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Critical Comparisons between the Nash Noncoopera-
tive Theory and Rationalizability
Tai-Wei Hu and Mamoru Kaneko
Northwestern University, Waseda University
t-hu@kellogg.northwestern.edu, mkanekoepi@waseda.jp

Abstract
The theories of Nash noncooperative solutions and of rationalizability intend to
describe the same target problem of ex ante individual decision making, but they
are distinctively different. We consider what their essential difference is by giving
a unified approach and parallel derivations of their resulting outcomes. Our results
show that the only difference lies in the use of quantifiers for each player’s predic-
tions about the other’s possible decisions; the universal quantifier for the former
and the existential quantifier for the latter. Based on this unified approach, we dis-
cuss the statuses of those theories from the three points of views: Johansen’s pos-
tulates, the free-will postulate vs. complete determinism, and prediction/decision
criteria. One conclusion we reach is that the Nash theory is coherent with the
free-will postulate, but we would meet various difficulties with the rationalizabil-
ity theory.

1 Introduction

We make critical comparisons between the theory of Nash noncooperative solutions
due to Nash (1951) and the theory of rationalizable strategies due to Bernheim (1984)
and Pearce (1984). Each theory is intended to be a theory of ex ante individual decision
making in a game, and thus focuses on the decision-making process before the actual
play of the game. The difference in their resulting outcomes has been well analyzed
and known. However, their conceptual difference has not been much discussed. In
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this paper, we evaluate these two theories while considering certain conceptual bases
of game theory and addressing the question of logical coherence of these theories with
them.

We begin with a brief review of these theories. It is well known that Nash (1951)
provides the concept of Nash equilibrium and proves its existence in mixed strategies.
However, it is less known that the main focus of (Nash 1951) is on ex ante individ-
ual decision making. In that paper, various other concepts are developed, including
interchangeability, solvability, subsolutions, symmetry, and values; those concepts are
ingredients of a theory of ex ante individual decision making, though the aim is not
explicitly stated in (Nash 1951). This view is discussed in Nash’s (1950) dissertation
(p. 23) and a few other papers such as Johansen (1982) and Kaneko (1999).1 We call
the entire argumentation the Nash noncooperative theory.2

On the other hand, in the literature, the theory of rationalizability is typically re-
garded as a faithful description of ex ante individual decision making in games, ex-
pressing the common knowledge of “rationality”. Mas-Colell et al. (1995, p. 243)
wrote: “The set of rationalizable strategies consists precisely of those strategies that
may be played in a game where the structure of the game and the player’s rationality
are common knowledge among the players.” This view is common in many standard
game theory/micro-economics textbooks.

The literature exhibits a puzzling feature: Both theories target ex ante individual
decision making, and both are widely used by many researchers. However, their formal
definitions, predicted outcomes, and explanations differ considerably. This puzzling
feature raises the following questions: How should we make comparisons between
these theories? Then, what are their main differences? How would the difference be
evaluated? What are bases for such an evaluation? This paper attempts to answer these
questions.

We formulate the two theories in terms of prediction/decision criteria, which gives a
unified framework for comparisons of these theories. For the Nash theory, the criterion
is given by the following requirements:

N1o: player 1 chooses his best strategy against all of his predictions
about player 2’s choice based on N2o;

N2o: player 2 chooses his best strategy against all of his predictions
about player 1’s choice based on N1o.

1Millham (1974) and Jansen (1981) study the mathematical structure of the solution and subsolutions,
but do not touch the view.

2The mathematical definition of Nash equilibrium allows different interpretations such as a steady state
in a repeated situation (one variant is the “mass-action” interpretation due to Nash 1950, pp. 21-22), but we
do not touch other interpretations (see Kaneko 2004).
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We may say that player 1 makes a decision if it satisfies N1o; however, to determine
this decision, N1o requires a prediction about 2’s possible decisions, which are deter-
mined by N2o. The symmetric form N2o determines a decision for 2 if he predicts 1’s
decisions. In this sense, these requirements are circular. Also, they can be regarded
as a system of simultaneous equations with players’ decisions/predictions as unknown.
In Section 3, we show that the system N1o-N2o characterizes the Nash noncooperative
solution as the greatest set satisfying them if the game is solvable (the set of Nash equi-
libria is interchangeable); and for an unsolvable game, a maximal set satisfying them
is a subsolution.

The rationalizable strategies are characterized by another prediction/decision crite-
rion R1o-R2o:

R1o: player 1 chooses his best strategy against some of his predictions
about player 2’s choice based on R2o;

R2o: player 2 chooses his best strategy against some of his predictions
about player 1’s choice based on R1o.

These are obtained from N1o-N2o simply by replacing the quantifier “for all” by “for
some” before predictions about the other player’s decisions. These requirements are
closely related to the BP-property (“best-response property” in (Bernheim 1984) and
(Pearce 1984)), and the characterization result is given in Section 3.

The above prediction/decision criteria and characterization results unify the Nash
noncooperative theory and rationalizability theory, and pinpoint their difference: It is
the choice of the universal or existential quantifiers for predictions about the other
player’s possible decisions. To evaluate this difference, we first review the discussion
of ex ante decision making in games given in (Johansen 1982). In his argument, a
theory of ex ante decision making in games should describe a player’s active inferences
based on certain axioms about his own and the other’s decision-making. Johansen gives
four postulates for the Nash solution, although his argument there is still informal and
contains some ambiguities.

Our formulation of N1o-N2o may be viewed as an attempt to formalize his postu-
lates in the language of classical game theory. The pinpointed difference between the
two theories clarifies the precise requirements in those postulates to obtain the Nash
theory. One of Johansen’s postulates requires that any possible decision be a best re-
sponse to the predicted decisions, which is violated by the “for some” requirement in
R1o-R2o. His postulates help to clarify N1o-N2o, and vice versa. Nevertheless, his pos-
tulates contain some subtle concepts, which go beyond the language of classical game
theory.

One such concept is “rationality”. In the theory of rationalizability, “rationality” is
typically regarded as equivalent to payoff maximization. In Johansen’s postulates, how-
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ever, payoff maximization is separated from “rationality”, and is only one component
of “rationality”. We also take this broader view of “rationality”; in our formulation,
it includes, but not limited to, the prediction/decision criterion and logical abilities to
understand their implications. This broader view allows further research on decision
criterion (such as the additional principles needed for specific classes of unsolvable
games) and investigations of how players’ logical abilities affect their decisions.

To evaluate the difference further, we go to deeper methodological assumptions:
the free-will postulate vs. complete determinism. The former, stating that each player
has free will, is automatically associated with decision making. The quantifier “for
all” in N1o-N2o is coherent with the application of the free-will postulate between the
players. On the other hand, as will be argued in Section 4, the theory of rationaliz-
ability is better understood from the perspective of complete determinism. Indeed, the
epistemic justification for rationalizability begins with a complete description of play-
ers’ actions as well as mental states, and characterizes classes of those states by certain
assumptions.

