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Summary. Individual decision making is based on predictions about other play-
ers’ choices as well as on valuations of reactions to predictions. In this sense,
a player has a prediction-decision criterion for decision making. We develop a
theory of prediction-decision criteria, which enables us to capture new phenom-
ena on individual decision making in games. The decision making situation is
described in the epistemic logic Gt of shallow depths. There, each player
considers his and other players’ decision making down to some shallow depths.
It is a point of our theory to investigai@ferential complexities of interpersonal
introspections. In particular, we can discussnanimal epistemic inferential struc-

ture for prediction-decision making. We will find parallel structures in decision
making and prediction making, which is called amer parallelism. The cli-

max of the paper is the consideration of inner parallelisms of prediction-decision
making.
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1 Introduction

It is a central theme of game theory to investigate how people behave in in-
teractive situations. Aolution concept describes decision (behavior) criteria of
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people and the resulting outcomes from these criteria. Such an investigation is
called asolution theory, and various theories have been considered in the litera-
ture of game theory. Each solution theory may involve two types of interpersonal
considerations: (a) interpersonal introspections in the mind of a player; and (b)
interpersonal interactions at physical levels. Exchanges of messages in an ex-
tensive game are examples for (b). In this paper, we restrict our attention to
(a). That is, we consider structures of interpersonal introspections required for
decision making in game situations.

A typical characteristic of extant solution theories is the pursuit of “ratio-
nality” in resulting outcomes. This imposes payoff maximization for a decision
maker andsymmetrically for the other players even in the mind of the decision
maker. We take the different view that decision criteria are more arbitrary than
ones typically considered in game theory. Such an arbitrariness is due the fact
that other players’ minds are largely hypothetical. Under this view, we inves-
tigate structures ointerpersonal introspections required for individual decision
making, putting emphasis on the shallowness of interpersonal introspections.

The different view we adopt liberates us from the pursuit of “rationality” in
decision making and its resulting outcomes. Rather than talking about “rational-
ity” in outcomes, we would like to retain the term “rationality” to describe an
attribute of the reasoning ability of a player. We call this kbgical rationality
of a player.

Extant solution theories typically involve some or many transcendental fac-
tors. This is caused by the fact that a simple decision criterion often fails to
recommend a decision. The avoidance of such a failure leads to the pursuit of
“rationality”. Here, we treat rather simple and naive decision criteria. First, we
exclude mixed strategies from our consideration, ardrtiori, we do not con-
sider solution concepts related to the literature of “perfection”. Even for epistemic
requirements, we also avoid assumptions containing transcendentalities such as
common knowledge. Thus, we find only a few simple and naive decision criteria
in the literature of game theory, but can find a lot from our real life. In this
paper, we investigate the structure of such simple and naive criterion from the
viewpoint of the logical rationality of players.

Since decision making may involve predictions about what other players
would choose, decision criteria are more accurately describepkeaisction-
decision criteria. Different prediction-decision criteria may require different in-
terpersonal introspections. For example, doeninant strategy criterion requires
a player to think only about his own payoff function, and requires no interper-
sonal introspections. The same is true formheximin decision criterion. Another
example is that a player assumes, in his prediction, the dominant strategy crite-
rion for the other player and chooses a best strategy (response) to the predicted
strategy. In this example, truly interpersonal introspections are involved.

To facilitate considerations of interpersonal introspections for decision mak-
ing, we adopt theepistemic logics of shallow depths developed in Kaneko and
Suzuki [7], [8] and [9]. This logical system is denoted by &L The subscripts
E andF of GLgr are called, respectively,
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(1): descriptive epistemic structure;
(2): inferential epistemic structure.

Both impose bounds on epistemic depths, where epistemic depths are the nested
structure of beliefs of players having the form: playebelieves that, believes

... im believes something. The formeE, is the bounds of epistemic depths for

a statement, and the lattd¥, those of interpersonal introspections to infer the
statement. It may be the case that a player has beliefs about other players but
may make a decision without using his beliefs on other players. In this case,
the notion of (1) is complicated, but that of (2) is simple. Thus, we need to
distinguish between (1) and (2). winimal inferential epistemic structure for a
given statement is a key for this distinction.

To differentiate the above two notions more clearly, consider another ex-
ample: pure default decision criterion. Suppose that playear gives up thinking
about the game and adopts Hiist strategy as his default decision. Then he
needs no logical reasoning for the choice of the first (default) strategy. On the
other hand, player still needs to be conscious of what his default decision is.
This consciousness requir&s to be larger tharF. In this case, the minimal
inferential epistemic structuré is null, butE contains at least depth 1. This will
be discussed in Section 7.

We analyze the structure of prediction-decision making, while simultaneously
developing a theory of epistemic logics with shallow depths for our analysis.
Therefore, we call our theoretical development libgico-game analysis to dif-
ferentiate our development from other extant theories.

Since the logico-game analysis in this paper will have a long development
of both game theoretic problems and epistemic logig&lit would be helpful
to state that the climax of the development is the consideratiannef paral-
lelisms of prediction-decision making in Section 8. Inner parallelisms mean that
a parallel form of prediction-decision making is found in each player’s predic-
tion making. This is explicitly argued and shown, using certain meta-theorems
obtained for Glge. This result relies upon our basic assumptions that the same
logical rationality is given to each player, the investigator (observer) and players
imagined in the mind of each player.

Let us explain our undertaking from a different point of view. In Kaneko [4],
epistemic logic KD4 with the belief operators By, ...,B, of players 1...,n is
discussed as taking the central position. In RD#rmulae having nested occur-
rences of B, ...,.B, in any depths are allowed, and the Necessitation Rule may
be applied arbitrarily many times in proofs. On the other hand, human interper-
sonal epistemic introspections often stop at va@glow levels. The purpose of
introducing Glgr is to take this limitation of human reasoning seriously. This
is directly related to the above game theoretical motivation in that we avoid
transcendentalities and treat prediction-decision criteria having only shallow in-
terpersonal introspections.

The logical system Gir is obtained by imposing two types of restrictions
on KD", rather than KDA, by means of descriptivE and inferentialF. Nested
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occurrences of belief operators in formulae and proofs are restricteel dyd

F, respectively. We emphasize thHatis a subset oE and may be smaller than

E. Thus, only shallower interpersonal introspections are required for the logical
rationality for decision making than for the description of the epistemic situation.

We close this introduction with two remarks. The first is on our choice of a
presentation style of Gi=. In Kaneko [4], the Hilbert-style formal system and
Kripke-style semantics for KD4are primarily discussed. We may adopt these
types for Glgr, but for our considerations of game theoretical problems as well as
some logical problems, either is inconvenient in the sense that we need to prepare
a lot of lemmas. Instead, we presentglin the Gentzen-style sequent calculus,
which enables us to go directly to our problems. The Kripke-style semantics for
GLgr is found in Kaneko and Suzuki [9].

The second remark is on the exclusion of Axiom 4 (Positive Introspection
Axiom) from GLgr. One reason for this exclusion is that our focus is the consid-
eration of interpersonal introspections but not intrapersonal ones. Another reason
is that the exclusion makes our meta-theoretical treatments much easier. Never-
theless, the results given in this paper essentially remain to hold, which will be
discussed in the Appendix (Section 11).

The paper is organized as follows: In Section 2, we prepare basic game
theoretic notions and various prediction-decision criteria in the nonformalized
language. In Section 3, we give the definitions of formulae and epistemic struc-
tures. In Section 4, we give Gk and state the cut-elimination theorem for it,
and we illustrate some provable statements on prediction-decision making. One
important result, called thBecomposition Theorem, is given there. This states
that the prediction-decision statements foplayers are decomposed intoin-
dependent statements of individual prediction-decision making. This does not
depend upon structures of prediction-decision criteria.

In Section 5, we give the general definition of a prediction-decision crite-
rion, and see that various examples are special cases of this general definition.
Section 6 presents various meta-theorems to be used for evaluations of prediction-
decision making in a game. In Section 7, we consider minimal inferential epis-
temic structures for prediction-decision making with various criteria. Section 8
is the climax of this paper, in which we discuss inner parallelisms in prediction-
decision making. In Section 9 suggests a further development such as compound
prediction-decision criteria. Section 10 gives concluding remarks. Section 11
gives an appendix on the treatment of the Axiom 4 (Positive Introspection). We
append the list of symbols for the reader’s use.

2 Some game theoretic notions

In this section, we review basic game theoretical notions, and also give various
prediction-decision criteria. Some are standard in the game theoretical literature,
and others are found in our ordinary life. Such a variety of prediction-decision
criteria are important to understand the scope of our logico-game analysis.
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2.1 Basic notions and simple examples

Consider ann-person finite noncooperative gange= (g1, ..., gn) in strategic
form. The set ofplayers is denoted byN := {1, ...,n}. Each playeri € N has

4 purestrategies (¢; > 2). We assume throughout the paper that the players do
not play mixed strategies. The set of play& (pure) strategies is denoted by
S ={s1,...,S¢} fori € N. His payoff function is a real-valued functiog; on
S:=5 x--- xS. An elements = (s, ...,s) € S is called astrategy profile.
Fors=(s,...,.sq) € S, letsj =(s1,...,S-1,S+1,---,S). This is an element of
S =S X+ xS§_1 XSG+ X xS We write oftens = (s,...,5) € S as
S;S-i.

A strategys € S is a best strategy (response) to s_; iff gi(s;s-i) >
gi(ti;s_i) for all tj € §. We say thats is adominant strategy iff 5 is a best
strategy tos_; for anys_; € S_i. A dominant strategy satisfies payoff maxi-
mization whatever the other players choose. We also consider the concept of an
undominated strategy to discuss prediction-making. We saytjtitmminates s
iff gi(ti;s—i) > gi(s;s-i) for all s_j € S_j andg;(ti;s_i) > gi(s;s-i) for some
s_j € S j. A strategys is anundominated strategy iff no tj € § dominatess .
Note that an undominated strategy may not satisfy payoff maximization.

In the gamey? = (g3, ¢3) of Table 1 (Prisoner’s Dilemmaghe second strategy
s, for each playeri is a dominant strategy and is undominated. The game
g% = (g2, g3) of Table 2 is obtained from gamg" only by changing payoff 6 in
the north-east corner ta 2n gameg?, player 1 has the same dominant strategy
as ing?, while neither strategy for player 2 is a dominant strategy but either is
undominated.

Table 1. g1 = (g%7 g%) Table 2. g2 = (g%, gg)

S1 2 S1 2

su (65 (1.6) su (65 (1.2
sz (61) (3.3) sz (61) (3.3)

For a comparison purpose, we mention Nash equilibrium. A strategy profile
s =(s,...,S) is called aNash equilibrium iff 5 is a best strategy te_; for all
i € N. In either of gameg® and g2, (s12,S) is a unique Nash equilibrium. A
Nash equilibrium in each matrix is marked with asterisk

In the following, we will use the following prediction-decision criteria to
exemplify our theory.

DC1 (Dominant strategy): Playeri should choose a dominant strategy.

In game ¢%, this criterion gives a decision to either player. In gapfe
however, DCL1 gives a decision only to player 1 but not to playesirite player
2 has no dominant strategiddote that this criterion includes no predictions, i.e.,
a player does not think about the other’s choice. We may think that the lack of
predictions causes the incapability of DC1 to recommend a decision for player 2.
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We consider another decision criterion including prediction-making

DC2 (Best strategy to a dominant strategy): Playeri first predicts what the
other playerj should choose following DC1, and thénshould choose a best
strategy to the predicted strategy for

In gameg?, player 2 first predicts that 1 would choosg following DC1,
and then 2 would choos®, as the best strategy to the predicted decisign
These criteria, DC1 and DC2, are related to phacedure of iterated elimination
of dominated strategies (cf., Moulin [10] and Myerson [11]). These are more or
less a standard example of a prediction-decision criterion in the literature of game
theory. However, we can consider some other prediction-decision criteria which
have never been discussed in the literature of game theory. We would like to
show that our logical approach enables us to take such other prediction-decision
criteria in its scope. In particular, we discuss the subtlety of inferential epistemic
interactions required for decision making with such prediction-decision criteria.

