may require different in-
terpersonal introspections. For example, thedominant strategy criterion requires
a player to think only about his own payoff function, and requires no interper-
sonal introspections. The same is true for themaximin decision criterion. Another
example is that a player assumes, in his prediction, the dominant strategy crite-
rion for the other player and chooses a best strategy (response) to the predicted
strategy. In this example, truly interpersonal introspections are involved.

To facilitate considerations of interpersonal introspections for decision mak-
ing, we adopt theepistemic logics of shallow depths developed in Kaneko and
Suzuki [7], [8] and [9]. This logical system is denoted by GLEF . The subscripts
E andF of GLEF are called, respectively,
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(1): descriptive epistemic structure;

(2): inferential epistemic structure.

Both impose bounds on epistemic depths, where epistemic depths are the nested
structure of beliefs of players having the form: playeri1 believes thati2 believes
... im believes something. The former,E , is the bounds of epistemic depths for
a statement, and the latter, F , those of interpersonal introspections to infer the
statement. It may be the case that a player has beliefs about other players but
may make a decision without using his beliefs on other players. In this case,
the notion of (1) is complicated, but that of (2) is simple. Thus, we need to
distinguish between (1) and (2). Aminimal inferential epistemic structure for a
given statement is a key for this distinction.

To differentiate the above two notions more clearly, consider another ex-
ample:pure default decision criterion. Suppose that playeri gives up thinking
about the game and adopts hisfirst strategy as his default decision. Then he
needs no logical reasoning for the choice of the first (default) strategy. On the
other hand, playeri still needs to be conscious of what his default decision is.
This consciousness requiresE to be larger thanF . In this case, the minimal
inferential epistemic structureF is null, butE contains at least depth 1. This will
be discussed in Section 7.

We analyze the structure of prediction-decision making, while simultaneously
developing a theory of epistemic logics with shallow depths for our analysis.
Therefore, we call our theoretical development thelogico-game analysis to dif-
ferentiate our development from other extant theories.

Since the logico-game analysis in this paper will have a long development
of both game theoretic problems and epistemic logic GLEF , it would be helpful
to state that the climax of the development is the consideration ofinner paral-
lelisms of prediction-decision making in Section 8. Inner parallelisms mean that
a parallel form of prediction-decision making is found in each player’s predic-
tion making. This is explicitly argued and shown, using certain meta-theorems
obtained for GLEF . This result relies upon our basic assumptions that the same
logical rationality is given to each player, the investigator (observer) and players
imagined in the mind of each player.

Let us explain our undertaking from a different point of view. In Kaneko [4],
epistemic logic KD4n with the belief operators B1, ...,Bn of players 1, ..., n is
discussed as taking the central position. In KD4n , formulae having nested occur-
rences of B1, ...,Bn in any depths are allowed, and the Necessitation Rule may
be applied arbitrarily many times in proofs. On the other hand, human interper-
sonal epistemic introspections often stop at veryshallow levels. The purpose of
introducing GLEF is to take this limitation of human reasoning seriously. This
is directly related to the above game theoretical motivation in that we avoid
transcendentalities and treat prediction-decision criteria having only shallow in-
terpersonal introspections.

The logical system GLEF is obtained by imposing two types of restrictions
on KDn , rather than KD4n , by means of descriptiveE and inferentialF . Nested
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occurrences of belief operators in formulae and proofs are restricted byE and
F , respectively. We emphasize thatF is a subset ofE and may be smaller than
E . Thus, only shallower interpersonal introspections are required for the logical
rationality for decision making than for the description of the epistemic situation.

We close this introduction with two remarks. The first is on our choice of a
presentation style of GLEF . In Kaneko [4], the Hilbert-style formal system and
Kripke-style semantics for KD4n are primarily discussed. We may adopt these
types for GLEF , but for our considerations of game theoretical problems as well as
some logical problems, either is inconvenient in the sense that we need to prepare
a lot of lemmas. Instead, we present GLEF in the Gentzen-style sequent calculus,
which enables us to go directly to our problems. The Kripke-style semantics for
GLEF is found in Kaneko and Suzuki [9].

The second remark is on the exclusion of Axiom 4 (Positive Introspection
Axiom) from GLEF . One reason for this exclusion is that our focus is the consid-
eration of interpersonal introspections but not intrapersonal ones. Another reason
is that the exclusion makes our meta-theoretical treatments much easier. Never-
theless, the results given in this paper essentially remain to hold, which will be
discussed in the Appendix (Section 11).

The paper is organized as follows: In Section 2, we prepare basic game
theoretic notions and various prediction-decision criteria in the nonformalized
language. In Section 3, we give the definitions of formulae and epistemic struc-
tures. In Section 4, we give GLEF and state the cut-elimination theorem for it,
and we illustrate some provable statements on prediction-decision making. One
important result, called theDecomposition Theorem, is given there. This states
that the prediction-decision statements forn players are decomposed inton in-
dependent statements of individual prediction-decision making. This does not
depend upon structures of prediction-decision criteria.

In Section 5, we give the general definition of a prediction-decision crite-
rion, and see that various examples are special cases of this general definition.
Section 6 presents various meta-theorems to be used for evaluations of prediction-
decision making in a game. In Section 7, we consider minimal inferential epis-
temic structures for prediction-decision making with various criteria. Section 8
is the climax of this paper, in which we discuss inner parallelisms in prediction-
decision making. In Section 9 suggests a further development such as compound
prediction-decision criteria. Section 10 gives concluding remarks. Section 11
gives an appendix on the treatment of the Axiom 4 (Positive Introspection). We
append the list of symbols for the reader’s use.

2 Some game theoretic notions

In this section, we review basic game theoretical notions, and also give various
prediction-decision criteria. Some are standard in the game theoretical literature,
and others are found in our ordinary life. Such a variety of prediction-decision
criteria are important to understand the scope of our logico-game analysis.
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2.1 Basic notions and simple examples

Consider ann-person finite noncooperative gameg = (g1, ..., gn ) in strategic
form. The set ofplayers is denoted byN := {1, ..., n}. Each playeri ∈ N has
�i pure strategies (�i ≥ 2). We assume throughout the paper that the players do
not play mixed strategies. The set of playeri ’s (pure) strategies is denoted by
Si := {si1, ..., si�i } for i ∈ N . His payoff function is a real-valued functiongi on
S := S1 × · · · × Sn . An elements = (s1, ..., sn ) ∈ S is called astrategy profile.
For s = (s1, ..., sn ) ∈ S , let s−i = (s1, ..., si−1, si+1, ..., sn ). This is an element of
S−i := S1 × · · · × Si−1 × Si+1 × · · · × Sn . We write oftens = (s1, ..., sn ) ∈ S as
si ; s−i .

A strategy si ∈ Si is a best strategy (response) to s−i iff gi (si ; s−i ) ≥
gi (ti ; s−i ) for all ti ∈ Si . We say thatsi is a dominant strategy iff si is a best
strategy tos−i for any s−i ∈ S−i . A dominant strategy satisfies payoff maxi-
mization whatever the other players choose. We also consider the concept of an
undominated strategy to discuss prediction-making. We say thatti dominates si

iff gi (ti ; s−i ) ≥ gi (si ; s−i ) for all s−i ∈ S−i andgi (ti ; s−i ) > gi (si ; s−i ) for some
s−i ∈ S−i . A strategysi is anundominated strategy iff no ti ∈ Si dominatessi .
Note that an undominated strategy may not satisfy payoff maximization.

In the gameg1 = (g1
1, g

1
2) of Table 1 (Prisoner’s Dilemma), the second strategy

si2 for each playeri is a dominant strategy and is undominated. The game
g2 = (g2

1, g
2
2) of Table 2 is obtained from gameg1 only by changing payoff 6 in

the north-east corner to 2. In gameg2, player 1 has the same dominant strategy
as ing1, while neither strategy for player 2 is a dominant strategy but either is
undominated.

Table 1. g1 = (g1
1, g1

2) Table 2. g2 = (g2
1, g2

2)

s21 s22 s21 s22

s11 (5,5) (1,6) s11 (5,5) (1,2)
s12 (6,1) (3,3)∗ s12 (6,1) (3,3)∗

For a comparison purpose, we mention Nash equilibrium. A strategy profile
s = (s1, ..., sn ) is called aNash equilibrium iff si is a best strategy tos−i for all
i ∈ N . In either of gamesg1 andg2, (s12, s22) is a unique Nash equilibrium. A
Nash equilibrium in each matrix is marked with asterisk∗.

In the following, we will use the following prediction-decision criteria to
exemplify our theory.

DC1 (Dominant strategy): Playeri should choose a dominant strategy.

In game g1, this criterion gives a decision to either player. In gameg2,
however, DC1 gives a decision only to player 1 but not to player 2, since player
2 has no dominant strategies. Note that this criterion includes no predictions, i.e.,
a player does not think about the other’s choice. We may think that the lack of
predictions causes the incapability of DC1 to recommend a decision for player 2.
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We consider another decision criterion including prediction-making.

DC2 (Best strategy to a dominant strategy): Player i first predicts what the
other playerj should choose following DC1, and theni should choose a best
strategy to the predicted strategy forj .

In gameg2, player 2 first predicts that 1 would chooses12 following DC1,
and then 2 would chooses22 as the best strategy to the predicted decisions12.
These criteria, DC1 and DC2, are related to theprocedure of iterated elimination
of dominated strategies (cf., Moulin [10] and Myerson [11]). These are more or
less a standard example of a prediction-decision criterion in the literature of game
theory. However, we can consider some other prediction-decision criteria which
have never been discussed in the literature of game theory. We would like to
show that our logical approach enables us to take such other prediction-decision
criteria in its scope. In particular, we discuss the subtlety of inferential epistemic
interactions required for decision making with such prediction-decision criteria.

Criterion DC2 makes no recommendations in some other games. For example,
the gamesg3 andg4 (Matching Pennies) of Tables 3 and 4 allow neither player
to have a dominant strategy. Neither DC1 nor DC2 makes a recommendation.
However, some other criteria make recommendations for such games. Here we
mention a few more decision criteria.

Table 3. g3 = (g3
1, g3

2) Table 4. g4 = (g4
1, g4

2)

s21 s22 s23 s21 s22

s11 (5,5) (1,2) (4,3) s11 (1,-1) (-1,1)
s12 (6,1) (3,3)∗ (0,2) s12 (-1,1) (1,-1)

As mentioned in Section 1, we treat “rationality” as an attribute of reasoning
abilities rather than outcomes or behavior. In the present context, this mean
that we do not pursue “rationality” of prediction-decision criteria. The following
extreme example may clarify our attitude.

DC0 (Pure default decision): Player i should choose the prespecified default
strategy, e.g.,si1.

In gameg4, player 1 can choose his first strategys11 as a default decision with no
further considerations. The word “default” has the connotation that after some
other possibilities are considered and none of them recommends a decision,
a default decision would be applied. We call this type thelast-resort default
decision criterion, which will be discussed in Section 9. Here, we treat a pure
default decision just as a prespecified one.

Criterion DC0 may sound too trivial if it is applied to playeri ’s own decision
making. However, it would not be so if this is adopted for playerj ’s prediction on
i ’s decision making. That is, the prediction on the other player’s choice is made
without considerations on the other’s subjective elements. We modify criterion
DC2 into the following.
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DC20 (Dogmatic prediction decision): Playeri first predicts that playerj would
choose strategysj1 following DC0, and theni should choose a best strategy to
the predicted strategysi1.

This criterion is free from the symmetric assumption that a decision maker as-
sumes payoff maximization for himself as well as for the other player. In this
sense, DC20 differs considerably from DC2.

We will see in Section 7 that criterion DC20 involves some subtlety in epis-
temic interactions, while DC0 has only trivial interactions.

Finally, we mention the very first decision making criterion considered by
von Neumann [12] and [13] in the literature of game theory. We state it for
player 1.

vN (Maximin decision): Player 1 should choose hiss1 to maximize mins2 g1(s1, s2).

That is, player 1 evaluates eachs1 by the worst possible payoff, mins2 g1(s1, s2),
and maximizes this value. This criterion is usually considered only for a two-
person zero-sum game. It is sometimes confused with a Nash equilibrium, since
the resulting pair given by this criterion for two players is equivalent to a saddle
point, i.e., Nash equilibrium, if it ever exists. However, vN is an individual deci-
sion criterion, and does not involve predictions about the other player’s decision
making. From the viewpoint of epistemic depth, this criterion has the same status
as that of the dominant strategy criterion DC1. On the other hand, if we look at
the saddle point in the game, and if we require the infinite regress argument such
as in Kaneko [4], it would require common knowledge, i.e., the infinite depth.1

2.2 Location game LG with three-stores of different sizes

To exemplify our theory, we need a slightly more complex example. Consider the
following 3-person gameh = (h1, h2, h3). In the following, we call this 3-person
game thelocation game LG. In LG, player 1 has two strategiess11, s12, and each
i = 2, 3 has three strategiessi1, si2, si3. We assume thath1 depends upon all the
three players’ choices,h2 depends upon his and 3’s choice, andh3 is determined
solely by his own choice. Specifically, the payoff functionh1(s1, s2, s3) is given
as

h1(s1, s2, s3) =




2 if s1 = s11 ands2 = s21

1 if s1 = s11, s2 = s22 ands3 /= s31

−1 if s1 = s11, s2 /= s21 ands3 = s31

0 otherwise

1 Aumann and Maschler [1] discussed carefully the conceptual differences between the maximin
decision criterion from the saddle point property (Nash equilibrium) from a different point of view
from ours.
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andh2(s2, s3), h3(s3) are given as

s31 s32 s33

s21 0 5 5
s22 10 1 10
s23 0 0 0

s31 10
s32 20
s33 0

h2(s2, s3) h3(s3)

Since this example is constructed to show some slightly complex epistemic
interpersonal introspections, the following story in terms of industrial organi-
zations looks somewhat twisted, but gives some idea on the scope of possible
applications of our theory.