As a result, our problem is a choice between two methodological assumptions, the
free-will postulate and complete determinism. This choice is discussed by Morgen-
stern (1935) and Heyek (1952) in the context of economics and/or social science in
general. Based upon their arguments, we will conclude that the free-will postulate is
more coherent with large part of social science than complete determinism. From this
perspective, the Nash theory is preferable to rationalizability.

The Nash theory might be less preferred in that it does not recommend definite de-
cisions for unsolvable games. However, it may not be a defect from the perspective that
it points out that additional principles, other than the decision criteria given above, are
needed for decision making in unsolvable games. A general study of such additional
principles is beyond the scope of this paper, but we remark that many applied works
appeal to principles such as symmetry (which is already discussed in (Nash 1951)) and
the Pareto criterion. As an instance, we will give an argument with the Pareto principle
for the class of games of strategic complementarity in Section 3.1. From a theoretical
perspective, our approach provides a framework to discuss coherence between basic
decision criteria and additional principles.

The paper is written as follows: Section 2 introduces the theories of Nash nonco-
operative solutions and rationalizable strategies; we restrict ourselves to finite 2-person
games for simplicity. Section 3 formulates N1o-N2o and R1o-R2o, and gives two the-
orems characterizing the Nash noncooperative theory and rationalizability. In Section
4, we discuss implications from them considering foundational issues. Section 5 gives
a summary and states continuation to the companion paper.
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2 Preliminary definitions

In this paper, we restrict our analysis to finite 2-person games with pure strategies. In
Section 3.3, we discuss required changes for our formulation to accommodate mixed
strategies.

We begin with basic concepts in a finite 2-person game. Let G = (N, {S i}i∈N , {hi}i∈N)
be a finite 2-person game, where N = {1, 2} is the set of players, S i is the finite set of
pure strategies and hi : S 1 × S 2 → R is the payoff function for player i ∈ N. We assume
S 1 ∩ S 2 = ∅. When we take one player i ∈ N, the remaining player is denoted by j.
Also, we write hi(si; s j) for hi(s1, s2). The property that si is a best-response against s j,
i.e.,

hi(si; s j) ≥ hi(s′i ; s j) for all s′i ∈ S i, (1)

is denoted by Best(si; s j). Since S 1 ∩ S 2 = ∅, the expression Best(si; s j) has no ambi-
guity. A pair of strategies (s1, s2) is a Nash equilibrium in G iff Best(si; s j) holds for
both i = 1, 2. We use E(G) to denote the set of all Nash equilibria in G. The set E(G)
may be empty.

Nash noncooperative solutions: A subset E of S 1 × S 2 is interchangeable iff

(s1, s2), (s′1, s
′
2) ∈ E imply (s1, s′2) ∈ E. (2)

It is known that this requirement is equivalent for E to have the product form, as stated
in the following lemma.

Lemma 1. Let E ⊆ S 1 ×S 2 and let Ei = {si : (si; s j) ∈ E for some s j ∈ S j} for i = 1, 2.
Then, E satisfies (2) if and only if E = E1 × E2.

Now, let E = {E : E ⊆ E(G) and E satisfies (2)}. We say that E is the Nash solution
iff E is nonempty and is the greatest set in E, i.e., E′ ⊆ E for any E′ ∈ E. We say that
E is a Nash subsolution iff E is a nonempty maximal set in E, i.e., there is no E′ ∈ E
such that E ( E′.

Table 2.1 Table 2.2
s21 s22

s11 (2, 2) (1, 1)
s12 (1, 1) (0, 0)

s21 s22

s11 (1, 1) (1, 1)
s12 (1, 1) (0, 0)

When E(G) , ∅, E(G) is the Nash solution if and only if E(G) satisfies (2). When
the Nash solution exists for game G, G is called solvable. The game of Table 2.1 is
solvable. On the other hand, a game G may be unsolvable for two reasons: either
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E(G) = ∅ or E(G) is nonempty but violates (2). For a game G with E(G) , ∅, a
subsolution exists always; specifically, for any (s1, s2) ∈ E(G), there is a subsolution
Eo containing (s1, s2). This Eo may not be unique: The game of Table 2.2 is not
solvable and has two subsolutions: {(s11, s21), (s11, s22)} and {(s11, s21), (s12, s21)}, and
both include (s11, s21).

In Section 3, it will be argued that the Nash solution can be regarded as a theory of
ex ante decision making in games. Here we give two comments about this argument.

First, for a solvable game, the theory recommends the set of possible decisions for
each player, i.e., the set of Nash strategies for him; moreover, the recommendation also
includes the set of predicted decisions of the other player. This means that from player
1’s perspective, E1(G) = {s1 ∈ S 1 : (s1, s2) ∈ E(G) for some s2} describes player 1’s
possible decisions, while E2(G) = {s2 ∈ S 2 : (s1, s2) ∈ E(G) for some s1} is player
1’s predictions of player 2’s decisions. As shown later, predictions about player 2’s
decisions are crucial to determine player 1’s possible decisions from the perspective of
ex ante decision making in games.

Second, the Nash theory does not provide a definite recommendation for decisions
if the game is unsolvable, even if a subsolution exists. Suppose that G has exactly two
subsolutions, say, F1 = F1

1 × F1
2 and F2 = F2

1 × F2
2 with F1

i , F2
i for i = 1, 2. One may

think that the Nash theory would recommend the set Ei = F1
i ∪ F2

i for player i as the
set of possible decisions to play G. However, this is not valid; we cannot find a set E′1
or E′2 such that E′1 × (F1

2 ∪ F2
2) or (F1

1 ∪ F2
1) × E′2 satisfies interchangeability.

Rationalizable strategies: Now, we turn to rationalizability. The pure strategy ver-
sion introduced here is known as point-rationalizability due to Bernheim (1984). We
begin with the iterative definition of rationalizability. A sequence of sets of strategies,
{(Rν

1(G),Rν
2(G))}∞ν=0, is inductively defined as follows: for i = 1, 2, R0

i (G) = S i, and

Rν
i (G) = {si : Best(si; s j) holds for some s j ∈ Rν−1

j (G)} for any ν ≥ 1. (3)

We obtain rationalizable strategies by taking the intersection of these sets, i.e., Ri(G) =⋂∞
ν=0 Rν

i (G) for i = 1, 2; a pure strategy si ∈ S i is rationalizable iff si ∈ Ri(G).
It is shown by induction on ν that Rν

i (G) is nonempty for all ν and i = 1, 2. Also,
each sequence {Rν

i (G)}ν is monotonically decreasing. Because each Rν
i (G) is finite and

nonempty, Rν
i (G) becomes constant after some ν; as a result, Ri(G) is nonempty. These

facts are more or less known, but we give a proof for completeness.