Criterion DC2 makes no recommendations in some other games. For example,
the games;® and ¢* (Matching Pennies) of Tables 3 and 4 allow neither player
to have a dominant strategy. Neither DC1 nor DC2 makes a recommendation.
However, some other criteria make recommendations for such games. Here we
mention a few more decision criteria.

Table 3. ¢* = (¢3, 63 Table 4. g* = (97, 93)

S1 S22 $3 S1 S22

su (65 (12 (43 su (1-1) (LI
s (61) B3y (02 sz (11 (1-1)

As mentioned in Section 1, we treat “rationality” as an attribute of reasoning
abilities rather than outcomes or behavior. In the present context, this mean
that we do not pursue “rationality” of prediction-decision criteria. The following
extreme example may clarify our attitude.

DCO (Pure default decision): Playeri should choose the prespecified default
strategy, €.9.5i1.

In gameg?#, player 1 can choose his first strategjy as a default decision with no
further considerations. The word “default” has the connotation that after some
other possibilities are considered and none of them recommends a decision,
a default decision would be applied. We call this type thg-resort default
decision criterion, which will be discussed in Section 9. Here, we treat a pure
default decision just as a prespecified one.

Criterion DCO may sound too trivial if it is applied to playiés own decision
making. However, it would not be so if this is adopted for plgysiprediction on
i’'s decision making. That is, the prediction on the other player’s choice is made
without considerations on the other’s subjective elements. We modify criterion
DC2 into the following.
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DC20 (Dogmatic prediction decision): Playeri first predicts that playgrwould
choose strategyg ; following DCO, and theri should choose a best strategy to
the predicted strategy.

This criterion is free from the symmetric assumption that a decision maker as-
sumes payoff maximization for himself as well as for the other player. In this
sense, DC20 differs considerably from DC2.

We will see in Section 7 that criterion DC20 involves some subtlety in epis-
temic interactions, while DCO has only trivial interactions.

Finally, we mention the very first decision making criterion considered by
von Neumann [12] and [13] in the literature of game theory. We state it for
player 1

VN (Maximin decision): Player 1 should choose rgsto maximize mig, g1(S1, S2)-

That is, player 1 evaluates eashby the worst possible payoff, miryi(si, ),

and maximizes this value. This criterion is usually considered only for a two-
person zero-sum game. It is sometimes confused with a Nash equilibrium, since
the resulting pair given by this criterion for two players is equivalent to a saddle
point, i.e., Nash equilibrium, if it ever exists. However, vN is an individual deci-
sion criterion, and does not involve predictions about the other player’s decision
making. From the viewpoint of epistemic depth, this criterion has the same status
as that of the dominant strategy criterion DC1. On the other hand, if we look at
the saddle point in the game, and if we require the infinite regress argument such
as in Kaneko [4], it would require common knowledge, i.e., the infinite dé&pth.

2.2 Location game LG with three-stores of different sizes

To exemplify our theory, we need a slightly more complex example. Consider the
following 3-person gamé = (hy, hy, hg). In the following, we call this 3-person
game thdocation game LG. In LG, player 1 has two strategisg, S12, and each

i = 2,3 has three strategies, 52, S3. We assume that; depends upon all the
three players’ choices$y, depends upon his and 3's choice, dnds determined
solely by his own choice. Specifically, the payoff functibi(s, s, S3) is given

as

2 if 51 =811 ands, = 51
1 if 81 =511,% =S andss # sz1

hi(s1, &, 83) =
-1  ifsi=s1, 7S andsg =s31

0 otherwise

1 Aumann and Maschler [1] discussed carefully the conceptual differences between the maximin
decision criterion from the saddle point property (Nash equilibrium) from a different point of view
from ours.
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andhy(s;, s3), hs(ss) are given as

S31 S32 Ss3
VY 5 5 s31 10
S 10 1 10 s 20
S3 0 0 0 S33 0
ha(sz, S3) ha(ss)

Since this example is constructed to show some slightly complex epistemic
interpersonal introspections, the following story in terms of industrial organi-
zations looks somewhat twisted, but gives some idea on the scope of possible
applications of our theory.

Three players 12,3 are companies, and there are three locatanis ¢ for
these companies, which correspond to the three strategies,, s3 of player
i =2,3. The demand at locatioh is large, that ati is medium, and that at is
small. Player 3 is a large company treating many prodi&es more specialized
medium company, ahl a small company specialized to one product. Player 1
has already a facility at locatioa, and then his choice is to opeg,, or not
to open a stores;, at locationa. Players 2 and 3 would choose one location to
open a store. Player 1's product is complemental to the those treated by player
2. Therefore, player 1 wants player 2 to open a store at locatidf player 2
chooses, then 1 would have profit 2. If 2 opens at locationthen 1 would get
profit 1 unless the big store 3 comes to locat#onit is the worst case for 1 that
1 opens the store and only the big store 3 comea.tBlayer 2 is affected by
player 3’s choice. However, 3 is large enough to ignore the other two players.

Since player 1 is affected by the other two players, player 1's decision making
may involve new aspects not found in the prediction-decision criteria described
in Section 2.1. Therefore, we consider only player 1's decision making in the
location game LG.

The following one is an extension of DC2 to the 3-player case.

HDC (Hierarchal decision criterion): Player 1 predicts that 2 would predict
what 3 would choose following DC1, and that 2 would choose the best strategy
toit. Then player 1 should choose a best strategy to his prediction on 2’s decision.

Specifically, player 1 predicts that 2 predicts that 3 would ch@gsas the
dominant strategyand then 1 would predict that 2 would choosg as the
best strategy t@s,. Then player 1 would choosg; as the best strategy to the
predictions,;. Thus, player 1 can make a decision by this criterion. In this case,
player 1 needs to think about 2's decision making as well as 2’ prediction about
3’s decision making. However, 1 does not directly predict 3's decision making,
and his prediction is made only through 2’s mind.

2 Our concern is ordinal preferences on strategy profiles. This assumption can be interpreted as
meaning that the ordinal preferences are determindu sy, s3) andhs(ss), though the actual profits
are slightly influenced by the choices of 1 and/or of 2.
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In the present location game, player 1 can make a decision under the predic-
tion that the other players choose undominated strategies.

NPC (Negative prediction criterion): Player 1 predicts that 2 and 3 would
choose undominated strategies, and 1 would choose a best strategy to his predic-
tions.

Specifically in the above game, player 1 predicts that players 2 and 3 would
choose, respectivelg,; or s, andsz; as undominated strategies. Then he should
chooses;; as a best strategy to either &8{; S32) and &2, S32). In this case, player
1 thinks about 2's decision making only in a negative sense, i.e., what players 2
and 3 would not choose. In location game LG, player 1 can also make a decision
by this criterion.

The prediction-decision criteria HDC and NPC require different interpersonal
introspections. In HDC, the interpersonal introspection takes a liner form: 1
thinks about 2’s prediction about 3's decision. On the other hand, in NPC, the
interpersonal introspection takes a branching form: 1 thinks about 2’s and 3's
decisions separately. This difference will be more explicitly discussed in Sections
7,8 and 9.

3 Set of formulae &” and epistemic structures

We define the set of formulae and see how prediction-decision criteria are de-
scribed as formulae. We also define the concept of an epistemic structure, which
will be used indescriptive andinferential manners for the definition of our epis-
temic logic Glgr of shallow depths in Section 4.

3.1 Definition of formulae

We represent payoff functionsg, ..., g, in terms of preference relations. We start
with:

strategy Symbols: Sy, ..., S1e,; 21y -+es 255 -5 Snly -5 Sty

2n-ary symbols: Py, P, ..., Pp;

unary symbols: dy, dp, ..., dn;

logical connective symbols: — (not), O (implies), A (and) \/ (or) ;

unary belief operator symbols: By, By, ..., Bp;

parentheses: (, ); braces: {,} andcommas: , .

LINTH LT "o

We associate théntended meanings, “not’ “implies”, “and”, “or”, with con-
nective symbols—, D, A, \/, respectively. Unary belief operator symbal B
applied to each formula. Strategy symbols are identical to those given in the Sec-
tion 2. By a 2i-ary symbolP;, we consider the expressi®f(ss, ..., S : t1, ..., th)

for (s, ..., %), (t1, ..., th) € S. By a unary symbot;, we consider the expression
di(s) for 5 € §. These expressions are callatbmic formulae, and the set of
them is denoted byAF. For example, whem = 2 and/; = ¢, = 2, AF consists
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of 32 + 4 atomic formulae. Atomic formulg;(sy, ..., : t1, ..., ty) is intended to
means aweak preference for (s, ..., $,) over (g, ...,t,) for playeri, and di(s)
means thag is a default decision for player

RegardingAF as the set of propositional variables, we defioemulae in-
ductively as follows:

F1: anyA € AF is a formula;

F2: if AandB are formulaeso are ¢A),(A D B) and B(A) (i € N);

F3: if {Ag,Aq, ..., An} is a finite nonempty set of formulae, thep {Ao, Aq, ..,
An}) and (/{Ao, Ay, ..., An}) are also formulae;

F4: any formula is obtained by a finite number of applications of F1, F2 and
F33

We denote the set of all formulae by’. We say that a formul@ is nonepis-
temic iff A contains no B,..., B,. We denote the set of all nonepistemic
formulae by ”". We follow standard practices of abbreviations so that we
could recover the original expressions when necessary. We will also abbrevi-
ate A{A,B},V{A,B,C} A{Ao,As,...,An} asAAB,AVB VC, /\E":OAk, etc.
We denote A > B)A (B D A) by A= B. We also denotexp Ap and—p Vv p by
1 andT, respectively, wher@ is an atomic formula.

Here we look briefly at how the basic game theoretical concepts are expressed
in our language.

First, we express the payoff functign of playeri as the following set of
preferences:

{Pi(s:t)1gi(8) 2 gi(®)} U{-Pi(s:1) 1 gi(s) < g (V)}, 3.1)

which is denoted by~ The conjunction/ g of g is a formula. Hence, the
payoff functions fom players are described as the get g; U---U g, or as the
formula A(G1 U - - U gn).

The statement that strategy for playeri is a best strategy to the others’
strategiess_; is described as the formul§{Pi(s;s-i : ti;s_i) : ti € S}, which
we denote by Begs | s_j). The statement thad is a dominant strategy for
playeri is expressed aé {Best(s | s_i) : s_i € S_j}. This means thag is the
most preferable whatever the others choose. This is equivaleih{®(s ;t_; :
ti;toi):t € § andt_; € S_;}, which we denote by Don{s).

An undominated strategy needs a slightly longer definition: First, we denote
the following by dom(ti,s) :

A Piltisiisisi)A \/ oPi(sisstisa). (3.2)
S_iES_| S_iES_

3 The above definition deviates from the standard textbook definition of formulae in that connec-
tives /\ and\/ are applied to a finite nonempty set of formulae, e{Ao, As, ..., Am}, rather
than to an ordered pair of formulae. We take this deviation to facilitate game theoretical applications.
However, the resulting logical systems are equivalent (with respective to provabilities or validities
defined in the systems). This formulation does not fit in some considerations, e.g., usingdile G
numbering. If one wants to take thed@el numbering, then the standard formulation would be more
convenient.
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The above, (3.2), statest“dominatess”. Using this formula, we define
Und(s) = /\ti —-dom (tj, 5). This states § is an undominated strategy”.

Finally, consider the prediction-decision criteria DC1 and DC2 for a 2-person
gameg = (g1, g2). Criterion DC1 for playeii is described as/! = {Dom(s) :
S € S}. Criterion DC2 for playeri is denoted byZ?2 = {D3(s) :s € S},
where eactD?(s) is given as

\/ B (Dom(s)) A /\ (Bj(Domy(s)) > Best(s |s)) - (33)
S S

If playeri believesl” and if B (D2(s)) is derived from his beliefs 8I'), thens
is regarded as a decision foas far as he adopts his prediction-decision criterion
G2,

In Section 5, we discuss these and other prediction-decision criteria in a
unified manner.

3.2 Epistemic depths of formulae and epistemic structures

Although the set of formulae”’ allows any finitely nested structures of.,B..,

Bn, the decision criteriaZ/! and Z? seem to need only small part 6. To
capture this idea, we introduce the notions of &pestemic depths of formulae
andepistemic structures. As stated in Section 1, the notion of epistemic structures
will be used to impose restrictions on:

(i): interpersonal epistemic expressions in formulae;
(ii): interpersonal epistemic inferences in proofs.