Three players 1, 2, 3 are companies, and there are three locationsa, b, c for
these companies, which correspond to the three strategiessi1, si2, si3 of player
i = 2, 3. The demand at locationb is large, that ata is medium, and that atc is
small. Player 3 is a large company treating many products, 2 a more specialized
medium company, and 1 a small company specialized to one product. Player 1
has already a facility at locationa, and then his choice is to open,s11, or not
to open a store,s12 at locationa. Players 2 and 3 would choose one location to
open a store. Player 1’s product is complemental to the those treated by player
2. Therefore, player 1 wants player 2 to open a store at locationa. If player 2
choosesa, then 1 would have profit 2. If 2 opens at locationb, then 1 would get
profit 1 unless the big store 3 comes to locationa. It is the worst case for 1 that
1 opens the store and only the big store 3 comes toa. Player 2 is affected by
player 3’s choice. However, 3 is large enough to ignore the other two players.2

Since player 1 is affected by the other two players, player 1’s decision making
may involve new aspects not found in the prediction-decision criteria described
in Section 2.1. Therefore, we consider only player 1’s decision making in the
location game LG.

The following one is an extension of DC2 to the 3-player case.

HDC (Hierarchal decision criterion): Player 1 predicts that 2 would predict
what 3 would choose following DC1, and that 2 would choose the best strategy
to it. Then player 1 should choose a best strategy to his prediction on 2’s decision.

Specifically, player 1 predicts that 2 predicts that 3 would chooses32 as the
dominant strategy, and then 1 would predict that 2 would chooses21 as the
best strategy tos32. Then player 1 would chooses11 as the best strategy to the
predictions21. Thus, player 1 can make a decision by this criterion. In this case,
player 1 needs to think about 2’s decision making as well as 2’ prediction about
3’s decision making. However, 1 does not directly predict 3’s decision making,
and his prediction is made only through 2’s mind.

2 Our concern is ordinal preferences on strategy profiles. This assumption can be interpreted as
meaning that the ordinal preferences are determined byh2(s2, s3) andh3(s3), though the actual profits
are slightly influenced by the choices of 1 and/or of 2.
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In the present location game, player 1 can make a decision under the predic-
tion that the other players choose undominated strategies.

NPC (Negative prediction criterion): Player 1 predicts that 2 and 3 would
choose undominated strategies, and 1 would choose a best strategy to his predic-
tions.

Specifically in the above game, player 1 predicts that players 2 and 3 would
choose, respectively,s21 or s22 ands32 as undominated strategies. Then he should
chooses11 as a best strategy to either of (s21, s32) and (s22, s32). In this case, player
1 thinks about 2’s decision making only in a negative sense, i.e., what players 2
and 3 would not choose. In location game LG, player 1 can also make a decision
by this criterion.

The prediction-decision criteria HDC and NPC require different interpersonal
introspections. In HDC, the interpersonal introspection takes a liner form: 1
thinks about 2’s prediction about 3’s decision. On the other hand, in NPC, the
interpersonal introspection takes a branching form: 1 thinks about 2’s and 3’s
decisions separately. This difference will be more explicitly discussed in Sections
7, 8 and 9.

3 Set of formulae P and epistemic structures

We define the set of formulae and see how prediction-decision criteria are de-
scribed as formulae. We also define the concept of an epistemic structure, which
will be used indescriptive andinferential manners for the definition of our epis-
temic logic GLEF of shallow depths in Section 4.

3.1 Definition of formulae

We represent payoff functionsg1, ..., gn in terms of preference relations. We start
with:

strategy symbols: s11, ..., s1�1; s21, ..., s2�2; ...; sn1, ..., sn�n ;
2n-ary symbols: P1, P2, ..., Pn ;
unary symbols: d1, d2, ..., dn ;
logical connective symbols: ¬ (not),⊃ (implies),

∧
(and),

∨
(or) ;

unary belief operator symbols: B1, B2, ..., Bn ;
parentheses: ( , ) ; braces: {, } andcommas: , .

We associate theintended meanings, “not”, “implies”, “and”, “or”, with con-
nective symbols, ¬, ⊃,

∧
,
∨

, respectively. Unary belief operator symbol Bi is
applied to each formula. Strategy symbols are identical to those given in the Sec-
tion 2. By a 2n-ary symbolPi , we consider the expressionPi (s1, ..., sn : t1, ..., tn )
for (s1, ..., sn ), (t1, ..., tn ) ∈ S . By a unary symboldi , we consider the expression
di (si ) for si ∈ Si . These expressions are calledatomic formulae, and the set of
them is denoted byAF . For example, whenn = 2 and�1 = �2 = 2, AF consists
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of 32 + 4 atomic formulae. Atomic formulaPi (s1, ..., sn : t1, ..., tn ) is intended to
means aweak preference for (s1, ..., sn ) over (t1, ..., tn ) for player i , and di (si )
means thatsi is a default decision for playeri .

RegardingAF as the set of propositional variables, we defineformulae in-
ductively as follows:

F1: anyA ∈ AF is a formula;
F2: if A andB are formulae, so are (¬A), (A ⊃ B ) and Bi (A) (i ∈ N );
F3: if {A0, A1, ..., Am} is a finite nonempty set of formulae, then (

∧{A0, A1, ...,
Am}) and (

∨{A0, A1, ..., Am}) are also formulae;
F4: any formula is obtained by a finite number of applications of F1, F2 and

F3.3

We denote the set of all formulae byP . We say that a formulaA is nonepis-
temic iff A contains no B1, ..., Bn . We denote the set of all nonepistemic
formulae by P n. We follow standard practices of abbreviations so that we
could recover the original expressions when necessary. We will also abbrevi-
ate
∧{A, B},

∨{A, B , C},
∧{A0, A1, ..., Am} asA ∧ B , A ∨ B ∨ C ,

∧m
k=0 Ak , etc.

We denote (A ⊃ B ) ∧ (B ⊃ A) by A ≡ B . We also denote¬p ∧ p and¬p ∨ p by
⊥ and�, respectively, wherep is an atomic formula.

Here we look briefly at how the basic game theoretical concepts are expressed
in our language.

First, we express the payoff functiongi of player i as the following set of
preferences:

{Pi (s : t) : gi (s) ≥ gi (t)} ∪ {¬Pi (s : t) : gi (s) < gi (t)}, (3.1)

which is denoted by ˆgi . The conjunction
∧

ĝi of ĝi is a formula. Hence, the
payoff functions forn players are described as the set ˆg = ĝ1 ∪ · · · ∪ ĝn or as the
formula

∧
(ĝ1 ∪ · · · ∪ ĝn ).

The statement that strategysi for player i is a best strategy to the others’
strategiess−i is described as the formula

∧{Pi (si ; s−i : ti ; s−i ) : ti ∈ Si }, which
we denote by Besti (si | s−i ). The statement thatsi is a dominant strategy for
playeri is expressed as

∧{Besti (si | s−i ) : s−i ∈ S−i }. This means thatsi is the
most preferable whatever the others choose. This is equivalent to

∧{Pi (si ; t−i :
ti ; t−i ) : ti ∈ Si and t−i ∈ S−i }, which we denote by Domi (si ).

An undominated strategy needs a slightly longer definition: First, we denote
the following by domi (ti , si ) :∧

s−i ∈S−i

Pi (ti ; s−i : si ; s−i ) ∧
∨

s−i ∈S−i

¬Pi (si ; s−i : ti ; s−i ). (3.2)

3 The above definition deviates from the standard textbook definition of formulae in that connec-
tives

∧
and
∨

are applied to a finite nonempty set of formulae, e.g.,
∧

{A0, A1, ..., Am}, rather
than to an ordered pair of formulae. We take this deviation to facilitate game theoretical applications.
However, the resulting logical systems are equivalent (with respective to provabilities or validities
defined in the systems). This formulation does not fit in some considerations, e.g., using the Gödel
numbering. If one wants to take the Gödel numbering, then the standard formulation would be more
convenient.
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The above, (3.2), states “ti dominatessi ” . Using this formula, we define
Undi (si ) :=

∧
ti
¬domi (ti , si ). This states “si is an undominated strategy”.

Finally, consider the prediction-decision criteria DC1 and DC2 for a 2-person
gameg = (g1, g2). Criterion DC1 for playeri is described asD 1

i = {Domi (si ) :
si ∈ Si }. Criterion DC2 for playeri is denoted byD 2

i = {D2
i (si ) : si ∈ Si },

where eachD2
i (si ) is given as∨
sj

Bj (Domj (sj )) ∧
∧
sj

(
Bj (Domj (sj )) ⊃ Besti (si | sj )

)
. (3.3)

If player i believesΓ and if Bi (D2
i (si )) is derived from his beliefs Bi (Γ ), thensi

is regarded as a decision fori as far as he adopts his prediction-decision criterion
D 2

i .
In Section 5, we discuss these and other prediction-decision criteria in a

unified manner.

3.2 Epistemic depths of formulae and epistemic structures

Although the set of formulaeP allows any finitely nested structures of B1, ...,
Bn , the decision criteriaD 1

i and D 2
i seem to need only small part ofP . To

capture this idea, we introduce the notions of theepistemic depths of formulae
andepistemic structures. As stated in Section 1, the notion of epistemic structures
will be used to impose restrictions on:

(i): interpersonal epistemic expressions in formulae;

(ii): interpersonal epistemic inferences in proofs.

In this section, we will discuss only (i), and will do (ii) in Section 4.
First, let N <ω := {(i1, ..., im ) : i1, ..., im ∈ N }. Note thatN <ω contains the

null sequence ε, i.e., the sequence of length 0. We call e = (i1, ..., im ) ∈ N <ω an
epistemic status. Fore = (i1, ..., im ) ∈ N <ω, Bi1...Bim (A) is denoted by Be(A), and
Bε(A) is regarded asA. We define the following concatenation: fore = (i1, ..., im ),
e′ = (j1, ..., jk ) ∈ N <ω, let e◦e′ = (i1, ..., im , j1, ..., jk ). We also lete◦ε = ε◦e = e.
We write (i ) ◦ e ande ◦ (i ) as i ◦ e ande ◦ i , respectively.

We define the (epistemic) depth δr (A) of A ∈ P by induction on the length
of a formula:

D0: δr (p) = {ε} for any p ∈ AF ;

D1: δr (¬C ) = δr (C );

D2: δr (C ⊃ D) = δr (C ) ∪ δr (D);

D3: δr (
∧

Φ) = δr (
∨

Φ) =
⋃

C∈Φ δr (C );

D4: δr (Bi (C )) = {i ◦ e : e ∈ δr (C )}.

Note thatδr (A) is a subset ofN <ω. For example,δr (B2(Dom2(s2))) = {(2)} and
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δr (B2(D2
2(s2))) = {(2), (2, 1)}. We defineδr (Γ ) =

⋃
C∈Γ δr (C ) for a setΓ of

formulae.4

To give a restriction on formal descriptions and formal proofs, we introduce
the notion of an epistemic structure. We say that a nonempty subsetE of N <ω

is anepistemic structure iff

(i1, ..., im ) ∈ E implies (i1, ..., im−1) ∈ E . (3.4)

When m = 1, (i1, ..., im−1) is the null symbolε. By the nonemptiness ofE
and (3.4), we haveε ∈ E . Trivial examples forE areN <ω and{ε}. Less trivial
examples are{ε, (1), (2)} and{ε, (1), (2), (1, 2), (2, 1)}. The epistemic depthδr (A)
of formulaA may not satisfy (3.4). However, for any givenA, there is the smallest
epistemic structure includingδr (A).

Given an epistemic structureE , we define

PE = {A ∈ P : δr (A) ⊆ E}. (3.5)

A formula A in PE is said to beadmissible in E . That is, when an (descriptive)
epistemic structureE is given, we admit only formulae whose depths are in
E . For example, whenE = {ε, (1), (2)}, any formula inPE may have B1 and
B2 without nested occurrences. On the other hand, formula B2(D2

2(s2)) belongs
to P{ε,(2),(2,1)} but not toPE . Since the null symbolε always belongs to any
epistemic structureE , all the nonepistemic formulae are included inPE , i.e.,
P n ⊆ PE .

4 Epistemic logic GLEF of shallow depths

We adopt the Gentzen-style formulation of the epistemic logic GLEF of shallow
depths. The choice of the Gentzen-style is made so as to facilitate our arguments
faithfully. Intuitively speaking, GLEF is defined by imposing two restrictions on
formulae and proofs in the Gentzen-style formulation of KDn . In Section 4.1,
we give the Gentzen formulation of GLEF , and in Section 4.2, we see how it is
used for describing game theoretic decision making. We give detailed examples
and explanations in Section 4.3 and also state basic theorems on logic GLEF in
Section 4.4.

4.1 Logic GLEF and game theoretic statements

Let E and F be two epistemic structures withF ⊆ E . We give restrictions in
terms of theseE andF , respectively, on formulae and on proofs. To formulate
the restrictions on proofs, we introduce the concept of a thought sequent.

Let e = (i1, ..., im ) ∈ E , and Γ, Θ finite subsets ofPE . Using auxiliary
symbols [, ], and→, we introduce a new expression Be [Γ → Θ] := Bi1...Bim [Γ →

4 This δr differs in D4 from δ given in Kaneko [4], which is the depth measure suited to the
KD4-type logics.
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Θ], which we call athought sequent. The admissibility of a formula is extended
to a thought sequent. We say that a thought sequent Be [Γ → Θ] is admissible
in E iff e ◦ δ(Γ ∪ Θ) := {e ◦ e′ : e′ ∈ δ(Γ ∪ Θ)} ⊆ E . Admissible proofs with
respect toF will be defined presently.