Lemma 2. {Rν
i (G)}ν is a decreasing sequence of nonempty sets, i.e., Rν

i (G) ⊇ Rν+1
i (G) ,

∅ for all ν.
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Proof. We show by induction over ν that the two sequences {Rν
i (G)}ν, i = 1, 2, are

decreasing with respect to the set-inclusion relation. Once this is shown, since S i

is finite, we have Ri(G) =
⋂∞
ν=0 Rν

i (G) , ∅. For the base case of ν = 0, we have
R0

i (G) = S i ⊇ R1
i (G) for i = 1, 2. Now, suppose the hypothesis that this inclusion holds

up to ν and i = 1, 2. Let si ∈ Rν+1
i (G). By (3), Besti(si; s j) holds for some s j ∈ Rν

j(G).
Since Rν−1

j (G) ⊇ Rν
j(G) by the supposition, Besti(si; s j) holds for some s j ∈ Rν−1

j (G).
This means si ∈ Rν

i (G). �

Criterion for prediction/decision making: Our discussion of ex ante decision making
in games begins with a prediction/decision criterion.3 While comparison between the
Nash theory and rationalizability is our concern, some simpler examples of decision
criteria may be helpful. First, utility maximization can be regarded as a decision crite-
rion in a non-interactive context, which recommends the set of decisions maximizing a
given utility function. In game theory, a classical example of a decision criterion is the
maximin criterion due to von Neumann-Morgenstern (1944): It recommends a player
to choose a strategy maximizing the guarantee level (that is, the minimum payoff for a
strategy). In G = (N, {S i}i∈N , {hi}i∈N), let Ei be a nonempty subset of S i, i = 1, 2. The
set Ei is interpreted as the set of possible decisions for player i based on the maximin
criterion. The criterion is formulated as follows:

NM1: for each s1 ∈ E1, s1 maximizes mins2∈S 2 h1(s1; s2);

NM2: for each s2 ∈ E2, s2 maximizes mins1∈S 1 h2(s2; s1).

These are not interactive, since NMi, i = 1, 2, can recommend a decision without
considering NM j, and player i needs to know only his own payoff function. Thus, no
prediction is involved for decision making with this criterion.

A more sophisticated criterion may allow one player to consider the other’s crite-
rion. One possibility is the following:

N1: for each s1 ∈ E1, Best(s1, s2) holds for all s2 ∈ E2;

NM2: for each s2 ∈ E2, s2 maximizes mins1∈S 1 h2(s2; s1).

The criterion N1 requires player 1 to predict player 2’s decisions and to choose his best
decision against that prediction, while player 2 still adopts the maximin criterion. In
this sense, their interpersonal thinking stops at the second level. In the Nash theory and
rationalizability theory, we would meet some circularity and their interpersonal thought
goes beyond the second level.

3A general concept of a prediction/decision criterion is formulated in an epistemic logic of shallow
depths in (Kaneko and Suzuki 2002).



210 Nash theory versus rationalizability

There may be multiple pairs of (E1, E2) that satisfies a given decision criterion.
Without other information than the criterion and components of the game, a player
(and we) cannot make a further choice of particular strategies among those satisfying
the criterion. In the case of NM1-NM2, Ei should consist of all strategies maximizing
mins2∈S 2 h1(s1; s2); that is, Ei is the greatest set satisfying NMi. In the case of N1-NM2,
this should also be applied to player 1’s predictions about 2’s choice: E2 in N1 should
be the greatest set satisfying NM2. We will impose this greatest-set requirement for
Ei in Section 3; this is not a mere mathematical requirement, but is very basic for the
consideration of ex ante decision making, as it will be discussed later.

3 Parallel derivations of the Nash noncooperative solutions and ra-
tionalizable strategies

In this section we give two parallel decision criteria, and derive the Nash noncoopera-
tive solutions and the rationalizable strategies from those criteria. Our characterization
results pinpoint the difference between the two theories. This difference is used as
the basis for our evaluation of these two theories, which comes in Section 4. We give
remarks on the mixed strategy versions of those derivations in Section 3.3.

3.1 The Nash noncooperative solutions

The decision criterion for the Nash solution formalizes the statements N1o and N2o

in Section 1. This criterion, N1-N2, is formulated as follows: Let Ei be a subset of
S i, i = 1, 2, interpreted as the set of possible decisions based on N1-N2,

N1: for each s1 ∈ E1, Best(s1; s2) holds for all s2 ∈ E2;

N2: for each s2 ∈ E2, Best(s2; s1) holds for all s1 ∈ E1.

These describe how each player makes his decisions; when one player’s viewpoint is
fixed, one of N1-N2 is interpreted as decision making, and the other is interpreted as
prediction making. For example, from player 1’s perspective, N1 describes his decision
making, and N2 describes his prediction making.

Mathematically, N1 and N2 can be regarded as a system of simultaneous equations
with unknown E1 and E2. First we give a lemma showing that (E1, E2) satisfies N1-N2
if and only if it consists only of Nash equilibria.

Lemma 3. Let Ei be a nonempty subset of S i for i = 1, 2. Then, (E1, E2) satisfies
N1-N2 if and only if any (s1, s2) ∈ E1 × E2 is a Nash equilibrium in G.
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Proof. (Only-If): Let (s1, s2) be any strategy pair in E1 × E2. By N1, h1(s1, s2) is
the largest payoff over h1(s′1, s2), s′1 ∈ S 1. By the symmetric argument, h2(s1, s2) is the
largest payoff over s′2’s. Thus, (s1, s2) is a Nash equilibrium in G.
(If): Let (s1, s2) ∈ E1 × E2 be a Nash equilibrium. Since h1(s1, s2) ≥ h1(s′1, s2) for all
s′1 ∈ S 1, we have N1. We have N2 similarly.�

Regarding N1-N2 as a system of simultaneous equations with unknown E1 and E2,
there may be multiple solutions; indeed, any Nash equilibrium pair as a singleton set
is a solution for N1-N2. However, the sets E1 and E2 should be based only on the
information of the game structure G. This implies that we should look for the pair of
greatest sets (E1, E2) that satisfies N1-N2.4

The following theorem states that N1-N2 is a characterization of the Nash solution
theory.

Theorem 1. [The Nash Noncooperative Solutions] (0): G has a Nash equilibrium if
and only if there is a nonempty pair (E1, E2) satisfying N1-N2.

(1): Suppose that G is solvable. Then E is the Nash solution E(G) if and only if the
greatest pair (E1, E2) satisfying N1-N2 exists and E = E1 × E2.

(2): Suppose that G has a Nash equilibrium but is unsolvable. Then E is a Nash
subsolution if and only if (E1, E2) is a nonempty maximal pair satisfying N1-N2.

Proof. (0): If (s1, s2) is a Nash equilibrium of G, then E1 = {s1} and E2 = {s2} satisfy
N1-N2. Conversely, if a nonempty pair (E1, E2) satisfies N1-N2, then, by Lemma 3,
any pair (s1, s2) ∈ E1 × E2 is a Nash equilibrium of G.