In this section, we will discuss only (i), and will do (ii) in Section 4.

First, letN<% := {(i1,...,im) @ i1,...,im € N}. Note thatN<“ contains the
null sequence ¢, i.e., the sequence of length We calle = (iq, ...,im) € N<¥ an
epistemic status. Fore = (i, ...,im) € N<¥, B;,...B; (A) is denoted by B(A), and
B.(A) is regarded as. We define the following concatenation: fere (iy, ..., im),
€ =(j1,...,jx) € N<¥, leteoc€ = (i1, ...,im,j1, .., jk). We also leteoe = coe =e.
We write () oe andeo (i) asi oe andeoi, respectively.

We define the dpistemic) depth 6" (A) of A € & by induction on the length
of a formula:

DO: " (p) = {e} for anyp € AF;

D1: 6" (=C) =4"(C);

D2:§"(C D D)=4"(C)ud'(D);

D3: 6" (A ®) = 6" (V #) = Ugcp 9" (C):

D4:5"(Bi(C))={i ce:e e (C)}.

Note thaté" (A) is a subset oN<“. For exampley" (B,(Domy(s,))) = {(2)} and
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8" (B2(D3(s2))) = {(2),(2,1)}. We defined" (I') = g 0"(C) for a setl” of
formulae?

To give a restriction on formal descriptions and formal proofs, we introduce
the notion of an epistemic structure. We say that a nonempty s&beétN <~
is anepistemic structure iff

(ix,...,im) € E implies (g, ...,im_1) € E. (3.4)

Whenm = 1, (iy,...,im—1) is the null symbole. By the nonemptiness of
and (3.4), we have € E. Trivial examples forE areN<“ and{¢}. Less trivial
examples arée, (1), (2)} and{e, (1), (2), (1, 2), (2,1)}. The epistemic deptbt (A)
of formulaA may not satisfy (3.4). However, for any givanthere is the smallest
epistemic structure including (A).

Given an epistemic structuie, we define

AR ={Ac:5A) CE}. (3.5)

A formula A in &£ is said to beadmissible in E. That is, when an (descriptive)
epistemic structurde is given, we admit only formulae whose depths are in
E. For example, wherE = {e, (1), (2)}, any formula in=¢ may have B and

B, without nested occurrences. On the other hand, formu(®8s;)) belongs

t0 A 2,2,y but not to 2. Since the null symbot always belongs to any
epistemic structurde, all the nonepistemic formulae are included 9, i.e.,
FNC R,

4 Epistemic logic GLgg of shallow depths

We adopt the Gentzen-style formulation of the epistemic logigeGaf shallow
depths. The choice of the Gentzen-style is made so as to facilitate our arguments
faithfully. Intuitively speaking, Gk is defined by imposing two restrictions on
formulae and proofs in the Gentzen-style formulation of"KIn Section 4.1,

we give the Gentzen formulation of Gt, and in Section 4.2, we see how it is
used for describing game theoretic decision making. We give detailed examples
and explanations in Section 4.3 and also state basic theorems on logiciGL
Section 4.4.

4.1 Logic GLgr and game theoretic statements

Let E andF be two epistemic structures with C E. We give restrictions in
terms of thesd& andF, respectively, on formulae and on proofs. To formulate
the restrictions on proofs, we introduce the concept of a thought sequent.
Let e = (iy,...,im) € E, and I, © finite subsets of7£&. Using auxiliary
symbols [], and—, we introduce a new expressiog[B’ — ©] := By,...B; [[" —

4 This 6" differs in D4 from § given in Kaneko [4], which is the depth measure suited to the
KD4-type logics.
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©], which we call athought sequent. The admissibility of a formula is extended
to a thought sequent. We say that a thought sequefft B> ©] is admissible

in E iff ecd(I"UO) :={eoc€ :€& € UO)} C E. Admissible proofs with
respect to- will be defined presently.

We abbreviate HI" — O] asI' — 6. Also, we abbreviate §I"U A —
AUB]land B[{A}JUTI' - OU{C}]as B[I,A — A,0] and B[A, ' — ©,C],
etc. We use the convention to write (B) = {Bi(A) : A € }.

The notion of a thought sequent has some conceptual difference from
Gentzen’s [3] original notion of a sequent. Nevertheless, since we consider only
thought sequents, we may call thought sequents sirsgojyents.

By B;,...Bi, [I" — O], we express the idea that playigrin the mind ofiy_1
... in the mind ofi; conducts logical reasoning and believes that> ©. As in
the standard sequent calculus,— © is intended to meag\ I" O \/ ©, where
A0 and\/ () are meant to be-p vV p and—p A p, respectively. Here, we note
that if we forget the outer §---] of B¢[I' — ©] and impose no restrictions
on formulae and proofs, the following logical system would be the same as the
Gentzen-style formulation of KD

The logical reasoning of the innermost playgrin Bj,...B;_[- - -] is governed
by one axiom schema and various inference rules, which describe classical logic.
One additional rule connects playigy's reasoning tdm_1's. In the following,

I 0,A, A, are finite sets of formulaé), B formulae and® is assumed to be
nonempty.

Axiom (Initial Sequent): Be[A — A],

Structural Rules:

Be[BAe,[ ZF“ : ((3], A] (T - %Bf[??,]ﬂ %B(;EZH]A - ()
Operational Rules:

Hepiera O sirease
m (A —), whereAc & {Beg;[? 372]7 :/\Aq)]e 2 (=N

(BJA T — 6] Ac &) Be[I" — 6, A
B[V &, 1 — O] (V=) Bell — O,V 9]

(=V), whereA e @

Epistemic Distribution Rule:

Beoi [F — 9]
Be[Bi (1) — Bi(O)]

(Bi — Bi), where |©| <1 andi € N.
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Here|©)| is the cardinality of©.

Inferences ©—),(— A) and {/ —) have the sets of upper (thought) se-
guents, which mean that each sequent is already proved. Some examples are
given below.

The outer B[---] of the upper and lower thought sequents in each of the
structural and operational rules are identical, and these rules describe classic
logic. That is, the innermost playgf in e = (i1, ...,im) IS assumed to be capable
of conducting logical reasonings described by classical logic. The ouyfer-B
changes only at (B — B;,,), and eventually the innermos goes into the scope
of B,,....in_o[- - -]. The length ofe = (i, ...,im) of the outer B[ - -] gets shorter
only at an application of (B — B;,) in a proof

Let B[ — O] be a thought sequent admissibleEn An admissible proof
P of Be[I" — O] in GLgr is a finite tree satisfying the following conditions:

P1: a thought sequent admissibleEnis associated with each node;
P2: the thought sequent associated with each leaf is an instance of the axiom;

P3: adjoining nodes together with their associated thought sequents form an
instance of the above inference rules;

P4: B.[I" — O] is associated with the root node;
P5: € belongs toF for any thought sequent.§A — A] in P.

We say that B[I" — O] is provable in GLgr, denoted by-egr Bg[I" — O],
iff there is an admissible proo® of Be[I" — ©] in GLgr. The negation of
Fer Be[I” — O] is denoted by“er Be[I” — O]. Recall that where = ¢, we
abbreviate the outer B - -], that is,Fge B[I" — O] is written ast-ge ' — 6.
When we writekge I' — © or Fge I' — O, we already assume that — O is
admissible inE, i.e.,6(I"U®) CE.

Consider one example of a proof. In Kaneko [4], it is shown thg\g!) D
Bi(Domi(s2)) is provable in KD4. This is now proved foi =1 in GLgr with
E =F ={¢ (1)} as follows:

{Bl[Pl(slz,sQ 1 81,%) = Pi(S12,% 1 81, 9)]
B1[9} — Pi(S12,% : S1, %]
B1[§7 — Domy(s12))]
B[B1(31) — B1(Domy(si2))]
B — B1(91) D Bi(Domy(s12))]

Note that inference{ A) has|S| = 2x 2 upper thought sequents, each of which
is derived with (Th). In factfFgr  — By(3}) DB1(Domy(s1p)) is equivalent to
Fer B1(g1) — Ba(Domy(s12)).

We define thanconsistency of I" in GLgr by Fgg I' — L. Recall that L
is the formula—p A p, wherep € AF. We say thatl” is consistent in GLgr iff
Fee I' — L. We will use the following fact:

(Th)}

(s1,%)€S (_> /\) (4.1)
(B — By)

(—=D)

I is consistent in Gie if and only if g I" — . (4.2)
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Indeed, lettgg I' — L. First, we havelgr L — , which is proved as
follows:
p—p
(=—)
-p,p —
(A=)
“PAP,Pp—
(A=),
PAP—

Then we combine this proof with a proof of have— | as follows:

I — (Cu))

Conversely, if-Fgg I" — , thentge I — L by (Th). Thus, we have (4.2)
Also, when {) € F, the following hold and will be used without mentioning:

Fer Bi(AAC) — Bi(A) A B{(C) and Fer Bi(A) AB;(C) — Bi(AAC).

Note that for these, we use (B> B;j) once. This interchangeability holds for
any finite nonempty sef of formulae, i.e.-gr Bi(A®) — ABi(®) andgr
ABi(®) — Bi(A ).

We need more comments, examples and basic theorems so as to use the
above Gentzen-style formulation of gL for investigations of game theoretical
decision making. We postpone such details to the next subsections, and here we
mention only how these definitions are used to describe the general problem of
game theoretical decision making.

4.2 Satements on game theoretical decision making

From the viewpoint of the investigator (observer), the problem is stated as the
provability or unprovability of thought sequent

I —A (4.3)

Here, I is the set of formulae assumed by the investigator Aisca consequence
to be derived from these assumptiofisHence, if (4.3) is provable, we regard
A as derived from the assumptiosby the investigator, but if not, we regard
A as underivable fronT” by the investigator.
When the investigator thinks about the logical reasoning of playé4.3)
may be expressed as
Bi(Zi) — Bi(A). (4.4)

That is, I" and A takes the forms of BI;j) and B(A;). Exactly speaking, this
means that the investigator, rather than playdras the assumptions @;) and
derives consequencg @) from B; (/7). Conceptually, this differs from
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Billi — Al (4.5)

This thought sequent means that playeterivesA; from his beliefsI;. When
this sequent is provable, the investigator understaatisnally the derivability
of Aj from I} by playeri. Here, the rationality is entirely in the sense of logic.
Regardless of the conceptual difference, the provabilities of (4.4) and (4.5) are
equivalent in Glgg with i € F. This will be proved in Section 6.

Now, consider a prediction-decision criterion peediction-decision criterion
is given asZ = {Di(s) : s € S}, whereDi(s) is a formula indexed bg. The
criteria DC1 and DC2 given in Section 2.1 are examplesd®r that is, these
are formulated asZ! = {Dom(s) : s € S} and #? = {V4Bj(Dom(s)) A
Ns (Bj(Domy(s)) D Best(s | 5)):s €S}

The following thought sequent represents playesr capability of decision
making:

Bi(1}) — \/Bi(Di(s)), (4.6)
S

wherel; is the finite set of playeir's basic beliefs. This means that the existence
of some decisiors, is derived from playei’s beliefs ;.

The general statement by the investigator is expressed as the provability of
the following:

o, Ba(11), ., Ba(Ih) = \/ B1(D1(s1)) A .. A \/ Ba(Dn(sh)), (4.7)
S S

wherelj is a finite set of nonepistemic formulae, which expresseoltective
situation such ag;U...Ug,. This is a statement on the capabilities of the decision
making of all the players.

We regard, as a goal of this paper, the consideration of the provability of
(4.7) from the viewpoint of the investigator. We mention the following theorem,
though its proof needs various meta-theorems and will be given in Section 6.
The theorem states that for each player’s decision making, it suffices to consider
(4.6) separately and to ignore the objective pgayt

Theorem 4.1 (Decomposition). Suppose thatpUB1(/71) U ...UBL(I}) is consis-
tent in GLge. Then the following two statements are equivalent:

(1) Fer I, B]_(F]_), . Bn(Fn) — \/siBl(Dl(SEI.)) VANPAN \/San(Dn(Sq));

(2): for alli € N, Fgr Bi(Zi) — Bi(Di(s)) for somes € S,

whereE = {(i1,...,im) € E i1 =i} U{e} andF = {(i1,....,im) € F i1 =
it U {e}.