We abbreviate Bε[Γ → Θ] as Γ → Θ. Also, we abbreviate Be [Γ ∪ ∆ →
Λ∪Θ] and Be [{A}∪Γ → Θ∪{C}] as Be [Γ, ∆ → Λ, Θ] and Be [A, Γ → Θ, C ],
etc. We use the convention to write Bi (Φ) = {Bi (A) : A ∈ Φ}.

The notion of a thought sequent has some conceptual difference from
Gentzen’s [3] original notion of a sequent. Nevertheless, since we consider only
thought sequents, we may call thought sequents simplysequents.

By Bi1...Bim [Γ → Θ], we express the idea that playerim in the mind ofim−1

... in the mind ofi1 conducts logical reasoning and believes thatΓ → Θ. As in
the standard sequent calculus,Γ → Θ is intended to mean

∧
Γ ⊃ ∨

Θ, where∧ ∅ and
∨ ∅ are meant to be¬p ∨ p and ¬p ∧ p, respectively. Here, we note

that if we forget the outer Be [· · ·] of Be [Γ → Θ] and impose no restrictions
on formulae and proofs, the following logical system would be the same as the
Gentzen-style formulation of KDn .

The logical reasoning of the innermost playerim in Bi1...Bim [· · ·] is governed
by one axiom schema and various inference rules, which describe classical logic.
One additional rule connects playerim ’s reasoning toim−1’s. In the following,
Γ, Θ, ∆, Λ, Φ are finite sets of formulae,A, B formulae andΦ is assumed to be
nonempty.

Axiom (Initial Sequent): Be [A → A],

Structural Rules:

Be [Γ → Θ]
Be [∆, Γ → Θ, Λ]

(Th)
Be [Γ → Θ, A] Be [A, ∆ → Λ]

Be [Γ, ∆ → Θ, Λ]
(Cut)

Operational Rules:

Be [Γ → Θ, A]
Be [¬A, Γ → Θ]

(¬ →)
Be [A, Γ → Θ]

Be [Γ → Θ,¬A]
(→ ¬)

Be [Γ → Θ, A] Be [B , Γ → Θ]
Be [A ⊃ B , Γ → Θ]

(⊃→)
Be [A, Γ → Θ, B ]

Be [Γ → Θ, A ⊃ B ]
(→⊃)

Be [A, Γ → Θ]
Be [
∧

Φ, Γ → Θ]

(∧→) , whereA ∈ Φ
{Be [Γ → Θ, A] : A ∈ Φ}

Be [Γ → Θ,
∧

Φ]

(→ ∧)

{Be [A, Γ → Θ] : A ∈ Φ}
Be [
∨

Φ, Γ → Θ]

(∨→) Be [Γ → Θ, A]
Be [Γ → Θ,

∨
Φ]

(→ ∨)
, whereA ∈ Φ

Epistemic Distribution Rule:

Be◦i [Γ → Θ]
Be [Bi (Γ ) → Bi (Θ)]

(Bi → Bi ), where |Θ| ≤ 1 andi ∈ N .
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Here |Θ| is the cardinality ofΘ.
Inferences (⊃→), (→ ∧

) and (
∨ →) have the sets of upper (thought) se-

quents, which mean that each sequent is already proved. Some examples are
given below.

The outer Be [· · ·] of the upper and lower thought sequents in each of the
structural and operational rules are identical, and these rules describe classic
logic. That is, the innermost playerim in e = (i1, ..., im ) is assumed to be capable
of conducting logical reasonings described by classical logic. The outer Be [· · ·]
changes only at (Bim → Bim ), and eventually the innermostim goes into the scope
of B(i1,...,im−1)[· · ·]. The length ofe = (i1, ..., im ) of the outer Be [· · ·] gets shorter
only at an application of (Bim → Bim ) in a proof.

Let Be [Γ → Θ] be a thought sequent admissible inE . An admissible proof
P of Be [Γ → Θ] in GLEF is a finite tree satisfying the following conditions:

P1: a thought sequent admissible inE is associated with each node;

P2: the thought sequent associated with each leaf is an instance of the axiom;

P3: adjoining nodes together with their associated thought sequents form an
instance of the above inference rules;

P4: Be [Γ → Θ] is associated with the root node;

P5: e′ belongs toF for any thought sequent Be′ [∆ → Λ] in P .

We say that Be [Γ → Θ] is provable in GLEF , denoted by�EF Be [Γ → Θ],
iff there is an admissible proofP of Be [Γ → Θ] in GLEF . The negation of
�EF Be [Γ → Θ] is denoted by�EF Be [Γ → Θ]. Recall that whene = ε, we
abbreviate the outer Bε[· · ·], that is,�EF Bε[Γ → Θ] is written as�EF Γ → Θ.
When we write�EF Γ → Θ or �EF Γ → Θ, we already assume thatΓ → Θ is
admissible inE , i.e., δ(Γ ∪ Θ) ⊆ E .

Consider one example of a proof. In Kaneko [4], it is shown that Bi (
∧

ĝ1
i ) ⊃

Bi (Domi (si2)) is provable in KD4n . This is now proved fori = 1 in GLEF with
E = F = {ε, (1)} as follows:{

B1[P1(s12, s2 : s1, s2) → P1(s12, s2 : s1, s2)]
B1[ĝ1

1 → P1(s12, s2 : s1, s2)]
(Th)

}
(s1,s2)∈S

B1[ĝ1
1 → Dom1(s12))]

Bε[B1(ĝ1
1) → B1(Dom1(s12))]

Bε[ → B1(ĝ1
1) ⊃ B1(Dom1(s12))]

(→⊃)

(B1 → B1)

(→ ∧)
(4.1)

Note that inference (→ ∧
) has|S | = 2×2 upper thought sequents, each of which

is derived with (Th). In fact,�EF → B1(ĝ1
1) ⊃B1(Dom1(s12)) is equivalent to

�EF B1(ĝ1
1) → B1(Dom1(s12)).

We define theinconsistency of Γ in GLEF by �EF Γ → ⊥. Recall that⊥
is the formula¬p ∧ p, wherep ∈ AF . We say thatΓ is consistent in GLEF iff
�EF Γ → ⊥. We will use the following fact:

Γ is consistent in GLEF if and only if �EF Γ → . (4.2)
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Indeed, let�EF Γ → ⊥. First, we have�EF ⊥ → , which is proved as
follows:

p → p
(¬ →)

¬p, p → (∧→)
¬p ∧ p, p → (∧→) ,

¬p ∧ p →
Then we combine this proof with a proof of haveΓ → ⊥ as follows:

· · ·
Γ → ⊥

· · ·
⊥ →

Γ → (Cut).

Conversely, if�EF Γ → , then�EF Γ → ⊥ by (Th). Thus, we have (4.2).
Also, when (i ) ∈ F , the following hold and will be used without mentioning:

�EF Bi (A ∧ C ) → Bi (A) ∧ Bi (C ) and �EF Bi (A) ∧ Bi (C ) → Bi (A ∧ C ).

Note that for these, we use (Bi → Bi ) once. This interchangeability holds for
any finite nonempty setΦ of formulae, i.e.,�EF Bi (

∧
Φ) → ∧

Bi (Φ) and �EF∧
Bi (Φ) → Bi (

∧
Φ).

We need more comments, examples and basic theorems so as to use the
above Gentzen-style formulation of GLEF for investigations of game theoretical
decision making. We postpone such details to the next subsections, and here we
mention only how these definitions are used to describe the general problem of
game theoretical decision making.

4.2 Statements on game theoretical decision making

From the viewpoint of the investigator (observer), the problem is stated as the
provability or unprovability of thought sequent

Γ → A. (4.3)

Here,Γ is the set of formulae assumed by the investigator, andA is a consequence
to be derived from these assumptionsΓ. Hence, if (4.3) is provable, we regard
A as derived from the assumptionsΓ by the investigator, but if not, we regard
A as underivable fromΓ by the investigator.

When the investigator thinks about the logical reasoning of playeri , (4.3)
may be expressed as

Bi (Γi ) → Bi (Ai ). (4.4)

That is,Γ and A takes the forms of Bi (Γi ) and Bi (Ai ). Exactly speaking, this
means that the investigator, rather than playeri , has the assumptions Bi (Γi ) and
derives consequence Bi (A) from Bi (Γi ). Conceptually, this differs from
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Bi [Γi → Ai ]. (4.5)

This thought sequent means that playeri derivesAi from his beliefsΓi . When
this sequent is provable, the investigator understandsrationally the derivability
of Ai from Γi by playeri . Here, the rationality is entirely in the sense of logic.
Regardless of the conceptual difference, the provabilities of (4.4) and (4.5) are
equivalent in GLEF with i ∈ F . This will be proved in Section 6.

Now, consider a prediction-decision criterion. Aprediction-decision criterion
is given asDi = {Di (si ) : si ∈ Si }, whereDi (si ) is a formula indexed bysi . The
criteria DC1 and DC2 given in Section 2.1 are examples forDi , that is, these
are formulated asD 1

i = {Domi (si ) : si ∈ Si } and D 2
i = {∨sj

Bj (Domj (sj )) ∧∧
sj

(Bj (Domj (sj )) ⊃ Besti (si | sj )) : si ∈ Si }.
The following thought sequent represents playeri ’s capability of decision

making:

Bi (Γi ) →
∨
si

Bi (Di (si )), (4.6)

whereΓi is the finite set of playeri ’s basic beliefs. This means that the existence
of some decisionsi is derived from playeri ’s beliefsΓi .

The general statement by the investigator is expressed as the provability of
the following:

Γ0, B1(Γ1), ..., Bn (Γn ) →
∨
s1

B1(D1(s1)) ∧ ... ∧
∨
sn

Bn (Dn (sn )), (4.7)

whereΓ0 is a finite set of nonepistemic formulae, which expresses theobjective
situation such as ˆg1∪...∪ĝn . This is a statement on the capabilities of the decision
making of all the players.5

We regard, as a goal of this paper, the consideration of the provability of
(4.7) from the viewpoint of the investigator. We mention the following theorem,
though its proof needs various meta-theorems and will be given in Section 6.
The theorem states that for each player’s decision making, it suffices to consider
(4.6) separately and to ignore the objective partΓ0.

Theorem 4.1 (Decomposition). Suppose thatΓ0∪B1(Γ1) ∪ ...∪Bn (Γn ) is consis-
tent in GLEF . Then the following two statements are equivalent:

(1): �EF Γ0, B1(Γ1), ..., Bn (Γn ) → ∨
s1

B1(D1(s1)) ∧ ... ∧∨sn
Bn (Dn (sn ));

(2): for all i ∈ N , �Ei Fi Bi (Γi ) → Bi (Di (si )) for somesi ∈ Si ,

where Ei = {(i1, ..., im ) ∈ E : i1 = i} ∪ {ε} and Fi = {(i1, ..., im ) ∈ F : i1 =
i} ∪ {ε}.

Since the disjunction before Bi (Di (si )) is dropped in (2), statement (2) asserts
the derivability of a particular decision and is more specific than (4.6). Also, this

5 We may restrict the set of players into a subset ofN . That is, some players reach decisions but
the others do not. Especially, there are various possibilities for the latter players. In this paper, we
do not go deep into this problem.
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becomes the form of (4.4) and enables us to look into playeri ’s thought. This
problem is the subject of Section 8.

In the following, we focus on the provability of thought sequents of the form
(4.6) rather than (4.7).

4.3 Examples of admissible proofs and minimal inferential epistemic structures

In the definition of a proof in GLEF , F appears in P5, whileE appears in P1. That
is, the outer Be [· · ·] in a proof P is constrained byF , and the entire description
of the proofP is constrained byE . For example, consider the thought sequent
B1(Γ1) → B1(d1(s11)) = Bε[B1(Γ1) → B1(d1(s11))], whered1(s11) ∈ Γ1. Here,
player 1 has his belief setΓ1 includingd1(s11), i.e., 1 has the basic belief that his
first strategy is a default decision. One possible proof for the sequent B1(Γ1) →
B1(d1(s11)) is as follows:

B1[d1(s11) → d1(s11)]
Bε[B1(d1(s11)) → B1(d1(s11))]

Bε[B1(Γ1) → B1(d1(s11))]
(Th)

(B1 → B1) (4.8)

This is an admissible proof whenE = F = {ε, (1)}, but is not whenE = {ε, (1)}
andF = {ε}. However, Bε[B1(d1(s11)) → B1(d1(s11))] is an instance of the axiom
in GL{ε,(1)}{ε}. This implies that

Bε[B1(d1(s11)) → B1(d1(s11))]
Bε[B1(Γ1) → B1(d1(s11))]

(Th) (4.9)

is an admissible proof in GL{ε,(1)}{ε}. Thus, B1(Γ1) → B1(d1(s11)) is provable
both in GL{ε,(1)}{ε,(1)} and GL{ε,(1)}{ε}.

The above examples state that the same sequent is obtained by proofs with
different interpersonal epistemic depths. The proof of (4.8) has the redundancy
in the investigator’s thought about player 1’s thought, while that of (4.9) has
no redundancy in that sense. This inferential epistemic structureF = {ε} gives
important information for the sequent B1(Γ1) → B1(d1(s11)). E.g., the above
implies that any inferential structureF (as well asE ⊇ F ) works for the sequent
B1(Γ1) → B1(d1(s11)). In general, it may be the case that a sequent has very
complex descriptive epistemic structureE but it requires only a small inferential
epistemic structureF . To reflect this difference, we consider a minimal inferential
epistemic structureF .