(1):(If): Let (E1, E2) be the greatest pair satisfying N1-N2. It suffices to show E(G) =

E1 × E2. By Lemma 3, any (s1, s2) ∈ E1 × E2 is a Nash equilibrium. Conversely, let
(s′1, s

′
2) ∈ E(G) and E′i = {s′i} for i = 1, 2. Since this pair (E′1, E

′
2) satisfies N1-N2, we

have (s′1, s
′
2) ∈ E′1 × E′2 ⊆ E1 × E2. Hence, E(G) = E1 × E2.

(Only-If): Since E is the Nash solution, it satisfies (2). Hence, E is expressed as
E = E1×E2 by Lemma 1. Since it consists of Nash equilibria, (E1, E2) satisfies N1-N2
by Lemma 3. Since E(G) = E = E1 × E2, (E1, E2) is the greatest pair having N1-N2.
(2): (If): Let (E1, E2) be a maximal pair satisfying N1-N2, i.e., there is no (E′1, E

′
2)

satisfying N1-N2 with E1 × E2 ( E′1 × E′2. By Lemma 3, E1 × E2 is a set of Nash
equilibria. Let E′ be a set of Nash equilibria satisfying (2) with E1 × E2 ⊆ E′. Then,
E′ is also expressed as E′1 × E′2. Since E′1 × E′2 satisfies N1-N2 by Lemma 3, we
have E′i ⊆ Ei for i = 1, 2 by maximality for (E1, E2). By the choice of E′, we have

4If any additional information is available, then we extend N1-N2 to include it and should consider the
pair of greatest sets satisfying the new requirements.
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E1 × E2 = E′. Thus, E is a maximal set satisfying interchangeability(2).
(Only-If): Since E is a subsolution, it satisfies (2). Hence, E is expressed as E = E1 ×

E2. Also, by Lemma 3, (E1, E2) satisfies N1-N2. Since E = E1 × E2 is a subsolution,
(E1, E2) is a maximal set satisfying N1-N2.�

When G has a Nash equilibrium but is unsolvable, there are multiple pairs of max-
imal sets (E1, E2) satisfying N1-N2. We do not have those problems in NM1-NM2 in
Section 2.3, for which the greatest pair always exists and is nonempty. The reason for
this difference may be the interactive nature of N1-N2, which is lacking in NM1-NM2.

For an unsolvable game G with a Nash equilibrium, there is no single definite rec-
ommended set of decisions and predictions based on N1-N2, even though the deci-
sion criterion and game structure are commonly understood between the players. Each
maximal pair (E1, E2) satisfying N1-N2 may be a candidate, but it requires further in-
formation for the players to choose among them. Thus, N1-N2 alone is not sufficient
to provide a definite recommendation for unsolvable games. Theorem 1 gives a de-
marcation line between the games with a definite recommendation and those without
it.

One possible way to reach a recommendation for an unsolvable game is to impose
an additional criterion, such as the symmetry requirement in Nash (1951). The game
of Table 2.2 is unsolvable, but it has a unique symmetric equilibrium (s11, s21). Hence,
if we add the symmetry criterion, we convert an unsolvable game to a solvable game.

Another possible criterion is the Pareto-criterion. It may work to choose one subso-
lution for some class of games. For example, it is known that a finite game of strategic
complementarity (or super modularity) has a Nash equilibrium in pure strategies, and
under some mild condition, that if it has multiple equilibria, they are Pareto-ranked
(see Vives 2005 for an extensive survey of this theory and its applications). For those
games, when there are multiple equilibria, each equilibrium constitutes a subsolution.
However, when we add the Pareto-criterion, the subsolution which Pareto dominates
the other subsolutions is chosen. Since a finite game version of this theory is not well
known, we give a brief description of this theory in our context.

Assume that the strategy set S i is linearly ordered so that S i is expressed as {1, ..., `i}

for i = 1, 2. Here, S 1 ∩ S 2 = ∅ is violated but is recovered by a light change. We say
that a game G has the SC property iff (1): for i = 1, 2, hi(si; s j) is concave with respect
to si, i.e., for all si = 1, ..., li − 2 and all s j ∈ S j

hi(si + 1; s j) − hi(si; s j) ≥ hi(si + 2; s j) − hi(si + 1; s j); (4)

and (2): hi(si; s j) is strategically complement, i.e., for all s1 ∈ S 1\{`1} and s2 ∈ S 2\{`2},

hi(si + 1; s j) − hi(si; s j) ≤ hi(si + 1; s j + 1) − hi(si; s j + 1). (5)
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Then, the following are more or less known results, but we give a proof for self-
containedness.5

Lemma 4. Let G be a game with the SC property.
(1): G has a Nash equilibrium in pure strategies.
(2): Suppose u-single peakedness, i.e., for each i = 1, 2 and s j ∈ S j, hi(si; s j) has
a unique maximum over S i.Then, when G has multiple equilibria, they are linearly
ordered with strict Pareto-dominance.

Proof. (1): We will use Tarski’s fixed point theorem: Let (A,≤) be a complete lattice,
i.e., any subset of A has both infimum and supremum with respect to ≤. A function
ϕ : A → A is called increasing iff a ≤ b implies ϕ(a) ≤ ϕ(b). Tarski’s theorem
states that ϕ is an increasing function on a complete lattice (A,≤) to itself, then ϕ has
a fixed point. See (Vives 2005, Appendix) and (Cousot and Cousot 1979) for relevant
concepts.

We define the partial order ≤ over S 1 × S 2 by: (s1, s2) ≤ (s′1, s
′
2) ⇐⇒ si ≤ s′i for

i = 1, 2. Then, (S 1×S 2,≤) is a complete lattice. We also define the (least) best-response
function f : S 1 × S 2 → S 1 × S 2 as follows: for i = 1, 2 and s j ∈ S j,

fi(s j) = min{ti : Best(ti; s j) holds}. (6)

Now, f (s1, s2) = ( f1(s2), f2(s1)) for each (s1, s2) ∈ S 1 × S 2. We show that this f is
increasing. Then, f has a fixed point (so

1, s
o
2), which is a Nash equilibrium.

Suppose s j < s′j. Let fi(s j) = ti. By (6) and (5), we have 0 < hi(ti; s j)−hi(ti−1; s j) ≤
hi(ti; s′j)−hi(ti−1; s′j).By (4), we have 0 < hi(ti; s′j)−hi(ti−1; s′j) ≤ hi(ki; s′j)−hi(ki−1; s′j)
for all ki ≤ ti. Thus, hi(ti; s′j) ≥ hi(ki; s′j) for all ki ≤ ti. This implies that player i’s best
response to s′j is at least as small as ti, i.e., fi(s′j) = t′i ≥ ti.