Since the disjunction before; @;(s)) is dropped in (2), statement (2) asserts
the derivability of a particular decision and is more specific than (4.6). Also, this

5 We may restrict the set of players into a subseNofThat is, some players reach decisions but
the others do not. Especially, there are various possibilities for the latter players. In this paper, we
do not go deep into this problem.
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becomes the form of (4.4) and enables us to look into plajgethought. This
problem is the subject of Section 8.

In the following, we focus on the provability of thought sequents of the form
(4.6) rather than (4.7).

4.3 Examples of admissible proofs and minimal inferential epistemic structures

In the definition of a proof in Gk, F appears in P5, whilg appears in P1. That
is, the outer B[- - -] in a proof P is constrained by, and the entire description
of the proofP is constrained bye. For example, consider the thought sequent
B1(I1) — Bi(di(s11)) = Be[B1({1) — Bi(di(s11))], wheredi(s11) € 1. Here,
player 1 has his belief s includingdi(s11), i.e., 1 has the basic belief that his
first strategy is a default decisio®ne possible proof for the sequent(B;) —
B1(di(s11)) is as follows:

B1[d1(s11) — di(s11)]
Be[B1(d1(S11)) — B1(di(S11))]
Be[B1(I1) — Ba(di(s12))]

This is an admissible proof wheh = F = {¢, (1)}, but is not wherE = {e, (1)}
andF = {e}. However, B[B1(di(s11)) — B1(di(s11))] is an instance of the axiom
in GL{c 1)3{e}- This implies that

Be[B1(di(s11)) — Bi(di(s11))]
Be[B1(I1) — B(di(s12))]

is an admissible proof in Gl (1y;{c}- Thus, B(/1) — Bi(di(s11)) is provable
both in Glycwy{e,wy and Gl ape-

The above examples state that the same sequent is obtained by proofs with
different interpersonal epistemic depths. The proof of (4.8) has the redundancy
in the investigator's thought about player 1's thought, while that of (4.9) has
no redundancy in that sense. This inferential epistemic struéture{e} gives
important information for the sequent;@1) — Bi(di(s11)). E.g., the above
implies that any inferential structufe (as well asE O F) works for the sequent
B1(/1) — Bi(di(s11)). In general, it may be the case that a sequent has very
complex descriptive epistemic structliebut it requires only a small inferential
epistemic structur€ . To reflect this difference, we consider a minimal inferential
epistemic structuré .

Let a thought sequerdt — © be given. We say thd is minimal for I" — ©
iff Fer I' — © and¥ge I' — O for any epistemic structure’ & F. Consider
the above sequent;B1) — Bi(di(s11)): Inferential epistemic structuré = {e}
is minimal for By(/1) — Bi1(di(s11)). Thus, the derivation of a default decision
from the assumption of the same does not need the logical reasoning of player 1
Nevertheless, player 1 is conscious of the pure default decision, which requires
E to contain (1). This is the argument on the default decision making mentioned
in Section 1.

(Th)

(Th) (4.9)
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The proof given in (4.1) holds for = 1, 2. Abbreviating the outer B- - ],
we have

Fer Bi(G1) — Bi(Domi(s2)), (4.10)
whereE; = F; ={¢, (i)} fori =1, 2. In fact, we can prove that thi5 is a unique

minimal inferential epistemic structure for; @) — Bj(Dom(s2)). Similarly,
we have, fori =1 2,

Fer Bi(G) — —Bi(Dom (s1)). (4.11)

In fact, this needs a slightly more complicated proof than (4.10). Indirectly, this
provability itself can be seen as follows: In a similar manner as (4.1), we have
Fer Bi(3l) — Bi(-Dom(s1)). Then (4.11) follows from this and the fact that
Fer Bi(—A) — —B;(A) for any formulaA with 6" (B;(A)) C E;. This follows:

Bi[A— Al
B[-AA— ]
Bi(=A), Bi(A) —
Bi(—A) — —Bi(A)

(=-)

(Bi — Bj).

(=)

We give one more example of a provable sequent. Bt {¢, (2),(2,1)}
andF; = {¢, (2)}. From (4.10), we have, by (Th)

Feor, B2(32), B2B1(37) — Ba(Domy(sz2)). (4.12)

This E, is needed for this sequent, while& = {¢, (2)} is a unique minimal
inferential epistemic structure.

Now, consider the decision criterid#i? for player 2 Similar to the derivation
of (4.10), we have

B2B1[§% — Domy(s12)]
B2[B1(j%) — B1(Domy(s12))]
B2[B1(3%) — V, Bi(Domy(s1))]
B2B1(9%) — Ba(V/¢, B1(Domy(s1)))

ThUS, fOsz = F2 = {6, (Z)v (2, 1)}7

(B1 — B1)

(= V).

(B2 — B»)

Fe,F, B2B1(35) — B2 (\/ Bl(Doml(sl))> : (4.13)

Bl

That is, player 2 predicts that 1 can choose some decision following DC1. In
addition, 2 can predict what 1 would choose. That is, the following hejg,
B2B1(32) — B2B1(D}(512)) andbe,r, B2Bu(33) — Ba(-By(Di(s10))). It follows

from these that

FeaF, B2(33), B2B1(3%) — B2 </\ (B1(Domy(sy)) O Besh(sz | Sl))) :
B (4.14)
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That is,sy; is a best strategy to whatever 1 would choose. Combining (4.13) and
(4.14), we obtain

Fear, B2(95), B2B1(35) — Ba(D3(s22))- (4.15)

Hence, player 2 derives his decisisgy satisfying decision criterion DC2 from
B2B1(3%) UB2(33). For this,E; andF, must be{e, (2), (2, 1)}.

Finally, consider the default decision criteric#®. For example, suppose
that player 1 has the beliefs on the gagieof Table 1 and that he has the belief
that his default decision is;; and nots;,. In this case, the question is what
andF are required in order to prove the thought sequent

B1(g"), B1(di(S11)), B1(—di(S12)) — B1(dy(S11)). (4.16)

Sinced(A) = {(1)} for eachA in this sequentthe minimumE must be{e, (1)}.
On the other hand, the thought sequent of (4.16) is a special case of the endse-
guent of (4.8). Thus the minimal inferential structlrefor the sequent of (4.16)
is {e}.

To discuss the minimality of an inferential structure and its game theoretical
applications, we need various meta-theorems, which will be given in Section 6.

4.4 Cut-elimination theorem

The relation between the sequent formulation of"'Kéhd the above Gl is as
follows. The sequent formulation of KDis obtained by imposing no restrictions
on admissible formulae and on admissible proofs. Specifically, we delete all the
outer BJ[---] from all the thought sequents in the axiom and inference rules,
where all formulae are taken simply from”. This sequent calculus KDis
standard in the logic literature, which corresponds to the sequent form of KD4
briefly mentioned in Kaneko [4].

We have a more accurate relationship to 'Kvhich is due to Kaneko and
Suzuki [7].

Theorem 4.2 (Relation to KD"). Let I" and © be finite sets of formulae, and
let E be any epistemic structure witi{I"U &) C E. Then-kpr I' — © if and
only if begg I' — 6.

The following theorem is the key-theorem for gl

Theorem 4.3 (Cut-Elimination). If Fgg Bg[I" — O], then there is a cut-free
proof P of Bg[I" — ©] in GLgr.

This is also mentioned in Kaneko and Suzuki [7]. A proof of this theorem is
obtained by modifying and simplifying the proof of the cut-elimination theorem
for the infinitary predicate logic G}.in Kaneko and Nagashima [6]. Theorem 4.3
will be one of the key theorems to investigate interpersonal epistemic inferential
complexities, in particular, minimalities of inferential epistemic structures.
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5 Prediction-decision criteria

In this section, we give a general definition of a prediction-decision criterion, and
also look at how the previous prediction-decision criteria are formulated within
our general definition.

A prediction-decision criterior] = {Di(s) : s € S} for playeri is defined
based on @rediction criterion &/ and avaluation criterion.#2; of actions. These
are given as follows:

(1): A ={Prgj(s) :s5 € § andj € N —{i }}, where each Pigs) is a formula
indexed byi,j (j #i) ands € §.

(2): 2 ={Res(s |s-i):s €S ands_; € S_;}, where each Re | s_;) is
a formula indexed by, s € § ands_; € S ;.

The first one,=#?, describes player’s prediction about other players’ choices,
and the second oneg; , does the valuations of responses to predicted strategies.
In the following, we denote/\j#i Pre;j(s) by Pre(s_i), which means thas_; is

an ( — 1)-tuple of predicted strategies by playierBased ons and.72;, the
decision criterionZ = {Di(s) : s € S} is defined as follows: fog € S,

Di(s)=\/Pre(s_i) A /\ (Pra(s_i) D Res(s | si)). (5.1)

S_j S_j

Here,\/s . and/\s . are abbreviations of/; g . and/\; g .. The definition

(5.1) states that playdr has a prediction about what the other players would

choose and his decision is an appropriate response to the predicted strategies
Now, we look at how (5.1) captures the examples of prediction-decision

criteria discussed earlier. Those examples except the last two are for 2-person

games. In the following, IePi?(g) =Tfors e§ (j #i).

DCL: ConsiderZ! = {Dom(s) : s € S}. Dom(s) is equivalent to, in classical
logic (i.e., Glyey{e})s

\/ PPs) A APJ(s) D Best(s | 5)).
S S

Note thats_; is the same as becauseN = {1,2}. Hence, %! is regarded as a
special case of (5.1).

DC2: This is given by (3.3) a? = {\/, B;(Dom (s)) A A (B;(Dom(s)) O

Besi(s | 5)) : s € S}. In this case,#? = {Bj(Dom(s)) : 5 € §} and
f={Best(s |§):s €S ands € §} (j #i).

DCO: The pure default decision criterio@;0 ={di(s):s € S} can be formu-
lated as\/ P(s) A As (P(s) D di(s)) fors €§.

DC20: The dogmatic prediction decision criterion is given ag2° =
{V% B (di(5)) A /\Sj (Bj(di(s)) D Best(s | 5)) : s € S}. In this case, the
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prediction criterion is given as/#?° = {B;(di(s)) : 5 € §} (i # i), and the
valuation criterion is#22. To make this criterion effective, playérneeds some
beliefs about playej’s default decision.

vN(Maximin): In the non-formalized language, the maximin decision criterion
fori =1 is described as a strategymaximizing min, g1(S1, s). This is equiv-
alent to that for anys, € S andt; € S, there is anothet, € S such that
Pi(s1, s : tg,t2) holds. This is described as the following formula:

/\ /\ \/ Pi(s1, & @ ta, t2).
S th b

Hence the maximin decision criterion is given%f” = {Df'\‘(si) 'S €S} =
{/\Sz /\tl \/Iz Pi(s1,s @ t1,1) : 51 € §}. Each Df'\‘ (1) is further equivalent to

Ve, Pas2) A A, (PE(S2) D Ay, V4, Pa(s1, % : ta, 1)), which is a special case of
(5.1). The criterion for player 2 is formulated in a symmetric manner.

Consider the hierarchical decision criterion HDC and negative prediction
criterion NPC in the 3-person case:

HDC: We define the prediction criteriog™ = {Pré](s) : § € § andj = 2,3}
of player 1 as follows:
(1): Prel(s2) = BV, (P2:(s1)AB3(Doms(ss))) A

As_,(P21(s1)AB3(Doms(ss)) O Besh(s; | s-2))) for all s, € S;
(2): Prély(ss) = P(ss) = T for all s3 € S, i.e., 1 does not predict 3's choice
Now, Z1 = {DH(s1) : sy € S} is given as
(3): V_,Pref (s-1) A Ag_,(Pré!(s_1) D Best(s: | 5-1)),

where Pré(s_;) = PrdL(s)APrély(ss). Thus, HDC is a special case of (5.1).

Notice that PrE,(-) is also taking the form of (5.1). That is, we would find a
structure parallel to (5.1) in the prediction criterion. This parallelism will be
discussed in Section 8.