Let a thought sequentΓ → Θ be given. We say thatF is minimal for Γ → Θ
iff �EF Γ → Θ and�EF ′ Γ → Θ for any epistemic structureF ′ � F . Consider
the above sequent B1(Γ1) → B1(d1(s11)): Inferential epistemic structureF = {ε}
is minimal for B1(Γ1) → B1(d1(s11)). Thus, the derivation of a default decision
from the assumption of the same does not need the logical reasoning of player 1.
Nevertheless, player 1 is conscious of the pure default decision, which requires
E to contain (1). This is the argument on the default decision making mentioned
in Section 1.
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The proof given in (4.1) holds fori = 1, 2. Abbreviating the outer Bε[· · ·],
we have

�Ei Fi Bi (ĝ
1
i ) → Bi (Domi (si2)), (4.10)

whereEi = Fi = {ε, (i )} for i = 1, 2. In fact, we can prove that thisFi is a unique
minimal inferential epistemic structure for Bi (ĝ1

i ) → Bi (Domi (si2)). Similarly,
we have, fori = 1, 2,

�Ei Fi Bi (ĝ
1
i ) → ¬Bi (Domi (si1)). (4.11)

In fact, this needs a slightly more complicated proof than (4.10). Indirectly, this
provability itself can be seen as follows: In a similar manner as (4.1), we have
�Ei Fi Bi (ĝ1

i ) → Bi (¬Domi (si1)). Then (4.11) follows from this and the fact that
�Ei Fi Bi (¬A) → ¬Bi (A) for any formulaA with δr (Bi (A)) ⊆ Ei . This follows:

Bi [A → A]
Bi [¬A, A → ]

(¬ →)

Bi (¬A), Bi (A) →
Bi (¬A) → ¬Bi (A)

(→ ¬)
(Bi → Bi ).

We give one more example of a provable sequent. LetE2 = {ε, (2), (2, 1)}
andF2 = {ε, (2)}. From (4.10), we have, by (Th),

�E2F2 B2(ĝ1
2), B2B1(ĝ1

1) → B2(Dom2(s22)). (4.12)

This E2 is needed for this sequent, whileF2 = {ε, (2)} is a unique minimal
inferential epistemic structure.

Now, consider the decision criterionD 2
2 for player 2. Similar to the derivation

of (4.10), we have

B2B1[ĝ2
1 → Dom1(s12)]

B2[B1(ĝ2
1) → B1(Dom1(s12))]

(B1 → B1)

B2[B1(ĝ2
1) → ∨

s1
B1(Dom1(s1))]

B2B1(ĝ2
1) → B2(

∨
s1

B1(Dom1(s1)))
(B2 → B2)

(→ ∨)
.

Thus, forE2 = F2 = {ε, (2), (2, 1)},

�E2F2 B2B1(ĝ2
1) → B2

(∨
s1

B1(Dom1(s1))

)
. (4.13)

That is, player 2 predicts that 1 can choose some decision following DC1. In
addition, 2 can predict what 1 would choose. That is, the following hold:�E2F2

B2B1(ĝ2
1) → B2B1(D1

1(s12)) and�E2F2 B2B1(ĝ2
1) → B2(¬B1(D1

1(s11))). It follows
from these that

�E2F2 B2(ĝ2
2), B2B1(ĝ2

1) → B2

(∧
s1

(
B1(Dom1(s1)) ⊃ Best2(s22 | s1)

))
.

(4.14)



Bounded interpersonal inferences and decision making 81

That is,s22 is a best strategy to whatever 1 would choose. Combining (4.13) and
(4.14), we obtain

�E2F2 B2(ĝ2
2), B2B1(ĝ2

1) → B2(D2
2(s22)). (4.15)

Hence, player 2 derives his decisions22 satisfying decision criterion DC2 from
B2B1(ĝ2

1) ∪B2(ĝ2
2). For this,E2 andF2 must be{ε, (2), (2, 1)}.

Finally, consider the default decision criterionD 0
i . For example, suppose

that player 1 has the beliefs on the gameg1 of Table 1 and that he has the belief
that his default decision iss11 and nots12. In this case, the question is whatE
andF are required in order to prove the thought sequent

B1(ĝ1), B1(d1(s11)), B1(¬d1(s12)) → B1(d1(s11)). (4.16)

Sinceδ(A) = {(1)} for eachA in this sequent, the minimumE must be{ε, (1)}.
On the other hand, the thought sequent of (4.16) is a special case of the endse-
quent of (4.8). Thus the minimal inferential structureF for the sequent of (4.16)
is {ε}.

To discuss the minimality of an inferential structure and its game theoretical
applications, we need various meta-theorems, which will be given in Section 6.

4.4 Cut-elimination theorem

The relation between the sequent formulation of KDn and the above GLEF is as
follows. The sequent formulation of KDn is obtained by imposing no restrictions
on admissible formulae and on admissible proofs. Specifically, we delete all the
outer Be [· · ·] from all the thought sequents in the axiom and inference rules,
where all formulae are taken simply fromP . This sequent calculus KDn is
standard in the logic literature, which corresponds to the sequent form of KD4n

briefly mentioned in Kaneko [4].
We have a more accurate relationship to KDn , which is due to Kaneko and

Suzuki [7].

Theorem 4.2 (Relation to KDn ). Let Γ and Θ be finite sets of formulae, and
let E be any epistemic structure withδ(Γ ∪ Θ) ⊆ E . Then�KDn Γ → Θ if and
only if �EE Γ → Θ.

The following theorem is the key-theorem for GLEF .

Theorem 4.3 (Cut-Elimination). If �EF Be [Γ → Θ], then there is a cut-free
proof P of Be [Γ → Θ] in GLEF .

This is also mentioned in Kaneko and Suzuki [7]. A proof of this theorem is
obtained by modifying and simplifying the proof of the cut-elimination theorem
for the infinitary predicate logic GLm in Kaneko and Nagashima [6]. Theorem 4.3
will be one of the key theorems to investigate interpersonal epistemic inferential
complexities, in particular, minimalities of inferential epistemic structures.
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5 Prediction-decision criteria

In this section, we give a general definition of a prediction-decision criterion, and
also look at how the previous prediction-decision criteria are formulated within
our general definition.

A prediction-decision criterionDi = {Di (si ) : si ∈ Si } for playeri is defined
based on aprediction criterion Pi and avaluation criterion Ri of actions. These
are given as follows:

(1): Pi = {Preij (sj ) : sj ∈ Sj andj ∈ N −{i}}, where each Preij (sj ) is a formula
indexed byi , j (j /= i ) andsj ∈ Sj .

(2): Ri = {Resi (si | s−i ) : si ∈ Si and s−i ∈ S−i }, where each Resi (si | s−i ) is
a formula indexed byi , si ∈ Si ands−i ∈ S−i .

The first one,Pi , describes playeri ’s prediction about other players’ choices,
and the second one,Ri , does the valuations of responses to predicted strategies.
In the following, we denote

∧
j/=i Preij (sj ) by Prei (s−i ), which means thats−i is

an (n − 1)-tuple of predicted strategies by playeri . Based onPi and Ri , the
decision criterionDi = {Di (si ) : si ∈ Si } is defined as follows: forsi ∈ Si ,

Di (si ) =
∨
s−i

Prei (s−i ) ∧
∧
s−i

(
Prei (s−i ) ⊃ Resi (si | s−i )

)
. (5.1)

Here,
∨

s−i
and

∧
s−i

are abbreviations of
∨

s−i ∈S−i
and

∧
s−i ∈S−i

. The definition
(5.1) states that playeri has a prediction about what the other players would
choose and his decision is an appropriate response to the predicted strategies.

Now, we look at how (5.1) captures the examples of prediction-decision
criteria discussed earlier. Those examples except the last two are for 2-person
games. In the following, letP0

ij (sj ) = � for sj ∈ Sj (j /= i ).

DC1: ConsiderD 1
i = {Domi (si ) : si ∈ Si }. Domi (si ) is equivalent to, in classical

logic (i.e., GL{ε}{ε}),∨
sj

P0
ij (sj ) ∧

∧
sj

(P0
ij (sj ) ⊃ Besti (si | sj )).

Note thats−i is the same assj becauseN = {1, 2}. Hence,D 1
i is regarded as a

special case of (5.1).

DC2: This is given by (3.3) asD 2
i = {∨sj

Bj (Domj (sj )) ∧∧sj
(Bj (Domj (sj )) ⊃

Besti (si | sj )) : si ∈ Si }. In this case,P 2
i = {Bj (Domj (sj )) : sj ∈ Sj } and

R2
i = {Besti (si | sj ) : si ∈ Si andsj ∈ Sj } (j /= i ).

DC0: The pure default decision criterionD 0
i = {di (si ) : si ∈ Si } can be formu-

lated as
∨

sj
P0

ij (sj ) ∧∧sj
(P0

ij (sj ) ⊃ di (si )) for si ∈ Si .

DC20: The dogmatic prediction decision criterion is given asD 20
i =

{∨sj
Bj (dj (sj )) ∧ ∧sj

(Bj (dj (sj )) ⊃ Besti (si | sj )) : si ∈ Si }. In this case, the
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prediction criterion is given asP 20
i = {Bj (dj (sj )) : sj ∈ Sj } (j /= i ), and the

valuation criterion isR2
i . To make this criterion effective, playeri needs some

beliefs about playerj ’s default decision.

vN(Maximin): In the non-formalized language, the maximin decision criterion
for i = 1 is described as a strategys1 maximizing mins2 g1(s1, s2). This is equiv-
alent to that for anys2 ∈ S2 and t1 ∈ S1, there is anothert2 ∈ S2 such that
P1(s1, s2 : t1, t2) holds. This is described as the following formula:∧

s2

∧
t1

∨
t2

P1(s1, s2 : t1, t2).

Hence the maximin decision criterion is given asD vN
1 = {DvN

1 (s1) : s1 ∈ S1} =
{∧s2

∧
t1

∨
t2

P1(s1, s2 : t1, t2) : s1 ∈ S1}. EachDvN
1 (s1) is further equivalent to∨

s2
P0

12(s2) ∧∧s2
(P0

12(s2) ⊃ ∧
t1

∨
t2

P1(s1, s2 : t1, t2)), which is a special case of
(5.1). The criterion for player 2 is formulated in a symmetric manner.

Consider the hierarchical decision criterion HDC and negative prediction
criterion NPC in the 3-person case:

HDC: We define the prediction criterionP H
1 = {PreH

1j (sj ) : sj ∈ Sj andj = 2, 3}
of player 1 as follows:

(1): PreH12(s2) = B2(
∨

s−2
(P0

21(s1)∧B3(Dom3(s3)))∧∧
s−2

(P0
21(s1)∧B3(Dom3(s3)) ⊃ Best2(s2 | s−2))) for all s2 ∈ S2;

(2): PreH13(s3) = P0
13(s3) = � for all s3 ∈ S3, i.e., 1 does not predict 3’s choice.

Now, D H
1 = {DH

1 (s1) : s1 ∈ S1} is given as

(3):
∨

s−1
PreH

1 (s−1) ∧∧s−1
(PreH

1 (s−1) ⊃ Best1(s1 | s−1)),

where PreH1 (s−1) = PreH
12(s2)∧PreH

13(s3). Thus, HDC is a special case of (5.1).
Notice that PreH12(·) is also taking the form of (5.1). That is, we would find a
structure parallel to (5.1) in the prediction criterion. This parallelism will be
discussed in Section 8.

NPC: We define the prediction criterionP N
1 = {Pre1j (sj ) : sj ∈ Sj and j = 2, 3}

as

(1): PreN1j (sj ) = Bj (Undj (sj )) for sj ∈ Sj and j /= 1

That is, player 1 predicts that playerj would play a undominated strategy. Then
each formula inD N

1 = {DN
1 (s1) : s1 ∈ S1} is given as

(2):
∨

s−1
PreN

1 (s−1) ∧∧s−1
(PreN

1 (s−1) ⊃ Best1(s1 | s−1)).

6 Various meta-theorems

In this section, we provide various meta-theorems to be used in the logico-game
analysis of decision making. The reader who is interested only in the game
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theoretical results can skip this section. The first two theorems are proved in
Kaneko and Suzuki [8] in the model-theoretic manner, and the others are proved
in Kaneko and Suzuki [9] in the proof-theoretic manner.

Let S be a subset ofN ∪ {0}, and A a formula inP . We say thatA is an
S -formula iff

(i) e = (i1, ..., im ) ∈ δr (A) andm ≥ 1 imply i1 ∈ S ;

(ii) ε ∈ δr (A) implies 0∈ S .

For example, B2B1(Dom1(s1)) is a {2}-formula. Any {0}-formula is nonepis-
temic.

We have the following separation theorem.

Theorem 6.1 (Epistemic separation). Let S1, ..., Sk be disjoint nonempty subsets
of N ∪ {0}. Let Γt be a finite set ofSt -formulae andAt an St -formula for
t = 1, ..., k . Also, we let Et = {(i1, ..., im ) ∈ E : i1 ∈ St} ∪ {ε} and Ft =
{(i1, ..., im ) ∈ F : i1 ∈ St} ∪ {ε} for t = 1, ..., k .

(1): Suppose thatΓt is consistent fort = 1, ..., k . Then�EF Γ1, ..., Γk → A1 ∧
... ∧ Ak if and only if �Et Ft Γt → At for all t = 1, ..., k .

(2): �EF Γ1, ..., Γk → A1 ∨ ... ∨ Ak if and only if �Et Ft Γt → At for some
t = 1, ..., k .

We need to evaluate the provability of sequents such as Bi (Γi ) →∨
si

Bi (Di (si )) of (4.6). For this purpose, the next theorem is provided.

Theorem 6.2 (Epistemic disjunction). Let Γ be a finite set of formulae andΦ a
finite nonempty set of formulae. Then�EF Bi (Γi ) → ∨

Bi (Φ) if and only if �EF

Bi (Γi ) → Bi (A) for someA ∈ Φ.