(2): Let (s1, s2), (s′1, s
′
2) be two Nash equilibria with si < s′i . By the monotonicity

of f shown in (1), s j = f j(si) ≤ f j(s′i) = s′j. If s j = s′j, then hi(·; s j) takes a maximum
at si and s′i . This is not allowed by u-single peakedness.�

When an SC game G with u-single peakedness has multiple equilibria, G is un-
solvable by (2). However, if we add one criterion for player i’s prediction/decision
criterion, then we can choose one solution for any SC game with u-single peakedness.
It may be better to state the result as a theorem.

5Intervals of reals are typically adopted for these results. But Tarski’s fixed point theorem is applied for
the existence result in our case, too. In fact we can construct an algorithm to find a Nash equilibrium.
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Theorem 2. Let G be an SC game with u-single peakedness. Suppose that (E1, E2)
and (E′1, E

′
2) satisfy N1-N2. Then, if for i = 1, 2, hi(s) ≥ hi(s′) for some s ∈ E1×E2 and

s′ ∈ E′1×E
′

2, then E1×E2 consists of the unique NE Pareto-dominating all other NE’s.

Thus, one subsolution is chosen by adding the Pareto-criterion to N1-N2.

3.2 Rationalizable strategies

The decision criterion for rationalizability theory, which formalizes the statements R1o

and R2o in Section 1, is given as follows: for E1 and E2,

R1: for each s1 ∈ E1, Best(s1; s2) holds for some s2 ∈ E2;

R2: for each s2 ∈ E2, Best(s2; s1) holds for some s1 ∈ E1.

This criterion differs from N1-N2 only in that the quantifier “for all” before players’
predictions in N1-N2 is replaced by “for some”. In fact, R1-R2 is the pure-strategy
version of the BP-property given by Bernheim (1984) and Pearce (1984). The great-
est pair (E1, E2) satisfying R1-R2 exists and coincides with the sets of rationalizable
strategies (R1(G),R2(G)). A more general version of the following theorem is reported
in Bernheim (1984) (Proposition 3.1); we include the proof for self-containment.

Theorem 3. (R1(G),R2(G)) is the greatest pair satisfying R1-R2.

Proof. Suppose that (E1, E2) satisfies R1-R2. First, we show by induction that E1 ×

E2 ⊆ Rν
1(G)×Rν

2(G) for all ν ≥ 0,which implies E1×E2 ⊆ R1(G)×R2(G). Since R0
i (G) =

S i for i = 1, 2, E1 × E2 ⊆ R0
1(G) × R0

2(G). Now, suppose E1 × E2 ⊆ Rν
1(G) × Rν

2(G).
Let si ∈ Ei. Due to the R1-R2, there is an s j ∈ E j such that Best(si; s j) holds. Because
E j ⊆ Rν

j(G), we have s j ∈ Rν
j(G). Thus, si ∈ Rν+1

i (G).
Conversely, we show that (E1(G), E2(G)) satisfies R1-R2. Let si ∈ Ri(G) =⋂∞

ν=0 Rν
i (G). Then, for each ν = 0, 1, 2, ...., there exists sνj ∈ Rν

j such that Best(si; sνj)
holds. Since S j is a finite set, we can take a subsequence {sνt

j }
∞
t=0 in {sνj}

∞
ν=0 such that

for some s∗j ∈ S j, sνt
j = s∗j for all νt. Then, s∗j belongs to R j(G) =

⋂∞
ν=0 Rν

j(G). Also,
Besti(si; s∗j) holds. Thus, (R1(G),R2(G)) satisfies R1-R2. �

Existence of a theoretical prediction: Theorem 3 and Lemma 2 imply that the great-
est pair satisfying R1-R2 exists and consists of the sets of rationalizable strategies.
Interchangeability is automatically satisfied by construction. In this respect, the ratio-
nalizability theory appears preferable to the Nash theory in that it avoids the issues due
to emptiness or multiplicity of subsolutions. We take a different perspective to reverse
this preference: Difficulties involved in the Nash theory identify situations where addi-
tional requirements other than N1-N2 are required for prediction/decision making. In
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this sense, the Nash theory is a more precise and potentially richer theory of ex ante
decision making in an interactive situations.
Set-theoretical relationship to the Nash solutions: It follows from Theorem 3 that
each strategy of a Nash equilibrium is a rationalizable strategy. Hence, the Nash solu-
tion, if it exists, is a subset of the set of rationalizable strategy profiles. However, the
converse does not necessarily hold. Indeed, consider the game of Table 3.4, where the
subgame determined by the 2nd and 3rd strategies for both players is the “matching
pennies”.

Table 3.4
s21 s22 s23

s11 (5, 5) (−2,−2) (−2,−2)
s12 (−2,−2) (1,−1) (−1, 1)
s13 (−2,−2) (−1, 1) (1,−1)

This game has a unique Nash equilibrium, (s11, s21). Hence, the set consisting of this
equilibrium is the Nash solution.

Both s11 and s21 are rationalizable strategies. Moreover, the other four strategies,
s12, s13 and s22, s23 are also rationalizable: Consider s12. It is a best response to s22,
which is a best response to s13, and s13 is a best response to s23, which is a best response
to s12. That is, we have the following relations:

Best(s12; s22), Best(s22; s13),Best(s13; s23), and Best(s23; s12).

By Theorem 3, those four strategies are rationalizable. In sum, all the strategies are
rationalizable in this game.

This example shows that even for solvable games, the Nash solution may differ
from rationalizable strategies.6 As we shall see later, the game of Table 3.4 becomes
unsolvable if mixed strategies are allowed, while the rationalizable strategies remain
the same.

3.3 Mixed strategy versions

Theorems 1 and 3 can be carried out in mixed strategies without much difficulty. The
use of mixed strategies may give some merits and demerits to each theory. Here, we
give comments on the mixed strategy versions of the two theories.

6When a 2-person game has no Nash equilibria, each player has at least two rationalizable strategies.
If a player has a unique rationalizable strategy, it is a Nash strategy. Moreover, when each player has a
unique rationalizable strategy, then the pair of them is a unique Nash equilibrium. Example 3.4 states that
the converse does not necessarily hold.
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The mixed strategy versions can be obtained by extending the strategy sets S 1 and
S 2 to the mixed strategy sets ∆(S 1) and ∆(S 2), where ∆(S i) is the set of probability
distributions over S i. The notion of Nash equilibrium is defined in the same manner
with the strategy sets ∆(S 1) and ∆(S 2) : Once the Nash equilibrium is defined, the
Nash solution, subsolution, etc. are defined in the same manner. However, the mixed
strategy version of rationalizability requires some modification: A sequence of sets of
strategies, {(R̃ν

1(G), R̃ν
2(G))}∞ν=0, is inductively defined as follows: for i = 1, 2, R̃0

i (G) =

S i, and for any ν ≥ 1,

R̃ν
i (G) = {si : Best(si; m j) holds for some m j ∈ ∆(R̃ν−1

j (G))}.