NPC: We define the prediction criteriog;" = {Pre;(s) : 5 € § andj = 2,3}
as
(1): Préj(s) = Bj(Und(s)) for§ € § andj # 1

That is, player 1 predicts that playemwould play a undominated strategy. Then
each formula inZN = {DN(s;) : &1 € S} is given as

(2): Vs_Pré!(s-1) A A\g_,(Pré(s_1) D Best(s; | s_1)).

6 Various meta-theorems

In this section, we provide various meta-theorems to be used in the logico-game
analysis of decision making. The reader who is interested only in the game
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theoretical results can skip this section. The first two theorems are proved in
Kaneko and Suzuki [8] in the model-theoretic manner, and the others are proved
in Kaneko and Suzuki [9] in the proof-theoretic manner.

Let S be a subset oN U {0}, andA a formula in=°. We say thatA is an
S-formula iff

) e=(iy,...,im) €0"(A) andm > 1 imply i; € S;
(i) € € 0" (A) implies O S.

For example, BB1(Domy(sy)) is a {2}-formula. Any {0}-formula is nonepis-
temic.
We have the following separation theorem.

Theorem 6.1 (Epistemic separation). LetS,, ..., S be disjoint nonempty subsets
of N U {0}. Let I; be a finite set ofS-formulae andA; an S-formula for

t = 1.,k Also, we letE = {(i1,....,im) € E : i1 € S} U{e} andF; =
{(i1,..,im)eF:ipeS}tU{e} fort =1, ... k.

(1): Suppose thaf: is consistent fot = 1,.... k. Thentge I1,....1x — AL A
. ANAcifand only if Fge, It — A forallt =1, ... k.

@) Fer In, .. Ik — ALV ...V A ifand only if g, It — A for some
t=1 ..k

We need to evaluate the provability of sequents such gdiB —
Vs Bi (Di(s)) of (4.6). For this purpose, the next theorem is provided.

Theorem 6.2 (Epistemic digunction). Let I" be a finite set of formulae anl a
finite nonempty set of formulae. Thene Bi(I7) — VBi(®) if and only if Fge
Bi(I7) — Bj(A) for someA € &.

The if part is proved with & \/). The only-if part is essential here. It can
be proved using the cut-elimination theorem. However, Kaneko and Suzuki [8]
proved Theorem 6.2 using model-theoretic surgical operations.

Using Theorems 6.1 and 6.2, we can prove Theorem 4.1.

Proof of Theorem 4.1. The derivation of (1) from (2) is straightforward. Con-
versely, suppose (1). Therer Iy, Bi(11), ..., Ba(Ih) = T A (Vg B1(D1(s1))
A+ A (VgBn(D(sn))). By Theorem 6.1.(1), we havegr Bi(l1) —
Vs Bi (Di(s)) for eachi € N. Then, by Theorem 6.2, we have (2). O

Here, we give another theorem and two more lemmas, which will be used for
evaluations of an inferential epistemic structérdor a given sequenfProofs of
them are given in Kaneko and Suzuki [9].

Theorem 6.3 (Epistemic inferences). Let I" be a finite set of formulae andl a
formula.

Q): If Fge Bi(I') »  orkge — Bj(A), then {) € F.
(2): If Fer Bi(I") — Bi(A) andA ¢ I, then () € F.
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(3): Let F be a minimal inferential epistemic structure for(B) — B;(A). Then
A e I'impliesF = {€}.

(@): If F = {e} andFee Bi(I)) — Bi(A), thenAe I

To exemplify how this theorem and the next two lemmas are used, we con-
sider the thought sequent — B,Bi(p D p), wherep € AF. It holds thattgr
— ByBi(p D p), whereE = F = {¢,(2),(2,1)}. Let us see the minimality
of F = {¢,(2),(2,1)} for — B,B1i(p D p). Applying Theorem 6.3.(1) to this
thought sequent, we have (2)F. It remains to show (21) € F. For this step,
the following two lemmas are useful.

Lemma 6.4. Consider a thought sequent(B) — B;(©) with |0 < 1. If Fgr
Bi(I") — Bj(®) and {) € F, thentge Bi[I" — O].

For an epistemic structuré and {) € E, we writeE_; = {e:iocec E}.
ThenE_; is also an epistemic structure. For example, wken {¢, (2), (2,1)},
we haveE_, = {e, (1)}.

Lemma 6.5. Let (i) € F. Thentge Bi[I' — O] ifand only if Fe_r_, I' — O.

Let us return to the minimality of = {¢, (2),(2,1)} for — BBi(p D p).
By Lemma 6.4, we havégs B[ — Bi(p D p)]. By Lemma 6.5, we have
Fe ,r, — Bi(p D p). Again, by Theorem 6.3.(1), we have (&)F_, which
implies (21) € F.

7 Minimal inferential epistemic structures

Theorem 4.1 guarantees that we consider separately the provability of an indi-
vidual statement:
Fer Bi(Zi) — Bi(Di(s)). (7.1)

We evaluate a minimaF; for this sequent. In fact, Theorem 6.3 already gives
some information about a requirdg. WhenD;(s) ¢ I;, we have () € F;.
Here, we consider the previous examples.

DCL: Recall (4.10), i.e.rgr Bi(3) — Bi(Dom(s2)), whereE; = F; = {¢, (i)}
This F; is a unique minimal one for this sequent. Indeed, since D&M ¢ g,
we have () € F; by Theorem 6.3.

DC2: Recall (4.15), i.e.lg,r, B2(32),B2B1(32) — Ba(D2(sz2)), WhereE, = F, =
{¢,(2),(2,1)}. In this casef, is a unique minimal one. Here, we give a proof
for this fact, which needs some steps.

Let F, be any epistemic structure for which (4.15) holds. By Theorem 6.3.(2),
we have (2) F». It remains to show (2L) € F». Applying Lemma 6.4 to (4.15),
we have

l_Eze BZ[.@; Bl(.&%) — DZZ(SZZ)L
and then, by Lemma 6.5,
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e 35 B1(37) — Di(s22),

whereE_, = {e: 2oe € Ep} andF_, = {e: 20 e € F,}. SinceD3() =
V¢, B1(Domy(s1)) A Ag (Bi(Domu(sy)) O Besb(szz | s1)), we have

Fe_oF_, §5,B1(32) — \/ Bi(Domy(sy)).
S

This implieste_r_, 35, B1(95) — L v \/Bi(Domy(sy)). By Theorem 6.1,
we havete r , §5 — L or be_,_, Bi(3]) — \/Bi(Domy(sy)). Since g5
is consistent, the latter is the case. Then, by Theoremrg:2r_, B1(§2) —
B1(Domy(sy)) for somes;. Since Dom(s)) ¢ g2, we have (1)e F_,, which
implies (2 1) € F».

Undecidability with DC2 and F; = {e, (2)}: If we assumer; = {€, (2)}, then
we can prove the following unprovability results:

(U1): Fg,r, B2(33),B2B1(92) — Ba(D2(2));
(U2): ¥g,r, B2(3),B2B1(52) — Ba(—D2(:2));
(U3): ¥k, B2(3),B2B1(92) — —Ba(D2(s22)).

Fact U1 follows the minimality of¢, (2), (2, 1)} for the sequent. Facts U2 and
U3 can be proved in various mannérdhese differ in the positions of the
negation symbot: U2 states that player 2 himself cannot readdZ(s,,) (from
the viewpoint of the investigator), but U3 that the investigator does not derive
from By(33),B2B1(3%) that 2 does not believB2(s,2). By these three facts, we
have the conclusion that player 2 cannot rationally decide whether or not he could
reach a decision with criterion DC2 without reading player 1's mihavill be
shown in Section 8 that these unprovabilities can be stated from the viewpoint
of player 2

The above undecidability results U1, U2 and U3 hold even if we change
gameg? to g* and keep criterion DC2 witk; = {¢, (2), (2, 1)} butF, = {¢, (2)}.
In this case, however, if player 2 switches his criterion back to criterion DC1,
then he could make a decision §# without reading 1's mind.

The above considerations are paraphrased in terms of inferential complexities.
In gameyg?, decision criterion DC1 gives a decision, but in gagigit is incapable
of giving a decision to player.2A remedy for this incapability is to change
DC1 to DC2 including the prediction over player 1's decision. However, this
remedy requires a deeper inferential complexity of interpersonal introspections,
i.e., player 2 need to read player 1's mind.

6 One proof of U2 is as follows: Let be the B-eliminating operatar, i.e., A is obtained from
formulaA by eliminating all occurrences ofjB...,By in A. Then it can be proved thattifeg I — O,
thentycy 1y eI — €6. Now, suppose the sequent of U2 is provable. We apply the above result to
the sequent of U2, and obtain .y ¢} §3, 52 — —DZ(sz2). This is impossible. U3 can be proved in
the same manner.
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Although we do not repeat paraphrastic interpretations like the above para-
graph, it would be helpful to think about the arguments in the subsequent sections
with the above paraphrastic manners.

Let us see minimal inferential epistemic structures in situations with other
prediction-decision criteria.

DCO: Default decision criteriorZ° is derived from a dogmatic belief on default
decisions. Suppos#(s11) € [1. Then it is proved in (4.8) thatg,r, B1(I1) —
B1(di(s11)). By di(s11) € I1 and Theorem 6.3.(2F1 = {¢} is a unique minimal
inferential epistemic structur@here is no subtlety in criterion DC0O. However,
we meet some subtlety when we use DCO for the prediction criterion for player
2.

DC20: Let I'T = {di(S11), ~d1(S12)}- Then we have the following:
Feor, B2(45), BaB1(IT) — Ba(D3(s20)), (7.2)

whereE; = F;, = {¢,(2), (2,1)}. ThisF; is a unique minimal one for this sequent.
From the above argument for DC{x, (2)} might be expected to be a minimal
one for (7.2), but actually, it is not. Let us explain the subtlety involved in (7.2)
with I7.

Suppose that player 2 assumes that 1 has the beligiiset{d;(s:1)} rather
thanI¥. In this case, (7.2) breaks down, i.e.,

¥er, B2(33), BaB1(I5) — Bo(D2%(Sp1)). (7.3)

This thought sequent is unprovable whatekglis. This unprovability is caused
by the fact that 2 has no beliefs on strategyin B,1(/7), while s, is taken into
account in decision criteriof/;%°.

From the viewpoint of player 2we need to assume that 2 believes that 1
does not think abowd;,. This is formulated agB,B;(di(s11)), B2—B1(di(s12))}
rather than BB(IT). If this is assumed, we have

FeoF, B2(75), {B2B1(d1(S11)), B2-B1(d(s12))} — B2(D3°(sz0)). (7.4)

whereE; = {¢,(2),(2,1)} andF; = {¢, (1)}. Indeed, thisF, is a minimal one
for this thought sequent, which can be shown in the same way as in the case of
DC2.

In (7.2), player 2 needs to infer, from his belief &b being not a default
decision, that player 1 does not believe tlsgt is a default decision. In this
inference, we use Axiom D, which is expressed as the possible emptinéss of
in the distribution rule (B— B;). On the other hand, the result of this inference
is assumed in (7.4). Thereforg; for (7.4) is smaller tharkr, for (7.2).

vN (Maximin): This has a similar epistemic status to DCL1 in that both require
only E; = {¢,(i)}. However, vN differs from DCL1 in being capable of recom-
mending a decision fany game. Lely = (g1, g2) be any game. Then it holds that
for some strategg € S, Fer Bi(3i) — Bi(D'N(s)), whereE; = F; = {¢, (i)}
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This F; is a unigue minimal inferential epistemic structure for this sequent. In-
deed, sincdd?’N(s) ¢ gi, we have {) € F; by Theorem 6.3.

Here we consider the prediction-decision criterion NDC for the location game
h = (hy, hy, h3), and postpone considerations of the hierarchical decision criterion
HDC to the next section.

NPC: In this case, we have the following:
Fe,r, B1(hy), B1B2(M2), B1B3(hs) — B1(D} (s11)), (7.5)

whereE; = F1 = {¢,(1),(1,2),(1,3)}. This states that player 1 would choose
“open his store”s;;, predicting that 3 would choosses, as an undominated
strategy and 2 would choose eith®g or s, also as an undominated one.