The if part is proved with (→ ∨
). The only-if part is essential here. It can

be proved using the cut-elimination theorem. However, Kaneko and Suzuki [8]
proved Theorem 6.2 using model-theoretic surgical operations.

Using Theorems 6.1 and 6.2, we can prove Theorem 4.1.

Proof of Theorem 4.1. The derivation of (1) from (2) is straightforward. Con-
versely, suppose (1). Then�EF Γ0, B1(Γ1), ..., Bn (Γn ) → � ∧ (

∨
s1

B1(D1(s1))
∧ · · · ∧ (

∨
sn

Bn (D(sn ))). By Theorem 6.1.(1), we have�Ei Fi Bi (Γi ) →∨
si

Bi (Di (si )) for eachi ∈ N . Then, by Theorem 6.2, we have (2). ��
Here, we give another theorem and two more lemmas, which will be used for

evaluations of an inferential epistemic structureF for a given sequent. Proofs of
them are given in Kaneko and Suzuki [9].

Theorem 6.3 (Epistemic inferences). Let Γ be a finite set of formulae andA a
formula.

(1): If �EF Bi (Γ ) → or �EF → Bi (A), then (i ) ∈ F .

(2): If �EF Bi (Γ ) → Bi (A) andA /∈ Γ, then (i ) ∈ F .
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(3): Let F be a minimal inferential epistemic structure for Bi (Γ ) → Bi (A). Then
A ∈ Γ implies F = {ε}.

(4): If F = {ε} and�EF Bi (Γ ) → Bi (A), thenA ∈ Γ.

To exemplify how this theorem and the next two lemmas are used, we con-
sider the thought sequent → B2B1(p ⊃ p), wherep ∈ AF . It holds that�EF

→ B2B1(p ⊃ p), where E = F = {ε, (2), (2, 1)}. Let us see the minimality
of F = {ε, (2), (2, 1)} for → B2B1(p ⊃ p). Applying Theorem 6.3.(1) to this
thought sequent, we have (2)∈ F . It remains to show (2, 1) ∈ F . For this step,
the following two lemmas are useful.

Lemma 6.4. Consider a thought sequent Bi (Γ ) → Bi (Θ) with |Θ| ≤ 1. If �EF

Bi (Γ ) → Bi (Θ) and (i ) ∈ F , then�EF Bi [Γ → Θ].

For an epistemic structureE and (i ) ∈ E , we write E−i = {e : i ◦ e ∈ E}.
ThenE−i is also an epistemic structure. For example, whenE = {ε, (2), (2, 1)},
we haveE−2 = {ε, (1)}.

Lemma 6.5. Let (i ) ∈ F . Then�EF Bi [Γ → Θ] if and only if �E−i F−i Γ → Θ.

Let us return to the minimality ofF = {ε, (2), (2, 1)} for → B2B1(p ⊃ p).
By Lemma 6.4, we have�EF B2[ → B1(p ⊃ p)]. By Lemma 6.5, we have
�E−2F−2 → B1(p ⊃ p). Again, by Theorem 6.3.(1), we have (1)∈ F−2, which
implies (2, 1) ∈ F .

7 Minimal inferential epistemic structures

Theorem 4.1 guarantees that we consider separately the provability of an indi-
vidual statement:

�Ei Fi Bi (Γi ) → Bi (Di (si )). (7.1)

We evaluate a minimalFi for this sequent. In fact, Theorem 6.3 already gives
some information about a requiredFi . When Di (si ) /∈ Γi , we have (i ) ∈ Fi .
Here, we consider the previous examples.

DC1: Recall (4.10), i.e.,�Ei Fi Bi (ĝ1
i ) → Bi (Domi (si2)), whereEi = Fi = {ε, (i )}.

This Fi is a unique minimal one for this sequent. Indeed, since Domi (si2) /∈ ĝ1
i ,

we have (i ) ∈ Fi by Theorem 6.3.

DC2: Recall (4.15), i.e.,�E2F2 B2(ĝ2
2),B2B1(ĝ2

1) → B2(D2
2(s22)), whereE2 = F2 =

{ε, (2), (2, 1)}. In this case,F2 is a unique minimal one. Here, we give a proof
for this fact, which needs some steps.

Let F2 be any epistemic structure for which (4.15) holds. By Theorem 6.3.(2),
we have (2)∈ F2. It remains to show (2, 1) ∈ F2. Applying Lemma 6.4 to (4.15),
we have

�E2F2 B2[ĝ2
2, B1(ĝ2

1) → D2
2(s22)],

and then, by Lemma 6.5,
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�E−2F−2 ĝ2
2, B1(ĝ2

1) → D2
2(s22),

whereE−2 = {e : 2 ◦ e ∈ E2} and F−2 = {e : 2 ◦ e ∈ F2}. SinceD2
2(s22) =∨

s1
B1(Dom1(s1)) ∧∧s1

(B1(Dom1(s1)) ⊃ Best2(s22 | s1)), we have

�E−2F−2 ĝ2
2, B1(ĝ2

1) →
∨
s1

B1(Dom1(s1)).

This implies �E−2F−2 ĝ2
2, B1(ĝ2

1) → ⊥ ∨ ∨s1
B1(Dom1(s1)). By Theorem 6.1,

we have�E−2F−2 ĝ2
2 → ⊥ or �E−2F−2 B1(ĝ2

1) → ∨
s1

B1(Dom1(s1)). Since ĝ2
2

is consistent, the latter is the case. Then, by Theorem 6.2,�E−2F−2 B1(ĝ2
1) →

B1(Dom1(s1)) for somes1. Since Dom1(s1) /∈ ĝ2
1, we have (1)∈ F−2, which

implies (2, 1) ∈ F2.

Undecidability with DC2 and F2 = {ε, (2)}: If we assumeF2 = {∈, (2)}, then
we can prove the following unprovability results:

(U1): �E2F2 B2(ĝ2
2),B2B1(ĝ2

1) → B2(D2
2(s22));

(U2): �E2F2 B2(ĝ2
2),B2B1(ĝ2

1) → B2(¬D2
2(s22));

(U3): �E2F2 B2(ĝ2
2),B2B1(ĝ2

1) → ¬B2(D2
2(s22)).

Fact U1 follows the minimality of{ε, (2), (2, 1)} for the sequent. Facts U2 and
U3 can be proved in various manners.6 These differ in the positions of the
negation symbol¬: U2 states that player 2 himself cannot reach¬D2

2(s22) (from
the viewpoint of the investigator), but U3 that the investigator does not derive
from B2(ĝ2

2),B2B1(ĝ2
1) that 2 does not believeD2

2(s22). By these three facts, we
have the conclusion that player 2 cannot rationally decide whether or not he could
reach a decision with criterion DC2 without reading player 1’s mind. It will be
shown in Section 8 that these unprovabilities can be stated from the viewpoint
of player 2.

The above undecidability results U1, U2 and U3 hold even if we change
gameg2 to g1 and keep criterion DC2 withE2 = {ε, (2), (2, 1)} but F2 = {ε, (2)}.
In this case, however, if player 2 switches his criterion back to criterion DC1,
then he could make a decision ing1 without reading 1’s mind.

The above considerations are paraphrased in terms of inferential complexities.
In gameg1, decision criterion DC1 gives a decision, but in gameg2, it is incapable
of giving a decision to player 2. A remedy for this incapability is to change
DC1 to DC2 including the prediction over player 1’s decision. However, this
remedy requires a deeper inferential complexity of interpersonal introspections,
i.e., player 2 need to read player 1’s mind.

6 One proof of U2 is as follows: Letε be the B-eliminating operatorε, i.e., εA is obtained from
formulaA by eliminating all occurrences of B1, ...,Bn in A. Then it can be proved that if�EF Γ → Θ,
then�{ε}{ε} εΓ → εΘ. Now, suppose the sequent of U2 is provable. We apply the above result to
the sequent of U2, and obtain�{ε}{ε} ĝ2

2, ĝ2
1 → ¬D2

2 (s22). This is impossible. U3 can be proved in
the same manner.
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Although we do not repeat paraphrastic interpretations like the above para-
graph, it would be helpful to think about the arguments in the subsequent sections
with the above paraphrastic manners.

Let us see minimal inferential epistemic structures in situations with other
prediction-decision criteria.

DC0: Default decision criterionD 0
1 is derived from a dogmatic belief on default

decisions. Supposed1(s11) ∈ Γ1. Then it is proved in (4.8) that�E1F1 B1(Γ1) →
B1(d1(s11)). By d1(s11) ∈ Γ1 and Theorem 6.3.(2),F1 = {ε} is a unique minimal
inferential epistemic structure. There is no subtlety in criterion DC0. However,
we meet some subtlety when we use DC0 for the prediction criterion for player
2.

DC20: Let Γ e
1 = {d1(s11),¬d1(s12)}. Then we have the following:

�E2F2 B2(ĝ2
2), B2B1(Γ e

1 ) → B2(D20
2 (s21)), (7.2)

whereE2 = F2 = {ε, (2), (2, 1)}. This F2 is a unique minimal one for this sequent.
From the above argument for DC0,{ε, (2)} might be expected to be a minimal
one for (7.2), but actually, it is not. Let us explain the subtlety involved in (7.2)
with Γ e

1 .
Suppose that player 2 assumes that 1 has the belief setΓ s

1 = {d1(s11)} rather
thanΓ e

1 . In this case, (7.2) breaks down, i.e.,

�E2F2 B2(ĝ2
2), B2B1(Γ s

1 ) → B2(D20
2 (s21)). (7.3)

This thought sequent is unprovable whateverF2 is. This unprovability is caused
by the fact that 2 has no beliefs on strategys12 in B1(Γ s

1 ), while s12 is taken into
account in decision criterionD 20

2 .
From the viewpoint of player 2, we need to assume that 2 believes that 1

does not think abouts12. This is formulated as{B2B1(d1(s11)), B2¬B1(d1(s12))}
rather than B2B1(Γ e

1 ). If this is assumed, we have

�E2F2 B2(ĝ2
2), {B2B1(d1(s11)), B2¬B1(d1(s12))} → B2(D20

2 (s21)), (7.4)

whereE2 = {ε, (2), (2, 1)} and F2 = {ε, (1)}. Indeed, thisF2 is a minimal one
for this thought sequent, which can be shown in the same way as in the case of
DC2.

In (7.2), player 2 needs to infer, from his belief ofs12 being not a default
decision, that player 1 does not believe thats12 is a default decision. In this
inference, we use Axiom D, which is expressed as the possible emptiness ofΘ
in the distribution rule (Bi → Bi ). On the other hand, the result of this inference
is assumed in (7.4). Therefore,F2 for (7.4) is smaller thanF2 for (7.2).

vN (Maximin): This has a similar epistemic status to DC1 in that both require
only Ei = {ε, (i )}. However, vN differs from DC1 in being capable of recom-
mending a decision forany game. Letg = (g1, g2) be any game. Then it holds that
for some strategysi ∈ Si , �Ei Fi Bi (ĝi ) → Bi (DvN

i (si )), whereEi = Fi = {ε, (i )}.
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This Fi is a unique minimal inferential epistemic structure for this sequent. In-
deed, sinceDvN

i (si ) /∈ ĝi , we have (i ) ∈ Fi by Theorem 6.3.

Here we consider the prediction-decision criterion NDC for the location game
h = (h1, h2, h3), and postpone considerations of the hierarchical decision criterion
HDC to the next section.

NPC: In this case, we have the following:

�E2F2 B1(ĥ1), B1B2(ĥ2), B1B3(ĥ3) → B1(DN
1 (s11)), (7.5)

where E1 = F1 = {ε, (1), (1, 2), (1, 3)}. This states that player 1 would choose
“open his store”s11, predicting that 3 would chooses32 as an undominated
strategy and 2 would choose eithers21 or s22 also as an undominated one.

The inferential epistemic structureF1 = {ε, (1), (1, 2), (1, 3)} is minimal for
the sequent of (7.5). Indeed, this minimality is shown in the same manner as in
DC2.

8 Transitions of the viewpoint and inner parallelisms

In this section, we consider further reductions of decision statement (7.1), i.e.,
Theorem 4.1.(2). Up to now, we have kept our considerations of prediction-
decision making from the viewpoint of the investigator (observer). However,
before the investigator comes to his own viewpoint, he takes the viewpoint of
each playeri as if he were playeri . In general, the transition of the viewpoint
from playerim to im−1 (or to the investigator ifm = 1) occurs in the epistemic
distribution rule:

B(i1,...,im )[Λ → Θ]
B(i1,...,im−1)[Bim (Λ) → Bim (Θ)]

(Bim → Bim ), where |Θ| ≤ 1.

In this section, we show that we can take the opposite route to trace this transition
back. In this backward transition, we find a parallel structure to Theorem 4.1.(1),
looking into the inner structures of a prediction-decision criterion. We call this
parallel structure in prediction- and decision-making aninner parallelism. In
Section 8.3, we will consider the implications of inner parallelisms to our basic
assumption on the logical rationality of the players.

8.1 Backward transitions and inner parallelisms

The following are the reduction steps of the backward transitions of the viewpoint
from the outward statement to a statement in a playeri ’s mind. By an inner
parallelism, we mean that after one round of the following three steps, another
round of parallel three steps appear in playeri ’s mind.

Step 0: outwardn-person statement from the investigator’s viewpoint –
Th.4.1.(1);
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Step 1: outward individual statement from the investigator’s viewpoint –
Th.4.1.(2);

Step 2: individual statement from playeri ’s viewpoint – Th.8.1.(2) & (3);
Step 3: inner statement in playeri ’s mind – Th.8.4.