A pure strategy si ∈ S i is rationalizable iff si ∈ R̃i(G) =
⋂∞
ν=0 R̃ν

i (G).
Requirements N1-N2 are modified by replacing S i by ∆(S i), i = 1, 2;for Ei ⊆ ∆(S i),

i = 1, 2,

N1m: for each m1 ∈ E1, Best(m1; m2) holds for all m2 ∈ E2,

N2m: for each m2 ∈ E2, Best(m2; m1) holds for all m1 ∈ E1.

Notice that N1m-N2m is the same as N1-N2 with different strategy sets. Moreover,
Theorem 1 still holds without any substantive changes.

In a parallel manner, the mixed strategy version of rationalizability can also be
obtained: for Ei ⊆ ∆(S i), i = 1, 2,

R1m: for each m1 ∈ E1, Best(m1; m2) holds for some m2 ∈ E2,

R2m: for each m2 ∈ E2, Best(m2; m1) holds for some m1 ∈ E1.

This is a direct counterpart of R1-R2 in a game with mixed strategies. In this case, a
player is allowed to play mixed strategies. However, in the original version of ratio-
nalizability in (Bernheim 1984) and (Pearce 1984), the players are allowed to use pure
strategies only; indeed, mixed strategies are interpreted as a player’s beliefs about the
other player’s decisions. We can reformulate R1m-R2m based on this interpretation of
mixed strategies: In R1m, the first occurrence of m1 is replaced by a pure strategy in
the support of E1, and R2m is modified in a parallel manner. This reformulation turns
out to be mathematically equivalent to R1m-R2m.

With the replacement of R1-R2 by R1m-R2m in Theorem 3.5, the following state-
ment holds:

Theorem 4. (∆(R̃1(G)),∆(R̃2(G))) is the greatest pair satisfying R1m-R2m.

A simple observation is that a rationalizable strategy in the pure strategy version
is also a rationalizable strategy in the mixed strategy version. Similarly, since a Nash
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equilibrium in pure strategies is also a Nash equilibrium in mixed strategies, it may be
conjectured that if a game G has the Nash solution E in the pure strategies, it might be
a subset of the Nash solution in mixed strategies. In fact, this conjecture is answered
negatively.

Consider the game of Table 3.4. This game has seven Nash equilibria in mixed
strategies:

((1, 0, 0), (1, 0, 0)), ((0, 12 ,
1
2 ), (0, 12 ,

1
2 )), (( 4

18 ,
7
18 ,

7
18 ), ( 4

18 ,
7

18 ,
7

18 ))

(( 1
8 ,

7
8 , 0), ( 3

10 ,
7
10 , 0)), (( 1

8 , 0,
7
8 ), ( 3

10 , 0,
7

10 )), (( 3
10 ,

7
10 , 0), ( 1

8 , 0,
7
8 )), (( 3

10 , 0,
7

10 ), ( 1
8 ,

7
8 , 0)).

This set does not satisfy interchangeability (2). For example, ((1, 0, 0), (1, 0, 0)) and
((0, 1

2 ,
1
2 ), (0, 1

2 ,
1
2 )) are Nash equilibria, but ((0, 1

2 ,
1
2 ), (1, 0, 0)) is not a Nash equilib-

rium. Thus, (2) is violated, and the set of all mixed strategy Nash equilibria is not the
Nash solution. This result depends upon the choice of payoffs: In Table 3.5, (s11, s21)
is a unique Nash equilibrium even in mixed strategies, while all pure strategies are still
rationalizable.

Table 3.5
s21 s22 s23

s11 (5, 5) ( 1
2 ,

1
2 ) ( 1

2 ,
1
2 )

s12 ( 1
2 ,

1
2 ) (1,−1) (−1, 1)

s13 ( 1
2 ,

1
2 ) (−1, 1) (1,−1)

4 Evaluations of N1-N2 and R1-R2

Our unified approach pinpoints the difference between the Nash and rationalizability
theories: the choice of quantifier “for all” or “for some” for each player’s predictions.
Here we evaluate this difference reflecting upon on the conceptual bases of game the-
ory. We take Johansen’s (1982) argument on the Nash theory as our starting point.
Then, we make comparisons between the two theories by considering two methodolog-
ical principles: the free-will postulate and complete determinism. We also consider
multiplicity in prediction/decision criteria and how we should take it in our research
activities.

4.1 Johansen’s argument

Johansen (1982) gives the following four postulates for prediction/decision making in
games and asserts that the Nash noncooperative solution is derived from those postu-
lates for solvable games. For this, he assumes (p. 435) that the game has the unique
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Nash equilibrium, but notes (p. 437) that interchangeability is sufficient for his asser-
tion.

Postulate J1 (Closed World)7: A player makes his decision si ∈ S i on the basis of,
and only on the basis of information concerning the action possibility sets of two play-
ers S 1, S 2 and their payoff functions h1, h2.

Postulate J2 (Symmetry in PD criterion): In choosing his own decision, a player
assumes that the other is rational in the same way as he himself is rational.

Postulate J3 (Predictability): If any8 decision is a rational decision to make for an
individual player, then this decision can be correctly predicted by the other player.

Postulate J4 (Optimization against “for all” predictions): Being able to predict the
actions to be taken by the other player, a player’s own decision maximizes his payoff

function corresponding to the predicted actions of the other player.

Notice that the term “rational” occurs in J2 and J3, and “payoff maximization” in J4.
The term “rational” in Johansen’s argumentation is broader than its typical meaning in
the game theory literature referring to “payoff maximization.” Indeed, He regards these
four postulates together as an attempt to define “rationality”; “payoff maximization” is
only one component of “rationality”. We may further disentangle it using the concept
of prediction/decision criterion, which includes J4 as its component, and the concept
of logical abilities. Then, the above four postulates will be well understood, which is
now discussed.

Postulate J1 is the starting point for his consideration of ex ante decision making.
Postulate J2 requires the decision criterion be symmetric between the decision maker
and the other player in his mind. Postulate J3 requires each player’s prediction about
the other’s decision be correctly made. Postulate J4 corresponds to the payoff max-
imization requirement. In the following, we first elaborate Postulates J2 and J3, and
then use J1-J4 as a reference point for our critical comparisons between N1-N2 and
R1-R2.

Postulate J2 implies that from player 1’s perspective, the decision criterion has to be
symmetric between the two players. In our context, this is interpreted as applied to the
choice of prediction/decision criterion. Both N1-N2 and R1-R2 satisfy this symmetric
requirement. The combination N1-NM2 discussed in Section 2 violates symmetry, and
so does N1-R2, which will be further discussed in Section 4.3.