The inferential epistemic structufe, = {¢, (1), (1, 2), (1, 3)} is minimal for
the sequent of (7.5). Indeed, this minimality is shown in the same manner as in
DC2.

8 Transitions of the viewpoint and inner parallelisms

In this section, we consider further reductions of decision statement (7.1), i.e.,
Theorem 4.1.(2). Up to now, we have kept our considerations of prediction-
decision making from the viewpoint of the investigator (observer). However,
before the investigator comes to his own viewpoint, he takes the viewpoint of
each playei as if he were player. In general, the transition of the viewpoint
from playerin, to in_1 (or to the investigator ifm = 1) occurs in the epistemic
distribution rule:

,im)[A — @]
B(i1,--~7im71)[Bim(A) — Bi,(0)]

.....

(Bi,, — Bi,), where |©] < 1.

In this section, we show that we can take the opposite route to trace this transition
back. In this backward transition, we find a parallel structure to Theorem 4.1.(1),
looking into the inner structures of a prediction-decision criterion. We call this
parallel structure in prediction- and decision-making ianer parallelism. In
Section 8.3, we will consider the implications of inner parallelisms to our basic
assumption on the logical rationality of the players.

8.1 Backward transitions and inner parallelisms

The following are the reduction steps of the backward transitions of the viewpoint
from the outward statement to a statement in a play@mind. By an inner
parallelism, we mean that after one round of the following three steps, another
round of parallel three steps appear in playsrmind.

Step 0: outwardh-person statement from the investigator’'s viewpoint —
Th.4.1.(1);
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Step 1: outward individual statement from the investigator's viewpoint —
Th.4.1.(2);

Step 2: individual statement from playes viewpoint — Th.8.1.(2) & (3);

Step 3: inner statement in playiés mind — Th.8.4.

Although the first theorem is an immediate consequence of Lemmas 6.4 and 6.5,
it is worth mentioning for the understanding of our problem. In the following,
we make the same setting as those for Theorem 4.1/j.6s, the set of player

i's basic beliefs andz = {Di(s) : s € S} is playeri’s prediction-decision
criterion

Theorem 8.1 (Transitions of the Viewpoint). Let (i) € F;. Then the following
three statements are equivalent:

(1): Fer Bi(Zi) = Bi(Di(s));

(@: Fer Billi — Di(s)];

Q) Fe ik, Ii = Di(s).

HereE_ = (E)_i ={e:iocecE}andF_ =(F)_ ={e:ioecF}.

The first states that the investigator derive@B(s )) from B; (/j), the second
that the investigator recognizes that playehimself derivesD;(s) from his
basic beliefslj, and the third is a restatement of the second by regarding player
i's viewpoint as the investigator’'s. Thus this theorem describes the backward
transitions of the viewpoint. This backward reduction reflects the presumption
that playeri has logically rational in the same sense as in that the investigator’
logical rationality.

Theorem 8.1 can be used to obtain the equivalent unprovability statements
from U1l and U2 of Section 7:

(U1%): Feyr, Bal33,B1(39) — D2(s22)];
(U2): Fe,r, Ba[35,B1(32) — —~D2(2)].

Therefore, Theorem 8.1 implies that it does not matter to take either the
investigator's viewpoint or player’s. Note that U3 of Section 7 is changed
into ¥e,r, B2(32),B2B1(52),B2(D2(s22)) — and then is reduced int&g,r,
B2[32,B1(32), D2(s22) — ]. This is equivalent to U2

Now, we return to the general situation of Theorem 8.1, and look into the
structure ofDj(s), which is now assumed to be given as (5.1), iB.(s) =
\/S_IPre(s,i)/\ /\S_‘ (Pre(s,i) D Res(s | s,i)) . Theorem 8.2 is also immedi-
ate, but is stated explicitly. Recall R(g_;) = /\J- 4 Prey (s)-

Theorem 8.2. Let (1) € Fi. Thentgg Bi(I1) — Bi(Di(s)) if and only if the
following two hold:

(1) FE_iF_i FI — \/S—i Pre(s—i);
@:Fer I = N (Pra(s—i) D Res(s | s-i)).
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Proof. Suppose (1) and (2). It follows from (1) and (2) that¢_r_, I} —
Vs_ Pra(s-i) A As_(Pra(s-i) D Res(s | s-i)),i.e.te r, Ii = Di(s). This
is equivalent to-gr, Bi[Ii — Di(s)] by Lemma 6.5. Then, by (B— B;), we
havelgr Bi(I7) — Bi(Di(s)).

Suppose-gg, Bi([i) — Bi(Di(s)). This is equivalent to—g_¢_, Ii —
Di(s) by Theorem 8.1, i.ete_r_, I} — (\/Sfi Pre(s_i))A /\s,i (Pre(s_i) D

Res(s | s—i)). This implies (1) and (2). O
This theorem states that the investigator deriveéDRs)) from B;i(I;)
if and only if playeri derives, in his mind,\/; Pra(s.i) — — the exis-

tence of predicted strategies for the other player— and/\g  (Pre(s-i) D
Res(s | s-i)) — — the appropriateness of his decisgrto the predicted strate-
gies. In fact, the existence of his predictions has a similar status to (4.7), i.e.,
I5,B1(11),.-,Ba(In) — Vg B1(D1(s1)) A ... A Vg Bn(Dn(sn)). We can regard
(4.7) as the predictions made by the investigator. In the mind of playdayer
i makes a similar prediction. We call this parallel structuraramer parallelism.

To explicate this inner parallelism more, we look into Theorem 8.2.(2). First,
we have the following lemma.

Lemma 83. If (&) Fe_r, i — \/S_i /\#i Prgj(s), then (b)Fe_ r, Ii —
Ni# Vs Prej(s).
Proof. Suppose (a). Let_; be an arbitrary element i8_;. Using successively
(A =) and V), we havere .k, A4 Pre(t) — Vg Prec(s) forall k #1i.
Thenke_ ¢, /\j#iPrej ) — /\j#i \/ﬁ Prej(s) by (— A). Sincet_; is arbitrary
in S.i, we have, by {/ =), Fe_ir_ Vs AjzPrai(s) — A4 \/% Pre;j(s).
Using this conclusion and the supposition of the lemma, we have
Ii = Vs Nj# Prei(s) Vs, Nz Prai(s) = N4 \/s Prej(s)
I = Aja \/ﬁ Prej(s)

(Cut).

O

Unless we assume further structures on the belief send prediction crite-
rion Pre; (), we could not go further than (b) of Lemma 8.3. However, we find
certain natural assumptions di and Prg(s;) from the viewpoint of player.
First, we make the following assumption on the belief Bebf playeri :

I is written asl}o U U B (}), (8.1)
i#
wherel}, consists of nonepistemic formulae ahg is any finite set of formulae
for j #i. Second, we make the following assumption on the prediction criterion

A ={Prgj(§):g €S andj e N —{i}}:
each Prg(s) is expressed asjEPré,} (s))- (8.2)

Here, Prﬁ(sj) may be any formula for # i. For example, the prediction-decision
criterion DC2 takes this form. For simplicity, we assume (8.2) for all players.
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For this reason, (8.2) is not fully satisfied in the consideration of criterion HDC
below, but the modification is straightforward.
Under the assumptions (8.1) and (8.2), (b) of Lemma 8.3 is expressed as

FeiF_; TioU U B; (I3j) — /\ \/ B (Pré} (§))- (8.3)
i# i# S

Now, we have an apparent parallelism between (4.7) and (8.3). That is, (8.3) is
an outward description of prediction makings and is stated as if plawyere the
investigator. An only difference from (4.7) is that playehimself is excluded in
(8.3), since he is predicting what the others would choose. If we have equivalence
between the two statements of Lemma 8.3, then our parallelism is complete. The
following theorem states this equivalence under (8.1) and (8.2).

Theorem 8.4 (Inner parallelism). Assume (8.1) and (8.2), and tha is con-
sistent in Glg_,r_,. Then (b) of Lemma 8.3 is equivalent to (a), which is further
equivalent to that for al] #1i,

Fe_r_, Bj(I}j) — Bj(Prél(s)) for somes € §. (8.4)
Proof. Suppose (8.4) for aJl #i. Thente_¢_, I} — /\j7ﬁi B; (Préj? (s)) for some
s.i € S.. Hencele ¢, Il = Vg, /\j#i B; (Prq-(]? (§)), which is (a) of Lemma
8.3. It remains to show that the (b) of Lemma 8.3 implies (8.4).
Supposee i, It — A4 VsPraj(s). Thenke iz, 17 — VB (Prel(s))
forallj #i. Letk #i be an arbitrary player. Sinde=_r_, FioUUj 4 B; (I3j) —
Ve Bk(Pré (<)) by (8.1) and (8.2), By Theorem 6.1, we have ¢ Bk(lk) —
Vs Bk(Pre(x)). By Theorem 6.2, we havee ¢ By (Iik) — Bk(Prel(s¢)) for
somes € &. Thus, we have (8.4). a

Notice the parallelism between (8.4) and
Fer Bi(Z7) — Bi(Di(s)) for somes € §. (8.5)

Statement (8.4) states that the investigator thinks that pjayan derive Pr%a(q)
from B;(Zjj). Preﬁ(g) means the decision for playérpredicted by playei .
Therefore, this is essentially the samebas ) from the investigator’s viewpoint.
We can repeat another round of Steps 1-3 from (8.4)

8.2 Further reductions

The reduction of decision statements eventually leads us to look into the inner
structure of each prediction-decision criterion. We have started the discourse of
reductions from Theorem 8.1.(1), and now, we can repeat the same discourse
from (8.4). Indeed, applying the argument for Theorem 8.1 to (8.4), we obtain

FEfiFfi BJ [Fll - Préj? (S )]
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if (j)eF_.

The parallelism can be even more explicit if we specify the prediction cri-
terion BJ(PrGﬁ(q)) more. Now, we assume that each }Rqa) is written as
the same form of (5.1), that is, it is defined by another prediction criterion
Z = {Pré(sd) : s« € &} and valuation relation?] = {Reg(s |s-j) :s € S}:

Pré(s) = \/Prd(s.) A \\ (Pré(sj) DRes(s |s)),  (8.6)

where Pri(s ) = A\ Préy(s). We note that Pig(s«) and Ref(s | s ;) are
“subjective” ones in the mind of playdr, and that they may differ from the
“true” Prex(sq) and Regs | s-j).

Now, if (j) € F_;, then (8.4) becomes

ey I — \/Prq'(s,j) A /\ (Prd(s_)) D Res(s | s)), (8.7)

whereE_;j = (E_i)—j andF_; = (F_;)_;. Hence, we can repeat Theorem 8.2,
Lemma 8.3 and Theorem 8.4 for (8.7). This repeating process is summarized in
the steps in the beginning of this section.

The inner parallelism is trivial in our examples of prediction-decision criteria,
except for criterion HDC in the location game LG of Section 2. Here, we look
at HDC briefly.

HDC: First, it holds that

Feur Bi(I1) — Ba(Df (s10), (8.8)

where It = hyUB,(h2)UB,B3(hs) andE; = Fy = {e, (1), (1, 2), (1,2, 3)}. This Fy
is a unigue minimal inferential epistemic structure. However, our present concern
is the deduction of (8.8) into the following:

(al):Fgpr, Bill1 — DY (s10)];
(@2):te_,r_, It — DY (s1).

Thus, the player’s inner viewpoint is regarded as the investigator's. Recall that

DY (sy) is given as\/; Pré!(s.1)A A, (Pré!(s_1) D Best(s; | s-1)). Then
(a2) is reduced into

(bl):Fe_r, In =V, Pré'(s_1);

(b2):Fe_r, 11— Ag_(Pré!(s_1) D Best(si1 | s-1)) — Theorem 8.2.
Then (bl) is further reduced into

(©): Fe_,r_, Ba(hz),B2B3(hs) — Prel(s,) for somes, € S, — Theorem 8.4.