Although the first theorem is an immediate consequence of Lemmas 6.4 and 6.5,
it is worth mentioning for the understanding of our problem. In the following,
we make the same setting as those for Theorem 4.1, i.e.,Γi is the set of player
i ’s basic beliefs andDi = {Di (si ) : si ∈ Si } is player i ’s prediction-decision
criterion.

Theorem 8.1 (Transitions of the Viewpoint). Let (i ) ∈ Fi . Then the following
three statements are equivalent:

(1): �Ei Fi Bi (Γi ) → Bi (Di (si ));

(2): �Ei Fi Bi [Γi → Di (si )];

(3): �E−i F−i Γi → Di (si ).

HereE−i = (Ei )−i = {e : i ◦ e ∈ Ei } andF−i = (Fi )−i = {e : i ◦ e ∈ Fi }.

The first states that the investigator derives Bi (Di (si )) from Bi (Γi ), the second
that the investigator recognizes that playeri himself derivesDi (si ) from his
basic beliefsΓi , and the third is a restatement of the second by regarding player
i ’s viewpoint as the investigator’s. Thus this theorem describes the backward
transitions of the viewpoint. This backward reduction reflects the presumption
that playeri has logically rational in the same sense as in that the investigator’
logical rationality.

Theorem 8.1 can be used to obtain the equivalent unprovability statements
from U1 and U2 of Section 7:

(U1∗): �E2F2 B2[ĝ2
2,B1(ĝ2

1) → D2
2(s22)];

(U2∗): �E2F2 B2[ĝ2
2,B1(ĝ2

1) → ¬D2
2(s22)].

Therefore, Theorem 8.1 implies that it does not matter to take either the
investigator’s viewpoint or player’s. Note that U3 of Section 7 is changed
into �E2F2 B2(ĝ2

2),B2B1(ĝ2
1),B2(D2

2(s22)) → and then is reduced into�E2F2

B2[ĝ2
2,B1(ĝ2

1), D2
2(s22) → ]. This is equivalent to U2∗.

Now, we return to the general situation of Theorem 8.1, and look into the
structure ofDi (si ), which is now assumed to be given as (5.1), i.e.,Di (si ) =∨

s−i
Prei (s−i )∧

∧
s−i

(
Prei (s−i ) ⊃ Resi (si | s−i )

)
. Theorem 8.2 is also immedi-

ate, but is stated explicitly. Recall Prei (s−i ) =
∧

j/=i Preij (sj ).

Theorem 8.2. Let (i ) ∈ Fi . Then �Ei Fi Bi (Γi ) → Bi (Di (si )) if and only if the
following two hold:

(1): �E−i F−i Γi → ∨
s−i

Prei (s−i );

(2): �E−i F−i Γi → ∧
s−i

(Prei (s−i ) ⊃ Resi (si | s−i )).
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Proof. Suppose (1) and (2). It follows from (1) and (2) that�E−i F−i Γi →∨
s−i

Prei (s−i ) ∧ ∧s−i
(Prei (s−i ) ⊃ Resi (si | s−i )), i.e.,�E−i F−i Γi → Di (si ). This

is equivalent to�Ei Fi Bi [Γi → Di (si )] by Lemma 6.5. Then, by (Bi → Bi ), we
have�Ei Fi Bi (Γi ) → Bi (Di (si )).

Suppose�Ei Fi Bi (Γi ) → Bi (Di (si )). This is equivalent to�E−i F−i Γi →
Di (si ) by Theorem 8.1, i.e.,�E−i F−i Γi → (

∨
s−i

Prei (s−i ))∧
∧

s−i
(Prei (s−i ) ⊃

Resi (si | s−i )). This implies (1) and (2). ��
This theorem states that the investigator derives Bi (Di (si )) from Bi (Γi )

if and only if player i derives, in his mind,
∨

s−i
Prei (s−i ) – – the exis-

tence of predicted strategies for the other players – – and
∧

s−i
(Prei (s−i ) ⊃

Resi (si | s−i )) – – the appropriateness of his decisionsi to the predicted strate-
gies. In fact, the existence of his predictions has a similar status to (4.7), i.e.,
Γ0,B1(Γ1), ...,Bn (Γn ) → ∨

s1
B1(D1(s1)) ∧ ... ∧ ∨sn

Bn (Dn (sn )). We can regard
(4.7) as the predictions made by the investigator. In the mind of playeri , player
i makes a similar prediction. We call this parallel structure aninner parallelism.

To explicate this inner parallelism more, we look into Theorem 8.2.(2). First,
we have the following lemma.

Lemma 8.3. If (a) �E−i F−i Γi → ∨
s−i

∧
j/=i Preij (sj ), then (b) �E−i F−i Γi →∧

j/=i

∨
sj

Preij (sj ).

Proof. Suppose (a). Lett−i be an arbitrary element inS−i . Using successively
(
∧ →) and (→ ∨

), we have�E−i F−i

∧
j/=i Preij (tj ) → ∨

sk
Preik (sk ) for all k /= i .

Then�E−i F−i

∧
j/=i Preij (tj ) → ∧

j/=i

∨
sj

Preij (sj ) by (→ ∧
). Sincet−i is arbitrary

in S−i , we have, by (
∨ →), �E−i F−i

∨
s−i

∧
j/=i Preij (sj ) → ∧

j/=i

∨
sj

Preij (sj ).
Using this conclusion and the supposition of the lemma, we have

Γi → ∨
s−i

∧
j/=i Preij (sj )

∨
s−i

∧
j/=i Preij (sj ) → ∧

j/=i

∨
sj

Preij (sj )

Γi → ∧
j/=i

∨
sj

Preij (sj )
(Cut).

��
Unless we assume further structures on the belief setΓi and prediction crite-

rion Preij (sj ), we could not go further than (b) of Lemma 8.3. However, we find
certain natural assumptions onΓi and Preij (sj ) from the viewpoint of playeri .
First, we make the following assumption on the belief setΓi of player i :

Γi is written asΓi0 ∪
⋃
j/=i

Bj (Γij ), (8.1)

whereΓi0 consists of nonepistemic formulae andΓij is any finite set of formulae
for j /= i . Second, we make the following assumption on the prediction criterion
Pi = {Preij (sj ) : sj ∈ Sj and j ∈ N − {i}} :

each Preij (sj ) is expressed as Bj (Pre0
ij (sj )). (8.2)

Here, Pre0ij (sj ) may be any formula forj /= i . For example, the prediction-decision
criterion DC2 takes this form. For simplicity, we assume (8.2) for all players.
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For this reason, (8.2) is not fully satisfied in the consideration of criterion HDC
below, but the modification is straightforward.

Under the assumptions (8.1) and (8.2), (b) of Lemma 8.3 is expressed as

�E−i F−i Γi0 ∪
⋃
j/=i

Bj (Γij ) →
∧
j/=i

∨
sj

Bj (Pre0
ij (sj )). (8.3)

Now, we have an apparent parallelism between (4.7) and (8.3). That is, (8.3) is
an outward description of prediction makings and is stated as if playeri were the
investigator. An only difference from (4.7) is that playeri himself is excluded in
(8.3), since he is predicting what the others would choose. If we have equivalence
between the two statements of Lemma 8.3, then our parallelism is complete. The
following theorem states this equivalence under (8.1) and (8.2).

Theorem 8.4 (Inner parallelism). Assume (8.1) and (8.2), and thatΓi is con-
sistent in GLE−i F−i . Then (b) of Lemma 8.3 is equivalent to (a), which is further
equivalent to that for allj /= i ,

�E−i F−i Bj (Γij ) → Bj (Pre0
ij (sj )) for somesj ∈ Sj . (8.4)

Proof. Suppose (8.4) for allj /= i . Then�E−i F−i Γi → ∧
j/=i Bj (Pre0

ij (sj )) for some

s−i ∈ S−i . Hence�E−i F−i Γi → ∨
s−i

∧
j/=i Bj (Pre0

ij (sj )), which is (a) of Lemma
8.3. It remains to show that the (b) of Lemma 8.3 implies (8.4).

Suppose�E−i F−i Γi → ∧
j/=i

∨
sj

Preij (sj ). Then�E−i F−i Γi → ∨
sj

Bj (Pre0
ij (sj ))

for all j /= i . Let k /= i be an arbitrary player. Since�E−i F−i Γi0 ∪⋃j/=i Bj (Γij ) →∨
sk

Bk (Pre0
ik (sk )) by (8.1) and (8.2), By Theorem 6.1, we have�E−i F−i Bk (Γik ) →∨

sk
Bk (Pre0

ik (sk )). By Theorem 6.2, we have�E−i F−i Bk (Γik ) → Bk (Pre0
ik (sk )) for

somesk ∈ Sk . Thus, we have (8.4). ��
Notice the parallelism between (8.4) and

�EF Bi (Γi ) → Bi (Di (si )) for somesi ∈ Si . (8.5)

Statement (8.4) states that the investigator thinks that playerj can derive Pre0ij (sj )
from Bj (Γij ). Pre0

ij (sj ) means the decision for playerj predicted by playeri .
Therefore, this is essentially the same asDi (si ) from the investigator’s viewpoint.
We can repeat another round of Steps 1–3 from (8.4).

8.2 Further reductions

The reduction of decision statements eventually leads us to look into the inner
structure of each prediction-decision criterion. We have started the discourse of
reductions from Theorem 8.1.(1), and now, we can repeat the same discourse
from (8.4). Indeed, applying the argument for Theorem 8.1 to (8.4), we obtain

�E−i F−i Bj [Γij → Pre0
ij (sj )]
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if ( j ) ∈ F−i .
The parallelism can be even more explicit if we specify the prediction cri-

terion Bj (Pre0
ij (sj )) more. Now, we assume that each Pre0

ij (sj ) is written as
the same form of (5.1), that is, it is defined by another prediction criterion
P i

jk = {Prei
jk (sk ) : sk ∈ Sk} and valuation relationRi

j = {Resij (sj | s−j ) : s ∈ S} :

Pre0
ij (sj ) =

∨
s−j

Prei
j (s−j ) ∧

∧
s−j

(
Prei

j (s−j ) ⊃ Resij (sj | s−j )
)
, (8.6)

where Preij (s−j ) =
∧

k/=j Prei
jk (sk ). We note that Preijk (sk ) and Resij (sj | s−j ) are

“subjective” ones in the mind of playeri , and that they may differ from the
“true” Prejk (sk ) and Resj (sj | s−j ).

Now, if (j ) ∈ F−i , then (8.4) becomes

�E−ij F−ij Γij →
∨
s−j

Prei
j (s−j ) ∧

∧
s−j

(
Prei

j (s−j ) ⊃ Resij (sj | s−j )
)
, (8.7)

whereE−ij = (E−i )−j and F−ij = (F−i )−j . Hence, we can repeat Theorem 8.2,
Lemma 8.3 and Theorem 8.4 for (8.7). This repeating process is summarized in
the steps in the beginning of this section.

The inner parallelism is trivial in our examples of prediction-decision criteria,
except for criterion HDC in the location game LG of Section 2. Here, we look
at HDC briefly.

HDC: First, it holds that

�E1F1 B1(Γ1) → B1(DH
1 (s11)), (8.8)

whereΓ1 = ĥ1∪B2(ĥ2)∪B2B3(ĥ3) andE1 = F1 = {ε, (1), (1, 2), (1, 2, 3)}. This F1

is a unique minimal inferential epistemic structure. However, our present concern
is the deduction of (8.8) into the following:

(a1): �E1F1 B1[Γ1 → DH
1 (s11)];

(a2): �E−1F−1 Γ1 → DH
1 (s11).

Thus, the player’s inner viewpoint is regarded as the investigator’s. Recall that
DH

1 (s1) is given as
∨

s−1
PreH

1 (s−1)∧ ∧
s−1

(PreH
1 (s−1) ⊃ Best1(s1 | s−1)). Then

(a2) is reduced into

(b1): �E−1F−1 Γ1 → ∨
s−1

PreH
1 (s−1);

(b2): �E−1F−1 Γ1 → ∧
s−1

(PreH
1 (s−1) ⊃ Best1(s11 | s−1)) – Theorem 8.2.

Then (b1) is further reduced into

(c): �E−1F−1 B2(ĥ2),B2B3(ĥ3) → PreH
12(s2) for somes2 ∈ S2 – Theorem 8.4.

Since PreH12(s2) = B2(
∨

s−2
(P0

21(s1)
∧

B3(Dom3(s3)))∧∧s−2
(P0

21(s1)
∧

B3(Dom3(s3))
⊃ Best2(s2 | s−2)), we can repeat a parallel reduction from statement (c).
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8.3 Basic assumption on GLEF for the inner parallelisms

Here, let us consider basic assumptions for the inner parallelisms. There are
two basic assumptions relevant for them. First, a prediction-decision criterion
in question has an inner parallelism in the sense that prediction about another
player’s behavior takes the form of a prediction-decision criterion. This inner
parallelism must be apparent in the previous two subsections. The other is a
basic assumption for epistemic logic GLEF , which enables us to discuss the
inner parallelisms.

Let (i1, ..., ik , ..., im ) be any epistemic status inF . Recall the basic assumption
that playeri1 has the logical rationality same as the investigator’s, which are
reflected in Lemmas 6.4 and 6.5. In fact, this basic assumption is made for any
(imagined) playerik in (i1, ..., ik , ..., im ). That is, playerik in the mind ofik−1 ...
in the mind ofi1 has the same logical rationality as the investigator. Technically
speaking, playerik ’s logical rationality is represented by the logic GLE k F k , where
E k = {e : (i1, ..., ik ) ◦ e ∈ E} and F k = {e : (i1, ..., ik ) ◦ e ∈ F}. If GLE k F k is
regarded as part of GLEF , then it describes the logical rationality ofik in the
mind of ik−1 ... in the mind ofi1. On the other hand, if GLE k F k is considered
alone, it describes the investigator’s logical reasoning. Thus, we have treated the
players even appearing in the minds of players as well as the investigator in the
same manner. This treatment guarantees the inner parallelisms.