Postulate J3 is interpreted in the following manner: First, player 1 thinks about the
whole situation, taking player 2’s criterion as given, and makes inferences from this

7The titles of those postulates are given by the present authors.
8This “any” was “some” in Johansen’s orginal Posutlate 3. According to logic, this should be “any”.

However, this is expressed as “some” by many scientists (even mathematicians).
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thinking. Based on such inferences, player 1 makes a prediction about 2’s decisions.
This prediction is correct in the sense that player 1’s prediction criterion is the same
as 2’ decision criterion and 1 has the same logical ability as player 2’s. In this sense,
predictability in J3 is a result of a player’s contemplation of the whole interactive situ-
ation.9 In this reasoning, “rationality” in J3 emphasizes symmetry in players’ interper-
sonal logical abilities, while that in J2 emphasizes symmetry in his prediction/decision
criterion.

Postulates J1-J3 are compatible with N1-N2 and R1-R2. Only Postulate J4 makes
a distinction between the Nash theory and rationalizability theory. If we read Postulate
J4 in light of his assertion that interchangeability is a sufficient condition for J1-J4 to
lead to the Nash solution, we can interpret J4 as adopting “for all” predicted actions of
the other player’s possible decisions.

Johansen (1982) does not give a formal analysis of his postulates. Our N1-N2
may be regarded as a formulation of these postulates in the language of classical game
theory. In this sense, Theorem 1 formalizes Johansen’s assertion that the Nash solution
is characterized by J1-J4. If we modify Postulate J4 so that the “for all” requirement is
replaced by the “for some” requirement, Theorem 3 for R1-R2 would be a result. We
still need to discuss what are bases for the choice of “for all” or “for some”.

4.2 The free-will postulate vs. complete determinism

Here, we evaluate the difference between N1-N2 and R1-R2, based on two conflicting
meta-theoretical principles: the free-will postulate and complete determinism.

The free-will postulate: This states that players have freedom to make choices follow-
ing their own will. Whenever the social science involves value judgements for individ-
ual beings and/or the society, they rely on the free-will postulate as a foundation.10 In
a single person decision problem, utility maximization may effectively void this pos-
tulate.11 However, in an interactive situation, even if both players are very smart, it is
still possible that individual decision making, based on utility maximization alone, may
not result in a unique decision. This is first argued in Morgenstern (1935), using the
paradox of Moriarty chasing Holmes. This is still a central problem in game theory;

9Bernheim’s (1986, p. 486) interpretation of J3 in his criticism against these postulates is quite different
from our reasoning. In his framework, predictability simply means that the belief about the other player’s
action, which is exogenously given, coincides with the actual action.

10The free-will postulate is needed for deontic concepts such as responsibility for individual choice and
also for individual and social efforts for future developments.

11This does not imply that utility maximization even for 1-person problem violates the free-will postualte;
he has still freedom to ignore his utility.



220 Nash theory versus rationalizability

the free-will postulate constitutes an important part of this problem. In this respect, the
free-will postulate still remains relevant to game theory.

Consider applications of the postulate at two different layers in terms of interper-
sonal thinking:

(i): It is applied by the outside observer to the (inside) players;

(ii): It is applied by an inside player to the other player.

In application (i), the outside theorist respects the free will of each player; the theorist
can make no further refinement than the inside player. This corresponds to the great-
estness requirement for (E1, E2) in Theorems 1.(1) and Theorem 3. In (ii), when one
player has multiple predictions about the other’s decisions, the free-will postulate, ap-
plied to interpersonal decision making, requires the player take all possible predictions
into account. N1-N2 is consistent with this requirement in that it requires each player’s
decision be optimal against all predictions.12

Criterion R1-R2 involves some subtlety in judging whether it is consistent with ap-
plication (ii). The main difficulty is related to the interpretation of “for some” before
the prediction about the other’s decision. This leads us to another view, “complete de-
terminism.”

Complete determinism: The quantifier “for some” in R1-R2 has two different inter-
pretations:

(a): it requires only the mere existence of a rationalizing strategy;

(b): it suggests a specific rationalizing strategy predetermined for some other reason.

Interpretation (a) is more faithful to the mathematical formulation of R1-R2 as a de-
cision criterion. If we accept (a), then arbitrariness of the rationalizing strategy shows
no respect to the other player’s free will, but we would not find a serious difficulty
in R1-R2 with the free-will postulate in that R1-R2 is a prediction/decision criterion
adopted by a player. However, this reminds us Aesops’ sour grapes that the fox finds
one convenient reason to persuade himself: For R1-R2, it suffices to find any rational-
izing strategy. This interpretation of “rationalization” is at odds with the purpose of a
theory of ex ante decision-making for games, since such a theory is supposed to pro-
vide a rationale for players’ decisions as well as predictions. Interpretation (a) requires
no rationale for each specific rationalizing strategy.

Interpretation (b) resolves the arbitrariness in (a): According to (b), there are some
further components, not explicitly included in the game description G and R1-R2, that
determine a specific rationalizing strategy. However, a specific rationalizing strategy

12There are many other criteria consistent with the requirement. For example, player 1 uses the maximin
criterion to choose his action against E2. Another possibility is to put equal probability on each action in E2
and to apply expected utility maximization.
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for each step has to be uniquely determined, for otherwise the player would have to
arbitrarily choose among different strategies or to look for a further reason to choose
some of them. Thus, interpretation (b) violates Johansen’s postulate J1.

Interpretation (b) deserves a further analysis, since it is related to complete deter-
minism, which has been regarded as very foundational in natural sciences. To deter-
mine a specific rationalizing strategy, one possibility is to refer to a full description of
the world including players’ mental states; this presumes some form of determinism.
We consider only complete determinism for simplicity. Such a full description in a
situation with two persons may require an infinite hierarchy of beliefs. Indeed, there is
a literature, beginning from Aumann (1987)13, to justify the rationalizability theory or
alike along this line (see Tan-Werlang 1988).

Complete determinism is incompatible with the free-will postulate in that it con-
tains no room for decision; ex ante decision making is an empty concept from this
perspective. From this view, R1-R2 is regarded as a partial description of a law of
causation.

Except for conflicting against the free-will postulate, complete determinism may
not be very fruitful as a methodology for social science in general, which is aptly
described by Hayek (1952, Section 8.93): “Even though we may know the general
principle by which all human action is causally determined by physical processes, this
would not mean that to us a particular human action can ever been recognizable as the
necessary result of a particular set of physical circumstances.”

Complete determinism is justified only because of its non-refutability by withdraw-
ing from concrete problems into its own abstract world. In fact, neither complete de-
terminism nor the free-will postulate can be justified by its own basis. Either should
be evaluated with coherency of the entire scope and the scientific and/or theoretical
discourse.

Our conclusion is that the free-will postulate is needed for the perspective of social
sciences, and complete determinism has no such a status in social sciences. The Nash
noncooperative theory is constructed coherently with the free-will postulate, but the
rationalizability theory meets a great difficulty to reconcile with it.