Since Pré(sz) = Bo(V/s_, (P9i(s1) AB3a(Doma(sa)))A A, (P9y(s1) AB3(Domg(ss))
D Besb(s; | s-2)), we can repeat a parallel reduction from statement (c).
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8.3 Basic assumption on GLgr for the inner parallelisms

Here, let us consider basic assumptions for the inner parallelisms. There are
two basic assumptions relevant for them. First, a prediction-decision criterion
in question has an inner parallelism in the sense that prediction about another
player's behavior takes the form of a prediction-decision criterion. This inner
parallelism must be apparent in the previous two subsections. The other is a
basic assumption for epistemic logic &l, which enables us to discuss the
inner parallelisms.

Let (iq,..., ik, ...,im) be any epistemic status k. Recall the basic assumption
that playeri; has the logical rationality same as the investigator’s, which are
reflected in Lemmas 6.4 and 6.5. In fact, this basic assumption is made for any
(imagined) playeiy in (i, ..., ik, -..,im). That is, playefix in the mind ofix_; ...
in the mind ofi; has the same logical rationality as the investigator. Technically
speaking, playeii’s logical rationality is represented by the logic gk«, where
EX={e: (i1,...,i)oe € E} andFk = {e: (i1,...,ix) o€ € F}. If GLg«gx is
regarded as part of Gk, then it describes the logical rationality af in the
mind of ix_; ... in the mind ofi;. On the other hand, if Gk« is considered
alone, it describes the investigator’s logical reasoning. Thus, we have treated the
players even appearing in the minds of players as well as the investigator in the
same manner. This treatment guarantees the inner parallelisms.

9 Further developments

In this section, we give two remarks on further developments of our logico-game
analysis. Specifically, we consider a compound prediction-decision criterion and
a compound one with a last-resort default decision. In Section 9.1, we take the
prediction-decision criteria DC1 and DC2 of Section 2.2 as composing subcrite-
ria, though we can discuss compound criteria in a more general manner. More
extensive treatments will be given in a future paper.

9.1 Compound decision criteria

Suppose that player has decision criteri@Z® and 2. We formulate the new
compound criterion ¢ = {Df(s) : s € S} as follows:

D(s)=Dl(s) vD3(s) foralls €§. (9.1)

This recommends a strategy if at least onest and Z? does it.

Theorem 4.1 holds for the above compound criterigjs. Hence, we can
focus on the individual decision making of playieHere we look at the case of
i =2 Letg = (g1,92) be a two-person game, and let the belief set of player
be given adi(g) = §iUB;(g;), wherei,j =1,2 (i #j). We would like to find a
minimal F,(g) so that
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ek B2(12(9)) — \/ B2(D5(2), (9-2)
S

whereE; = {¢,(2),(2,1)}. A minimal inferential epistemic structuri€,(g) for
(9.2) depends upon gamg When we look at gameg?! or g?, we have the
following result. We omit its proof.

Theorem 9.1 (Minimal epistemic structures in games g* and ¢?).
(1): Let g = g*. The minimalF,(3*) for (9.2) is {¢, (2)}.
(2): Let g = g%. The minimalF,(5%) for (9.2) is {e, (2), (2, 1)}.

In all the previous examples, a minimal inferential epistemic structure for a
sequent is uniquely determined. Here we give one counterexample by considering
the compound decision criterio@, ™ = {DI™N(s)) : s, € S} of Z" and N
for the location game LG, whe®@!N(s;) = D!'(s1) vV D)'(s1) for s; € S;. Then
it follows from (7.5) and (8.8) that

Fer B1(Py), BiBa(Mp), B1Bs(hs), B1BoB(hs) — \/DiN(s1),  (9.3)
S

whereE = {e, (1), (1, 2),(1,3),(1,2,3)} andF is an epistemic structure includ-
ing {e, (1),(1,2),(1,3)} or {e(1),(1,2),(1,2,3)}. We can prove the following
theorem, whose proof is omitted.

Theorem 9.2 (Minimal epistemic structures in location game). There are ex-
actly two minimal epistemic structurésfor (9.3), which ar€fe, (1), (1, 2), (1, 3)}
and{e, (1), (1,2),(1,2,3)}.

9.2 The last-resort default decision

Recall that the gamg* = (¢7, g3) of Table 4 has no dominant strategies and
no Nash equilibria. Then (9.2) does not hold for this game as faéF) =
G3UB1(37) is adopted. The pure default decision criterion can be applied to this
game. However, the following method may be more typical than applying the
default decision directly to this game: First, one considers non-default decision
criteria, and if those criteria give no decisions, then a default is applied. This
idea can be formulated as adding thst-resort default decision to the compound
criterion.

The compound decision criterion ¢ = {DF(s) : s € S} of composing
criteria Zx = {Dik(s) :s € S}, k=1,...,m, is given simply as

DE(s) =Di1(S) V... VDim(s) forall s € S. (9.4)

Composing criteria of4 4, ..., Zn themselves may be compound criteria of some
other composing criteria.

The compound decision criterior® = {D(s) : s € S} with the last-
resort default is formulated as
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D (s)=DF(s) vdi(s) foralls €. (9.5)

This criterion itself is formulated as a compound criterion.

As we needed to assume that the belief set of playecludes some prede-
termined default decision for (4.16), we need some assumption on the belief set
of playeri to make (9.5) workable. The idea of the last-resort default decision
is: if playeri verifies that none of his strategies satisfy any of his non-default
decision criteria, then he would use the predetermined default decsiohhis
idea is expressed as

Bi(-=\/DF(s) 2 di(s1)). (9.6)
S

The antecedent of the inside of Bf (9.6) means the negation of critericr©
for any strategy. Thus; /¢ DE(s) is a key for (9.6).

We assume that the belief ggtof playeri is given as/} (§)U{— V/ DE(s) D
di(s1))} = 3 VU4 Bi (1)U {= V4 DE(s) D di(s))}, where[}; is any finite set
of formulae. Then the derivation of the last-resort default decision is equivalent
to the derivation of the negation of the other criteria. Namely,

Theorem 9.3. Let (i) € Fi. Suppose that BI7) = Bi (73 (9))U {Bi(= V4 DE(s)
D di(s1))} is consistent in GEf,. Then the following two statements are equiv-
alent:

(D: Fgr Bi(Z1) — Bi(di(s));
(2): l_Ei Fi Bi (I;) — By (j \/S DiC (S ))

Thus, playeli uses the default decisiagy if and only if he proves that none
of the other criteria recommends a decision. This equivalence reflects the use of
a default decision in our ordinary life.

The derivation of (1) from (2) needs some steps, but the converse is essen-
tial and is proved below. Either (1) or (2) is stated from the viewpoint of the
investigator but is equivalent to the following statement from the viewpoint of
playeri :

(Q): ek It = = Vs DE(S).

The equivalence between (2) and (3) are guaranteed by Lemmas 6.4 and 6.5.
In the proof of Theorem 9.3 and in the Appendix, we use the following

terminology: asideformula of an operational inference rules one to be changed

in the upper sequent, andpaincipal formula of | is one changed in the lower

sequent. For example, in

r—+0,A BI—-06
ASB,I -6

o)

A andB are side formulae and D> B is the principal formula. When is the

distribution rule
BEOi [F — 9]

Be[Bi (1) — Bi(O)]

(Bi — Bi)a
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all formulae in the upper sequent are side formulae and all in the lower sequent
are principal formulae. Wheh is a thinning (Th) a formula added in the lower
sequent is called #hinning formula.

Proof of Theorem 9.3. We prove that (1) implies (2). Suppose (1). That is,

Fer Bi(@),|JBiBi(15),Bi(=\/D(s) D di(s1)) = Bi(di(s1))-
i#i §

By (i) € F;, we can apply Lemmas 6.4 and 6.5 to this sequent, and have

Fe e G5 (JBi(I), — \/ DE(s) D di(s1) = di(sn).
i# S

By the definition ofgi, g is expressed ag = g U {-A: A € g } with
g N g =0. Also, each formula iry;” and g is atomic. Then we have

Fe_rs g (UBi(h), = \/ DE(s) D di(sa) — di(s1). §i -
j# S

LetA = ngUj#i B;j (I}j) andA = {di(s1)}Ug; . By the Cut-Elimination Theorem
(Theorem 4.3), we have a cut-free prd@fof A, =\/ DE(s) D di(s1) — A
Note thatg; andg;~ consist of atomic formulae with " g~ = 0.
First, we show thatA — A is not provable. Then, by Theorem 6.1, we have
Fe r, G — di(s1),g orte r_, Uj7£i Bi(Z3j) = . The former is equivalent
to Fe_,r_, i — di(s1), which is not the case. The latter is also not the case by
the consistency assumption of the theorem. Therefdfe;+ A’ is not provable
forany A’ C A andA’ C A. For otherwise A — A would be provable by (Th).
Looking at the formulae imA, —\/¢ DE(s) D di(s1) — 4, we find that the
lowermost inference in the prod? is either (Th) or O—). If it is (Th), the
upper sequent igl’, = \/¢ DE(s) D di(s1) — A’ for someA’ C AandA’ C A,
which follows from the conclusion of the above paragraph. We can repeat this
argument until we meet{—). Hence we can assume that for soieC A and
A C A, A=\ DE(s) D di(s1) — A’ is the lower sequent of{—). Then
(>—) is expressed as

A A=\ DE(s) Al di(s) = A
A, =\/g DE(s) D di(s1) —» A

(>—=).

Hencete_ ¢, A" — A',=\/ DE(s) andFe_r_, A’ di(s1) — A" Looking
the latter sequent and applying Theorem 6.1 to this, we ldgiegg) € A'.

Now, consider the former. LeR’ be the subproof of the proof & whose
endsequent is\” — A’,=\/¢ DE(s). Consider the ancestors df(s1) in A’
Sinced;(s1) does not occur ind’, the uppermost ancestor df(s) in A’ is
a thinning formula of (Th) and its descendant is never a side formula of an
operational inference or (BB). Hence, we can delete all occurrences of these
ancestorsgi (s1), from P’. Hence we have
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FEfi F_i Al? — AH? - \/ Dic(s )a
S

whereA” = A" — {di(s1)}. SincedA’ C A=g U Uj 4 Bj(}j) andA” C g, we
have, by (Th)

}_E—iF—i §|+7 U Bj ([;]) — §i7, - \/ DF(S)
i#i S
We havete_r Gi,U;j»Bi(l3) = =V DE(s). This is equivalent td-gr,
Bi(31); U4 BiB; (1)) — Bi(= Vg D°(s)) by Lemmas 6.4 and 6.5. u|

10 Concluding remarks

We have developed a theory of prediction-decision making in game situations.
Each player has a prediction-decision criterion involving only shallow inter-
personal introspections. We have shown that an outward statement on decision
makings for all the players is decomposed into each individual statement, and
that an individual statement has an inner parallelism to the component state-
ments. Therefore, discussions in Section 8 can be used cyclically until the bases
of criteria are reached. We have considered the behavior of minimal inferential
structures in Section 7.

Various examples of prediction-decision criteria are considered together with
some games. These examples would suggest more general treatments of minimal
inferential structures. Compound criteria of prediction-decision criteria suggested
in Section 9 are important examples for further developments, since they depart
considerably from the symmetric treatments of the decision criterion for an in-
dividual player himself and his prediction on other players. As a whole, we
would like to convey the message that our theory enables us to investigate infer-
ential complexities of interpersonal introspections for decision making in game
situations.

We emphasized a broad perspective of new research areas where players have
shallow epistemic interactions with other people. This includes the possibility that
each player has narrow interactions only with relatively few people surrounding
himself, which may be read as being suggested in the location game LG. Par-
ticularly, our theory may provide candidates for a theory or model derived from
individual experiences such as in the inductive game theory of Kaneko and Mat-
sui [5]. Although such areas are in the scope of our theory, we would need more
developments of a systematic procedure.