9 Further developments

In this section, we give two remarks on further developments of our logico-game
analysis. Specifically, we consider a compound prediction-decision criterion and
a compound one with a last-resort default decision. In Section 9.1, we take the
prediction-decision criteria DC1 and DC2 of Section 2.2 as composing subcrite-
ria, though we can discuss compound criteria in a more general manner. More
extensive treatments will be given in a future paper.

9.1 Compound decision criteria

Suppose that playeri has decision criteriaD 1
i andD 2

i . We formulate the new
compound criterion D c

i = {Dc
i (si ) : si ∈ Si } as follows:

Dc
i (si ) = D1

i (si ) ∨ D2
i (si ) for all si ∈ Si . (9.1)

This recommends a strategy if at least one ofD 1
i andD 2

i does it.
Theorem 4.1 holds for the above compound criterionD c

i . Hence, we can
focus on the individual decision making of playeri . Here we look at the case of
i = 2. Let g = (g1, g2) be a two-person game, and let the belief set of playeri
be given asΓi (ĝ) = ĝi ∪Bj (ĝj ), wherei , j = 1, 2 (i /= j ). We would like to find a
minimal F2(g) so that
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�E2F2(g) B2(Γ2(ĝ)) →
∨
s2

B2(Dc
2(s2)), (9.2)

whereE2 = {ε, (2), (2, 1)}. A minimal inferential epistemic structureF2(ĝ) for
(9.2) depends upon gameg. When we look at gameg1 or g2, we have the
following result. We omit its proof.

Theorem 9.1 (Minimal epistemic structures in games g1 andg2).

(1): Let g = g1. The minimalF2(ĝ1) for (9.2) is{ε, (2)}.

(2): Let g = g2. The minimalF2(ĝ2) for (9.2) is{ε, (2), (2, 1)}.

In all the previous examples, a minimal inferential epistemic structure for a
sequent is uniquely determined. Here we give one counterexample by considering
the compound decision criterionD HN

1 = {DHN
1 (s1) : s1 ∈ S1} of D H

1 andD N
1

for the location game LG, whereDHN
1 (s1) = DH

1 (s1) ∨ DN
1 (s1) for s1 ∈ S1. Then

it follows from (7.5) and (8.8) that

�EF B1(ĥ1), B1B2(ĥ2), B1B3(ĥ3), B1B2B3(ĥ3) →
∨
s1

DHN
1 (s1), (9.3)

whereE = {ε, (1), (1, 2), (1, 3), (1, 2, 3)} andF is an epistemic structure includ-
ing {ε, (1), (1, 2), (1, 3)} or {ε, (1), (1, 2), (1, 2, 3)}. We can prove the following
theorem, whose proof is omitted.

Theorem 9.2 (Minimal epistemic structures in location game). There are ex-
actly two minimal epistemic structuresF for (9.3), which are{ε, (1), (1, 2), (1, 3)}
and{ε, (1), (1, 2), (1, 2, 3)}.

9.2 The last-resort default decision

Recall that the gameg4 = (g4
1, g

4
2) of Table 4 has no dominant strategies and

no Nash equilibria. Then (9.2) does not hold for this game as far asΓ2(ĝ4) =
ĝ4

2∪B1(ĝ4
1) is adopted. The pure default decision criterion can be applied to this

game. However, the following method may be more typical than applying the
default decision directly to this game: First, one considers non-default decision
criteria, and if those criteria give no decisions, then a default is applied. This
idea can be formulated as adding thelast-resort default decision to the compound
criterion.

The compound decision criterion D C
i = {DC

i (si ) : si ∈ Si } of composing
criteria Dik = {Dik (si ) : si ∈ Si }, k = 1, ..., m, is given simply as

DC
i (si ) = Di1(si ) ∨ ... ∨ Dim (si ) for all si ∈ Si . (9.4)

Composing criteria ofDi1, ..., Dim themselves may be compound criteria of some
other composing criteria.

The compound decision criterionD Cl = {DCl
i (si ) : si ∈ Si } with the last-

resort default is formulated as
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DCl
i (si ) = DC

i (si ) ∨ di (si ) for all si ∈ Si . (9.5)

This criterion itself is formulated as a compound criterion.
As we needed to assume that the belief set of playeri includes some prede-

termined default decision for (4.16), we need some assumption on the belief set
of player i to make (9.5) workable. The idea of the last-resort default decision
is: if player i verifies that none of his strategies satisfy any of his non-default
decision criteria, then he would use the predetermined default decisionsi1. This
idea is expressed as

Bi (¬
∨
si

DC
i (si ) ⊃ di (si1)). (9.6)

The antecedent of the inside of Bi of (9.6) means the negation of criterionD C
i

for any strategy. Thus,¬∨si
DC

i (si ) is a key for (9.6).
We assume that the belief setΓi of playeri is given asΓi (ĝ)∪{¬∨si

DC
i (si ) ⊃

di (si1))} = ĝi ∪
⋃

j/=i Bj (Γij )∪ {¬∨si
DC

i (si ) ⊃ di (si1))}, whereΓij is any finite set
of formulae. Then the derivation of the last-resort default decision is equivalent
to the derivation of the negation of the other criteria. Namely,

Theorem 9.3. Let (i ) ∈ Fi . Suppose that Bi (Γi ) = Bi (Γi (ĝ))∪ {Bi (¬
∨

si
DC

i (si )
⊃ di (si1))} is consistent in GLEi Fi . Then the following two statements are equiv-
alent:

(1): �Ei Fi Bi (Γi ) → Bi (di (si1));

(2): �Ei Fi Bi (Γi ) → Bi (¬
∨

si
DC

i (si )).

Thus, playeri uses the default decisionsi1 if and only if he proves that none
of the other criteria recommends a decision. This equivalence reflects the use of
a default decision in our ordinary life.

The derivation of (1) from (2) needs some steps, but the converse is essen-
tial and is proved below. Either (1) or (2) is stated from the viewpoint of the
investigator, but is equivalent to the following statement from the viewpoint of
player i :

(3): �E−i F−i Γi → ¬∨si
DC

i (si ).

The equivalence between (2) and (3) are guaranteed by Lemmas 6.4 and 6.5.
In the proof of Theorem 9.3 and in the Appendix, we use the following

terminology: aside formula of an operational inference ruleI is one to be changed
in the upper sequent, and aprincipal formula of I is one changed in the lower
sequent. For example, in

Γ → Θ, A B , Γ → Θ

A ⊃ B , Γ → Θ
(⊃→)

A and B are side formulae andA ⊃ B is the principal formula. WhenI is the
distribution rule

Be◦i [Γ → Θ]
Be [Bi (Γ ) → Bi (Θ)]

(Bi → Bi ),
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all formulae in the upper sequent are side formulae and all in the lower sequent
are principal formulae. WhenI is a thinning (Th), a formula added in the lower
sequent is called athinning formula.

Proof of Theorem 9.3. We prove that (1) implies (2). Suppose (1). That is,

�Ei Fi Bi (ĝi ),
⋃
j/=i

Bi Bj (Γij ), Bi (¬
∨
si

DC
i (si ) ⊃ di (si1)) → Bi (di (si1)).

By (i ) ∈ Fi , we can apply Lemmas 6.4 and 6.5 to this sequent, and have

�E−i F−i ĝi ,
⋃
j/=i

Bj (Γij ),¬
∨
si

DC
i (si ) ⊃ di (si1) → di (si1).

By the definition of ˆgi , ĝi is expressed as ˆgi = ĝ+
i ∪ {¬A : A ∈ ĝ−

i } with
ĝ+

i ∩ ĝ−
i = ∅. Also, each formula in ˆg+

i and ĝ−
i is atomic. Then we have

�E−i F−i ĝ+
i ,
⋃
j/=i

Bj (Γij ),¬
∨
si

DC
i (si ) ⊃ di (si1) → di (si1), ĝ−

i .

Let ∆ = ĝ+
i ∪⋃j/=i Bj (Γij ) andΛ = {di (si1)}∪ĝ−

i . By the Cut-Elimination Theorem
(Theorem 4.3), we have a cut-free proofP of ∆, ¬∨si

DC
i (si ) ⊃ di (si1) → Λ.

Note that ˆg+
i and ĝ−

i consist of atomic formulae with ˆg+
i ∩ ĝ−

i = ∅.
First, we show that∆ → Λ is not provable. Then, by Theorem 6.1, we have

�E−i F−i ĝ+
i → di (si1), ĝ−

i or �E−i F−i

⋃
j/=i Bj (Γij ) → . The former is equivalent

to �E−i F−i ĝi → di (si1), which is not the case. The latter is also not the case by
the consistency assumption of the theorem. Therefore,∆′ → Λ′ is not provable
for any∆′ ⊆ ∆ andΛ′ ⊆ Λ. For otherwise,∆ → Λ would be provable by (Th).

Looking at the formulae in∆, ¬∨si
DC

i (si ) ⊃ di (si1) → Λ, we find that the
lowermost inference in the proofP is either (Th) or (⊃→). If it is (Th), the
upper sequent is∆′,¬∨si

DC
i (si ) ⊃ di (si1) → Λ′ for some∆′ ⊆ ∆ andΛ′ ⊆ Λ,

which follows from the conclusion of the above paragraph. We can repeat this
argument until we meet (⊃→). Hence we can assume that for some∆′ ⊆ ∆ and
Λ′ ⊆ Λ, ∆′,¬∨si

DC
i (si ) ⊃ di (si1) → Λ′ is the lower sequent of (⊃→). Then

(⊃→) is expressed as

∆′,→ Λ′,¬∨si
DC

i (si ) ∆′, di (si1) → Λ′

∆′,¬∨si
DC

i (si ) ⊃ di (si1) → Λ′ (⊃→).

Hence�E−i F−i ∆′ → Λ′,¬∨si
DC

i (si ) and �E−i F−i ∆′, di (si1) → Λ′. Looking
the latter sequent and applying Theorem 6.1 to this, we havedi (si1) ∈ Λ′.

Now, consider the former. LetP ′ be the subproof of the proof ofP whose
endsequent is∆′ → Λ′,¬∨si

DC
i (si ). Consider the ancestors ofdi (si1) in Λ′.

Since di (si1) does not occur in∆′, the uppermost ancestor ofdi (si1) in Λ′ is
a thinning formula of (Th) and its descendant is never a side formula of an
operational inference or (B→B). Hence, we can delete all occurrences of these
ancestors,di (si1), from P ′. Hence we have
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�E−i F−i ∆′,→ Λ′′,¬
∨
si

DC
i (si ),

whereΛ′′ = Λ′ − {di (si1)}. Since∆′ ⊆ ∆ = g+
i ∪⋃j/=i Bj (Γij ) andΛ′′ ⊆ ĝ−

i , we
have, by (Th),

�E−i F−i ĝ+
i ,
⋃
j/=i

Bj (Γij ) → ĝ−
i ,¬

∨
si

DC
i (si ).

We have�E−i F−i ĝi ,
⋃

j/=i Bj (Γij ) → ¬∨si
DC

i (si ). This is equivalent to�Ei Fi

Bi (ĝi ),
⋃

j/=i Bi Bj (Γij ) → Bi (¬
∨

si
DC

i (si )) by Lemmas 6.4 and 6.5. ��

10 Concluding remarks

We have developed a theory of prediction-decision making in game situations.
Each player has a prediction-decision criterion involving only shallow inter-
personal introspections. We have shown that an outward statement on decision
makings for all the players is decomposed into each individual statement, and
that an individual statement has an inner parallelism to the component state-
ments. Therefore, discussions in Section 8 can be used cyclically until the bases
of criteria are reached. We have considered the behavior of minimal inferential
structures in Section 7.

Various examples of prediction-decision criteria are considered together with
some games. These examples would suggest more general treatments of minimal
inferential structures. Compound criteria of prediction-decision criteria suggested
in Section 9 are important examples for further developments, since they depart
considerably from the symmetric treatments of the decision criterion for an in-
dividual player himself and his prediction on other players. As a whole, we
would like to convey the message that our theory enables us to investigate infer-
ential complexities of interpersonal introspections for decision making in game
situations.

We emphasized a broad perspective of new research areas where players have
shallow epistemic interactions with other people. This includes the possibility that
each player has narrow interactions only with relatively few people surrounding
himself, which may be read as being suggested in the location game LG. Par-
ticularly, our theory may provide candidates for a theory or model derived from
individual experiences such as in the inductive game theory of Kaneko and Mat-
sui [5]. Although such areas are in the scope of our theory, we would need more
developments of a systematic procedure.

Another remark is on complexities of intrapersonal reasoning in terms of
informational content. In principle, it would be possible to have such a consider-
ation. This is a topic to which a lot of attentions have been given recently in the
proof-theory literature. Nevertheless, no consensus has been reached, especially,
even on purely finite problems. A general development would be difficult also
in game theoretical contexts, but some special considerations may be possible
since we can often impose special structures on game problems.
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A complexity of intrapersonal reasoning in terms of informational content
seems to be related to thenumber of initial sequents. For example, consider the
proof given in (4.1), where gameg1 is replaced by a general 2-person gameg with
dominant strategys11 for player 1. The proof of B1[ĝ1 → Dom1(s11)] has |S1| ×
|S2| number of initial sequents, which reflects the number of verification fors11 to
be a dominant strategy including the comparisons ofs11 with itself. In this case,
the premise ˆg1 is treated as stored beliefs and is not counted in the informational
content used. If player 1 has the additional information

∨
s1

Dom1(s1), then the
informational content of B1[ĝ1,

∨
s1

Dom1(s1) → Dom1(s11)] has becomes|S1|
under the assumption of no indifferences in ˆg1. That is, it suffices for player 1
to check his strategies fixings11. In a future paper, we will investigate into this
problem of bounded intrapersonal inferences for decision making.