13In the problem of common knowledge in the information partition model due to Robert Aumann, the
information partitions themselves are assumed to be common knowledge. He wrote in (Aumann 1976,
p. 1237): “Included in the full description of a state ω of the world is the manner in which information is
imparted to the two persons”. This can be interpreted as meaning that the primitive state ω includes every in-
formation. A person receives some partial information about ω, but behind this, everything is predetermined.
This view is shared with Harsanyi (1967/8) and Aumann (1987).
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4.3 Prediction/decision criteria

The characterizations of the Nash and rationalizability theories in terms of predic-
tion/decision criteria are helpful to find their differences as well as to understand Jo-
hansen’s argument and vice versa. However, these characterization results also intro-
duce a new problem: Among all possible prediction/decision criteria, why should we
focus particularly on the Nash theory or the rationalizability theory? Here we consider
a few exmaples of prediction/decision criteria and their resulting outcomes.

Relativistic view: It may be the case that people adopt different prediction/decision
criteria. In addition to N1-N2 and R1-R2, as already indicated, NM1-NM2, N1-NM2
and N1-R2 are also possible candidates, among others. Even restricting our focus to
N1-N2 and R1-R2, it is natural to ask why we avoid a mixture, such as N1-R2, of those
criteria. Moreover, this combination actually generates a different outcome either from
N1-N2 or R1-R2. Consider the game which is obtained from Table 3.4 by changing
the payoffs in the first row and first column.

Table 4.1
s21 s22 s23

s11 (1, 1)NE (1,1)NE (0,0)
s12 (1,0) (1,−1) (−1, 1)
s13 (0,0) (−1, 1) (1,−1)

For this game, we can calculate the greatest pairs (E1, E2) satisfying N1-N2, R1-R2
and N1-R2 as follows:

N1-N2: ({s11}, {s21, s22})
R1-R2: ({s11, s12, s13}, {s21, s22, s23})
N1-R2: ({s11, s12}, {s21, s22})

As soon as we start considering different combinations, they could provide actually
different recommendations.

This relativistic view may turn our target problem into an empirical study of such
criteria in real societies. However, a prediction/decision criterion itself is still an ana-
lytic concept that serves as a benchmark to understand the prediction/decision-making
process in interactive situations. From this perspective, the focus should rather be a
study of the underlying structures and rationales for those criteria; if a criterion is inco-
herent with other bases, people will eventually avoid it. The goal of such study is then
to separate some criteria from others, even if we take the relativistic view that people



Hu and Kaneko 223

follow diverse ways of prediction/decision making. For example, Johansen’s postulate
J2 accepts N1-N2 and R1-R2 but rejects N1-R2 as a legitimate criterion.

This paper analyzes two specific criteria, N1-N2 and R1-R2, taking Johansen’s
postulates and the current game theory literature as given. However, if we enter the rel-
ativistic world of prediction/decision criterion, we may require rationales for the postu-
lates such as J2. A full analysis, which would involve broader conceptual bases for pre-
diction/decision criterion and more explicit study of the underlying thought processes
for prediction/decision making, is way beyond the current research. Nevertheless, Sec-
tion 5 mentions a further research possibility on these problems as a continuation of
the present paper.

5 Conclusions

5.1 The unified framework and parallel derivations

We presented the unified framework and parallel derivations of the Nash noncoopera-
tive solutions and rationalizable strategies. The difference between them is pinpointed
to be the choice of the quantifier “for all” or “for some” for predictions about the other
player’s possible decisions. In Section 4, we discussed various conceptual issues by
viewing the quantifier “for all” and “for some” from the perspectives of Johansen’s
postulates, the free-will postulate vs. complete determinism, and prediction/decision
criteria.

Comparisons with Johansen’s postulates help us well understand our unified frame-
work and derivations. The argument from the perspective of the free-will postulate
vs. complete determinism concludes that the Nash theory is more coherent to social
sciences as a whole than the rationalizability theory. Nevertheless, as a descriptive
concept, it would be possible for some people to use a criterion with “for some” for
their decision making. Reflections upon our approach in terms of prediction/decision
criteria manifest that vast aspects of prediction/decision making in social context are
still hidden.

One such problem is the treatment of the assumption of common knowledge. We
started this paper with the quotation of Mas-Colell and Green (1995) about the standard
interpretation of rationalizability theory in terms of common knowledge. It is also
common to interpret the Nash theory as to require common knowledge of the game
structure. In this paper, the notion of common knowledge or even knowledge/beliefs
remains interpretational. To study the thought process for prediction/decision making
explicitly, we meet new issues and additional framework is necessary. The following
section discusses these issues.
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5.2 Thought process for prediction/decision making

The present paper employs the standard game theory language. In this language,
many essential elements remain informal and hidden, including a player’s beliefs or
knowledge. Those elements are essential for understanding the thought process for
prediction/decision-making. Here we consider only N1-N2, but the argument is also
applicable to R1-R2.

Prediction making (putting oneself in the other’s shoes): N1-N2 is understood as
describing both prediction making and decision making: From player 1’s perspective,
E1 in N1 is his decision variable, while E2 in N1 is his prediction variable. Here, player
1 puts himself into player 2’s shoes to make predictions. In fact, this argument could
not stop here; by putting himself in 2’s shoes, 1 needs to think about 2’s predictions
about 1’s decisions. Continuing this argument ad infinitum, we meet the infinite regress
described in Diagram 5.1, which is made from the viewpoint of player 1. A symmetric
argument from player 2’s viewpoint can be constructed.

Double uses of N1-N2: In the infinite regress, N1 is a decision criterion for 1 and
is a prediction criterion for 2, while N2 is a decision criterion for 2 and a prediction
criterion for 1. Thus, N1 and N2 are used both as decision and prediction criteria.
This double use makes the infinite regress in Diagram 5.1 collapse into a system of
simultaneous equations described by Diagram 5.2. Theorem 1 solves this system of
equations.

Diagram 5.1 Diagram 5.2
N1 N1 N1 · · ·

↓ ↗ ↓ ↗ ↓ ↗

N2 N2 N2
=⇒

N1
↓ ↑

N2

The language of classical game theory is incapable to explicitly distinguish between
player 1’s and 2’s perspectives; as a result, many foundational problems can only be
discussed at interpretational levels. One way to formalize those issues is to reformulate
the above problem in the epistemic logic framework. Then, we can avoid the collapses
from Diagram 5.1 into Diagram 5.2, and explicitly discuss the relationship between the
above infinite regress and the common knowledge of N1-N2. In doing so, we will be
able to evaluate the standard interpretations, such as the quotation from (Mas-Colell
and Green 1995) in Section 1, of the rationalizability theory as well as the Nash theory.
Also, we can more explicitly discuss Johansen’s (1982) argument. The research on
these problems will be undertaken in the companion paper (Hu and Kaneko 2013).
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