Another remark is on complexities of intrapersonal reasoning in terms of
informational content. In principle, it would be possible to have such a consider-
ation. This is a topic to which a lot of attentions have been given recently in the
proof-theory literature. Nevertheless, no consensus has been reached, especially,
even on purely finite problems. A general development would be difficult also
in game theoretical contexts, but some special considerations may be possible
since we can often impose special structures on game problems.
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A complexity of intrapersonal reasoning in terms of informational content
seems to be related to tmeimber of initial sequents. For example, consider the
proof given in (4.1), where gamg is replaced by a general 2-person gagnveith
dominant strategg,; for player 1 The proof of B[§1 — Domy(s11)] has|S| x
|S2| number of initial sequents, which reflects the number of verificatios:foto
be a dominant strategy including the comparisons; pfvith itself. In this case,
the premisegy; is treated as stored beliefs and is not counted in the informational
content used. If player 1 has the additional informatiggDomy(s;), then the
informational content of Hg;, \/SlDoml(sl) — Domy(s11)] has becomess,|
under the assumption of no indifferencesgin That is, it suffices for player 1
to check his strategies fixingj;. In a future paper, we will investigate into this
problem of bounded intrapersonal inferences for decision making.

As pointed out in Section 2, criteria DC1 and DC2 are related to the proce-
dure of iterated elimination of dominated strategies (cf., Moulin [10] and Myerson
[11]). The minimal depth of inferential epistemic structure appears to be related
to the number of the rounds for the iterated eliminations of dominated strategies.
However, the method of iterated eliminations of dominated strategies is not di-
rectly a special case of our general definition of a prediction-decision criterion.
To consider this method in our approach, the definition of a prediction-decision
criterion should be modified.

Finally we give a remark on Aumann and Brandenberger [2], who claimed
that common knowledge is not required to have a Nash equilibrium, more specif-
ically, the epistemic depth required to have a Nash equilibrium is at least one.
Their claim was stated in a probabilistic model. We may formulate the essential
part of their claim in our framework. Consider the statemetif - 17,15 —
B1(D1(s1))AB2(D2(s2)), thent ¢ — Nashé,, ), wheret- is the provability rela-
tion of some epistemic logic, say, KDAumann and Brandenberger’s [2] claim
is interpreted as follows: we may find some conditionIgn/>» as well a4, D,
for (x) so that the epistemic depths for these formulae aférdm our point of
view, there are many prediction-decision criteria satisfying thjsfor example,
DC1.

The question of whether or not common knowledge is required for the clas-
sical ex ante) Nash equilibrium argument is not to find epistemic requirement
for (x), but is to find epistemic requirements of the classical Nash equilibrium
argument itself. The latter is discussed in Sections 7 and 8 of Kaneko [4].

11 Appendix: Treatment of Axiom 4

In Kaneko [4], multi-modal epistemic logic KD4is treated as central among
various candidates. On the other hand, we exclude Axiol @) D BB;(A) in

our epistemic logic Gk of shallow depths, i.e., G is of KD-type. It is a
reason for this exclusion that our focus is the consideration of interpersonal intro-
spections but not intrapersonal ones. Nevertheless, it may be a natural question
what would happen if Axiom 4 is included. In this appendix, we argue that the
results given in this paper essentially remain to hold even if Axiom 4 is included.
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The relation of KD to KD" is just an addition of Axiom 4 to KB. On the
other hand, to incorporate Axiom 4 to our gl keeping the basic developments
such as the cut-elimination theorem as well as completeness result, we need to
modify the basic definitions of depths and epistemic structures.

First, we changN <¢ into N<“> = {(iy, ...,im) : i1, ...,im € N,m > 0 and
it #ie1 for t =1,...,m — 1}. Also, we change the concatenatiorto x so that
fore=(i1,...,im), € = (1, .- jk) E N<Z ex€ = (i1, ....im,j2, --» jk) If im =1
andex € = (i1,...,im,J1,.--,Jk) if im # j1. Here, the repetitive occurrences of
the sama is excluded, since Axiom 4 takes care of such a repetition. Then we
changed" into § so thatd is defined by conditions DO-D4 witk instead ofo
for D4. For example§(B1B1(p)) = {(1)} butd' (B1B1(p)) = {(1,1)}. Descriptive
and inferential epistemic structur€&sandF are now assumed to be subsets of
N <> satisfying (3.4). Then the KD4-type G} is defined by the above list of
the axiom and inference rules only with the replacement of the distribution rule

by
Be.i[I, Bi(4) — 6]

- O < i )
BB, (U A) 5 B (O)] (Bi — B;)*, where|©| <1 andi €N

The provability of GLi- is denoted by-g- . In the modified logic GEg, any
formula in I"U © in the upper sequent of (B— B;)* is a side formula, and any
one in B(I")UB;(®) in the lower sequent is a principal formula.

In GL&r, Axiom 4 is realized in the following sense:

Bei [Bi (A) = Bi(A)]
Be[Bi (A) — Bi Bi (A)]

(Bi — B)*

Since we are now using, we have no constraints on the repetitions of Bhat
is, whene = (iy, ...,im) andiy =i, we havee xi = e itself. To see that G
captures Axiom 4, we can show the following: LEtand © be any finite sets
of formulae in=’ andE an epistemic structure with(I" U ©) C E C N<v~.
Then

Fkpar I — © if and only if gz I' — ©, (11.2)

where-gpg- is the provability of KD4' in the sequent form (cf., Kaneko [4],
Section 4.3). This is a variant of Theorem 4.2 for KD4

The cut-elimination theorem (Theorem 4.3) holds forgsLand also, the
semantics for G- has been developed (Kaneko and Suzuki [7] and [8]P/If
is a proof of R[I" — @], then the cut-elimination theorem gives a cut-free proof
P of the same endsequent[B’" — ©]. We emphasize that a cut-free prdef
enjoys thesubformula property that any formula inP occurs as a subformula
also in the endsequent.B” — O] of P.

The changes from G to GLE- may look small. However, Gle is more
difficult to be handled than Gis in considerations of meta-theoretical arguments.
In GLge, for example, Theorem 6.3, Lemmas 6.4 and 6.5 need some additional
assumptions and their proofs become much more complicated. Nevertheless, as
far as formulae are restricted to ones compatible with our restriction to purely
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interpersonal introspections, we can prove that provabilty is equivalent to
FEF-

Theorem 11.1. Let E and F be epistemic structures with C E which are
subsets oN <“>_ and let§"(I"U A) € N<“>. Thenk¢ I' — A if and only if
l_EF I — A

Theif part is automatically implied, but thenly-if part needs a long proof,
which will be given below.

Proof of Theorem 11.1. Suppose-g- I' — A. There is a cut-free prooP of
I' — A'in logic GLE-. Note that sinceP is cut-free, it satisfies the subformula
property that any formula i occurs as a subformula in the endsequént: A
of P.
ThenP may contain some application of B+ B;)* of the following two

types:
Be[A1, Bi(A2) — 64]

Be[Bi (A1 U Az) — Bi(61)]
Biis.....im[A1, Bi (A2) — O1]
By, ...im_0)[Bi (A1 U A2) — B;i(61)]
wheree = (iy, ...,im) @andi = iy. It suffices to find another prod®* of I" — A
where there are no applications of; (B> B;)* of type (A) and every applications
of (B; — B;)* of type (B) has “empty” B(A,). Specifically, we will modifyP
into P* so that we “delete” the type (A)'s and change the type (B)’s into

Bis,....im[ A1, Ao — O1]
im_0)[Bi (A1 U Az) — Bi(01)]

(A): (Bi — B))*,

(B): (Bi — Bi)*,

B (Bi — Bj).

Lyeee

Then we will show thaP* is a proof ofI" — A in logic GLgr.
Sinced" (I' U A) € N<¥>, we have

8" (A) € N<¥> for any formulaA occurring inP. (11.2)

Indeed, consider a formulain any sequent §A — A] in P. By the subformula
property of P, A occurs as a subformula in the endsequént» ©. Hence
oF (A) C N <w>.

Now, consider a particular applicatiop in P, of an inference of the form:

By,....im[A1, Bi (A2) — O1]
[Bi(A1U Az) — Bi(61)]

. 4
n: B (Bi — Bj)".
wheree = (iq, ...,im) andiy, = i. Let Q be the part oP consisting of the ancestor
sequents, with the same outeg[B -], of the upper sequent of. We stipulate
that Q includes the upper sequent gf The uppermost sequent &f is either
(a): an initial sequent §D — D] or (b): the lower sequent of (B, — B.,)*
With im+1 £

First, we list several facts oR, and using these fact® will be modified
into P*.



Bounded interpersonal inferences and decision making 101

(1): First, the succedent of Bg[II — =] in Q does not have a formula of
the form B(A) = B;_(A). Indeed, if= has a formula BA), then its descendant
of occurs as a subformula id; U A, U @1 of the lower sequent of), which
implies we havei(i,ji,...,j¢) € §"(Bi (A1 U A)UB; (©1)) for some [y, ...,j¢), a
contradiction to (11.2).

(2): Consider an initial sequent.E> — D] in Q. ThenD cannot be the form
Bi(A) by (1).

(3): Consider any application’ of (B; — B;)*, in Q, of the form:

;. Be[A1,Bi(A2) — =1]
T Be[Bi (AL U A2) — Bi(Z1)]

(Bi — B~

By (1)1 El = @
Consider an arbitrary occurren¢eof a formula B(A) = B;,(A) in Q.

(4): First, ¢ is not a side formula of any inference. Suppose, on the contrary, that
it is a side formula of some inference rdleLet| be (B — B;) such asy’ of
(2). Then B(A) is in A; U Z1, and we have RA) € A; by =3 = () by (3), which
implies that BB; (A) € B;(A31), a contradiction to (11.2). Note that it may be the
case that is in B;(A2) in the upper sequent.

For any operational inferende we can show in the same manner tli§as
not a side formula of .

(5): The uppermost ancestor &f having the form B(A), in Q is not a principal
formula of (B,., — Bi,.,)*, sinc€im«1 # im-

m+1

(6): By (1), (2), (3),(4) and (5), the uppermost ancestor, having the farih)B
of £ in Q is either an thinning formula of (Th) or a principal formula of; (B>
B;) of the type B, and every descendantéobccurs as BA) in Q.

Now, we replace all occurrences of any formula of the form ofAB =
Bi,.(A) in Q by A. The new part is denoted b9’. Let P’ be the tree obtained
by replacingQ by Q’. Now we show that the paf®’ is correctly constructed
with the inference rules for Gdz. SinceQ’ is affected for a sequent including
a formula of the form B(A). By (4), we need only to consider an applicatign
of (B —B;)*in (3): 1’ is changed into

Be[Ay, A2 — ]

Thus the upper and lower sequents are the same. This is regarded as (Th). Hence
Q' is correctly connected in GI=. The lowermost sequent @’ is:

By,....im[A1U A2 — O].

Hence we have

Bis,....im[A1, A2 — 6]
im_0)[Bi (A1 U Ap) — Bi (©)]

(Bi — Bj).

.....
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In this manner, we change the part of each application of the fpimthe
above way. The resultinB* is a proof ofI" — A in GLgr. O

List of Some Symbols:

N ={1,...,n}: the set of players;
S ={s1,...,S¢ } : the set of strategies of player
g =(g1,...,gn) : @ game consisting of payoff functions, ..., gn;
N < ={(iy,...,im) : i1, ...,im € N andm > 0};
N<“> = {(iy,....im) e N<Y 1i #igg fort =1....m—1};
e : the null sequence;
-,D, A,V : logical connectives;
2’ . the set of formulae;
A, B,C,D; formulae;
Bi (A) : playeri believesA;
gi . the set of preferences expressing payoff funcgan
T:=-pVvp,andLl:-pAp;
0" (A) : the epistemic depths of formuky
E andF : epistemic structures witk C E;
E ={(i1,...,im) € E:ip1 =1}U{e}; andE_i ={(i2,...,Iim) : (i1, ....Iim) € E};
A ={Ac7:0'(A) CE}
I',0, A finite sets of formulae;
@ : a nonempty finite set of formulae;
Bi (@) = {Bi(A) : Ac d};
Be[I' — O] : a thought sequent;
GLegr : epistemic logic of shallow depths;
Fer: the provability relation of Gkr;
Best(s | s-i) : s is a best response ®;
Domi(s) : 5 is a dominant strategy;
Und(s) : s is an undominated strategy;
% ={Di(s):s € S} : a prediction-decision criterion;
A ={Prgj(s):5 € § andj € N — {i}} : prediction criterion of player;
i ={Res(s |s-i):s €S ands_; € S i}:
valuation criterion of player;
PY(s)=T.
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