As pointed out in Section 2, criteria DC1 and DC2 are related to the proce-
dure of iterated elimination of dominated strategies (cf., Moulin [10] and Myerson
[11]). The minimal depth of inferential epistemic structure appears to be related
to the number of the rounds for the iterated eliminations of dominated strategies.
However, the method of iterated eliminations of dominated strategies is not di-
rectly a special case of our general definition of a prediction-decision criterion.
To consider this method in our approach, the definition of a prediction-decision
criterion should be modified.

Finally we give a remark on Aumann and Brandenberger [2], who claimed
that common knowledge is not required to have a Nash equilibrium, more specif-
ically, the epistemic depth required to have a Nash equilibrium is at least one.
Their claim was stated in a probabilistic model. We may formulate the essential
part of their claim in our framework. Consider the statement (∗): if � Γ1, Γ2 →
B1(D1(s1))∧B2(D2(s2)), then� ĝ → Nash(s1, s2), where� is the provability rela-
tion of some epistemic logic, say, KDn . Aumann and Brandenberger’s [2] claim
is interpreted as follows: we may find some condition onΓ1, Γ2 as well asD1, D2

for (∗) so that the epistemic depths for these formulae are 1. From our point of
view, there are many prediction-decision criteria satisfying this (∗), for example,
DC1.

The question of whether or not common knowledge is required for the clas-
sical (ex ante) Nash equilibrium argument is not to find epistemic requirement
for (∗), but is to find epistemic requirements of the classical Nash equilibrium
argument itself. The latter is discussed in Sections 7 and 8 of Kaneko [4].

11 Appendix: Treatment of Axiom 4

In Kaneko [4], multi-modal epistemic logic KD4n is treated as central among
various candidates. On the other hand, we exclude Axiom 4:Bi (A) ⊃ BBi (A) in
our epistemic logic GLEF of shallow depths, i.e., GLEF is of KD-type. It is a
reason for this exclusion that our focus is the consideration of interpersonal intro-
spections but not intrapersonal ones. Nevertheless, it may be a natural question
what would happen if Axiom 4 is included. In this appendix, we argue that the
results given in this paper essentially remain to hold even if Axiom 4 is included.
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The relation of KD4n to KDn is just an addition of Axiom 4 to KDn . On the
other hand, to incorporate Axiom 4 to our GLEF keeping the basic developments
such as the cut-elimination theorem as well as completeness result, we need to
modify the basic definitions of depths and epistemic structures.

First, we changeN <ω into N <ω> = {(i1, ..., im ) : i1, ..., im ∈ N , m ≥ 0 and
it /= it+1 for t = 1, ..., m − 1}. Also, we change the concatenation◦ to ∗ so that
for e = (i1, ..., im ), e′ = (j1, ..., jk ) ∈ N <ω>, e ∗ e′ = (i1, ..., im , j2, ..., jk ) if im = j1
and e ∗ e′ = (i1, ..., im , j1, ..., jk ) if im /= j1. Here, the repetitive occurrences of
the samei is excluded, since Axiom 4 takes care of such a repetition. Then we
changeδr into δ so thatδ is defined by conditions D0–D4 with∗ instead of◦
for D4. For example,δ(B1B1(p)) = {(1)} but δr (B1B1(p)) = {(1, 1)}. Descriptive
and inferential epistemic structuresE and F are now assumed to be subsets of
N <ω> satisfying (3.4). Then the KD4-type GL4

EF is defined by the above list of
the axiom and inference rules only with the replacement of the distribution rule
by

Be∗i [Γ, Bi (Λ) → Θ]
Be [Bi (Γ ∪ Λ) → Bi (Θ)]

(Bi → Bi )
4, where |Θ| ≤ 1 andi ∈ N .

The provability of GL4EF is denoted by�4
EF . In the modified logic GL4EF , any

formula inΓ ∪ Θ in the upper sequent of (Bi → Bi )4 is a side formula, and any
one in Bi (Γ )∪Bi (Θ) in the lower sequent is a principal formula.

In GL4
EF , Axiom 4 is realized in the following sense:

Be∗i [Bi (A) → Bi (A)]
Be [Bi (A) → Bi Bi (A)]

(Bi → Bi )
4.

Since we are now usingδ, we have no constraints on the repetitions of Bi . That
is, whene = (i1, ..., im ) and im = i , we havee ∗ i = e itself. To see that GL4EF

captures Axiom 4, we can show the following: LetΓ andΘ be any finite sets
of formulae inP and E an epistemic structure withδ(Γ ∪ Θ) ⊆ E ⊆ N <ω>.
Then

�KD4n Γ → Θ if and only if �4
EE Γ → Θ, (11.1)

where�KD4n is the provability of KD4n in the sequent form (cf., Kaneko [4],
Section 4.3). This is a variant of Theorem 4.2 for KD4n .

The cut-elimination theorem (Theorem 4.3) holds for GL4
EF , and also, the

semantics for GL4EF has been developed (Kaneko and Suzuki [7] and [8]). IfP ′

is a proof of Be [Γ → Θ], then the cut-elimination theorem gives a cut-free proof
P of the same endsequent Be [Γ → Θ]. We emphasize that a cut-free proofP
enjoys thesubformula property that any formula inP occurs as a subformula
also in the endsequent Be [Γ → Θ] of P .

The changes from GLEF to GL4
EF may look small. However, GL4EF is more

difficult to be handled than GLEF in considerations of meta-theoretical arguments.
In GL4

EF , for example, Theorem 6.3, Lemmas 6.4 and 6.5 need some additional
assumptions and their proofs become much more complicated. Nevertheless, as
far as formulae are restricted to ones compatible with our restriction to purely
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interpersonal introspections, we can prove that provability�4
EF is equivalent to

�EF .

Theorem 11.1. Let E and F be epistemic structures withF ⊆ E which are
subsets ofN <ω>, and letδr (Γ ∪ Λ) ⊆ N <ω>. Then�4

EF Γ → Λ if and only if
�EF Γ → Λ.

The if part is automatically implied, but theonly-if part needs a long proof,
which will be given below.

Proof of Theorem 11.1. Suppose�4
EF Γ → Λ. There is a cut-free proofP of

Γ → Λ in logic GL4
EF . Note that sinceP is cut-free, it satisfies the subformula

property that any formula inP occurs as a subformula in the endsequentΓ → Λ
of P .

Then P may contain some application of (Bi → Bi )4 of the following two
types:

(A):
Be [∆1, Bi (∆2) → Θ1]

Be [Bi (∆1 ∪ ∆2) → Bi (Θ1)]
(Bi → Bi )

4,

(B):
B(i1,...,im )[∆1, Bi (∆2) → Θ1]

B(i1,...,im−1)[Bi (∆1 ∪ ∆2) → Bi (Θ1)]
(Bi → Bi )

4,

wheree = (i1, ..., im ) and i = im . It suffices to find another proofP∗ of Γ → Λ
where there are no applications of (Bi → Bi )4 of type (A) and every applications
of (Bi → Bi )4 of type (B) has “empty” Bi (∆2). Specifically, we will modifyP
into P∗ so that we “delete” the type (A)’s and change the type (B)’s into

B(i1,...,im )[∆1, ∆2 → Θ1]
B(i1,...,im−1)[Bi (∆1 ∪ ∆2) → Bi (Θ1)]

(Bi → Bi ).

Then we will show thatP∗ is a proof ofΓ → Λ in logic GLEF .
Sinceδr (Γ ∪ Λ) ⊆ N <ω>, we have

δr (A) ⊆ N <ω> for any formulaA occurring inP . (11.2)

Indeed, consider a formulaA in any sequent Be [∆ → Λ] in P . By the subformula
property of P , A occurs as a subformula in the endsequentΓ → Θ. Hence
δr (A) ⊆ N <ω>.

Now, consider a particular applicationη, in P , of an inference of the form:

η :
B(i1,...,im )[∆1, Bi (∆2) → Θ1]

B(i1,...,im−1)[Bi (∆1 ∪ ∆2) → Bi (Θ1)]
(Bi → Bi )

4.

wheree = (i1, ..., im ) andim = i . Let Q be the part ofP consisting of the ancestor
sequents, with the same outer Be [· · ·], of the upper sequent ofη. We stipulate
that Q includes the upper sequent ofη. The uppermost sequent ofQ is either
(a): an initial sequent Be [D → D ] or (b): the lower sequent of (Bim+1 → Bim+1)

4

with im+1 /= i .
First, we list several facts onP , and using these facts,P will be modified

into P∗.
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(1): First, the succedentΞ of Be [Π → Ξ] in Q does not have a formula of
the form Bi (A) = Bim (A). Indeed, ifΞ has a formula Bi (A), then its descendant
of occurs as a subformula in∆1 ∪ ∆2 ∪ Θ1 of the lower sequent ofη, which
implies we have (i , i , j1, ..., j�) ∈ δr (Bi (∆1 ∪ ∆2)∪Bi (Θ1)) for some (j1, ..., j�), a
contradiction to (11.2).

(2): Consider an initial sequent Be [D → D ] in Q . ThenD cannot be the form
Bi (A) by (1).

(3): Consider any applicationη′ of (Bi → Bi )4, in Q , of the form:

η′ :
Be [Λ1, Bi (Λ2) → Ξ1]

Be [Bi (Λ1 ∪ Λ2) → Bi (Ξ1)]
(Bi → Bi )

4.

By (1), Ξ1 = ∅.

Consider an arbitrary occurrenceξ of a formula Bi (A) = Bim (A) in Q .

(4): First,ξ is not a side formula of any inference. Suppose, on the contrary, that
it is a side formula of some inference ruleI . Let I be (Bi → Bi ) such asη′ of
(2). Then Bi (A) is in Λ1 ∪ Ξ1, and we have Bi (A) ∈ Λ1 by Ξ1 = ∅ by (3), which
implies that Bi Bi (A) ∈ Bi (Λ1), a contradiction to (11.2). Note that it may be the
case thatξ is in Bi (Λ2) in the upper sequent.

For any operational inferenceI , we can show in the same manner thatξ is
not a side formula ofI .

(5): The uppermost ancestor ofξ, having the form Bi (A), in Q is not a principal
formula of (Bim+1 → Bim+1)

4, sinceim+1 /= im .

(6): By (1), (2), (3),(4) and (5), the uppermost ancestor, having the form Bi (A),
of ξ in Q is either an thinning formula of (Th) or a principal formula of (Bi →
Bi ) of the type B, and every descendant ofξ occurs as Bi (A) in Q .

Now, we replace all occurrences of any formula of the form of Bi (A) =
Bim (A) in Q by A. The new part is denoted byQ ′. Let P ′ be the tree obtained
by replacingQ by Q ′. Now we show that the partQ ′ is correctly constructed
with the inference rules for GLEF . SinceQ ′ is affected for a sequent including
a formula of the form Bi (A). By (4), we need only to consider an applicationη′

of (Bi →Bi )4 in (3): η′ is changed into

Be [Λ1, Λ2 → ]
Be [Λ1 ∪ Λ2 → ]

.

Thus the upper and lower sequents are the same. This is regarded as (Th). Hence
Q ′ is correctly connected in GLEF . The lowermost sequent ofQ ′ is:

B(i1,...,im )[∆1 ∪ ∆2 → Θ].

Hence we have

B(i1,...,im )[∆1, ∆2 → Θ]
B(i1,...,im−1)[Bi (∆1 ∪ ∆2) → Bi (Θ)]

(Bi → Bi ).
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In this manner, we change the part of each application of the formη in the
above way. The resultingP∗ is a proof ofΓ → Λ in GLEF . ��

List of Some Symbols:

N = {1, ..., n} : the set of players;
Si = {si1, ..., si�i } : the set of strategies of playeri ;
g = (g1, ..., gn ) : a game consisting of payoff functionsg1, ..., gn ;
N <ω = {(i1, ..., im ) : i1, ..., im ∈ N andm ≥ 0};
N <ω> = {(i1, ..., im ) ∈ N <ω : it /= it+1 for t = 1, ..., m − 1};
ε : the null sequence;
¬,⊃,

∧
,
∨

: logical connectives;
P : the set of formulae;
A, B , C , D ; formulae;
Bi (A) : player i believesA;
ĝi : the set of preferences expressing payoff functiongi ;
� : ¬p ∨ p; and⊥ : ¬p ∧ p;
δr (A) : the epistemic depths of formulaA;
E andF : epistemic structures withF ⊆ E ;
Ei = {(i1, ..., im ) ∈ E : i1 = i}∪{ε}; andE−i = {(i2, ..., im ) : (i1, ..., im ) ∈ E};
PE = {A ∈ P : δr (A) ⊆ E};
Γ, Θ, ∆ : finite sets of formulae;
Φ : a nonempty finite set of formulae;
Bi (Φ) := {Bi (A) : A ∈ Φ};
Be [Γ → Θ] : a thought sequent;
GLEF : epistemic logic of shallow depths;
�EF : the provability relation of GLEF ;
Besti (si | s−i ) : si is a best response tos−i ;
Domi (si ) : si is a dominant strategy;
Undi (si ) : si is an undominated strategy;
Di = {Di (si ) : si ∈ Si } : a prediction-decision criterion;
Pi = {Preij (sj ) : sj ∈ Sj and j ∈ N − {i}} : prediction criterion of playeri ;
Ri = {Resi (si | s−i ) : si ∈ Si ands−i ∈ S−i } :

valuation criterion of playeri ;
P0

ij (sj ) = �.
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