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1 Introduction

Cooperative game theory begins with descriptions of coalitional behavior. For
every permissible coalition, a subset of the players of the game, there is a given
set of feasible outcomes for its members. Each outcome is presupposed to arise
from cooperative behavior by the members of the coalition; specific individual
actions are secondary.1 Cooperative games take several forms—games with
side payments, games without side payments, partition function form games,
and others, including, for example, bargaining games. In this paper we focus
on games with and without side payments.

Cooperative game theory has two parts. One part is the description of game
situations, the form or model of the game, and the other part is the description
of expected outcomes. The second part is called solution theory. Utility theory
is foundational to both parts. Utility theory for a solution theory, however,
may involve additional assumptions, sometimes hidden. Therefore the utility
theory behind the description of a game situation may not be the same as that
behind a solution concept applied to the game. In this chapter, in addition
to exploring various models of games, we will consider the assumptions behind
various solution concepts.

The predominant forms of cooperative games are games with side payments
and games without side payments. A game with side payments summarizes the
possible outcomes to a coalition by one real number, the total payoff achievable
by the coalition. In contrast, a game without side payments describes the
possibilities open to a coalition by a set of outcomes, where each outcome
states the payoff to each player in the coalition. The concepts of games with
and without side payments are not disjoint; a game with side payments can
be described as a game without side payments. Because of the simplicity of a
game with side payments, cooperative game theory has been more extensively
developed for games with side payments than for games without side payments.
Because of this simplicity, however, games with side payments require special
consideration of the underlying utility theory.

We will first discuss games with side payments. These require the assump-
tions of side payments (SP) and of “transferable utility” (TU). Together these

1Recently there has been considerable interest in “Nash’s Program”, that is, the study of
cooperative games in terms of noncooperative game theory through formulating cooperative
behavior as moves in an extensive form game. This is more faithful to “the ontological
version of methodological individualism”—the individual is the actor—than cooperative game
theory and is capable of analyzing the postulate of cooperation. Some limitations of Nash’s
program, however, are that the extensive form description of complex social interactions
may be too complicated to analyze and the results may be highly dependent on specific
details of the extensive form game. Nash’s Program complements cooperative game theory
in understanding cooperative aspects of societies.
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assumptions appear to imply that utility can be transferred between players
at a one-to-one rate. This conclusion is sometimes misunderstood to imply
that utility itself can be transferred between players. A specific form of this
misunderstanding is that a game with side payments necessarily involves inter-
personal utility comparisons. To clarify the roles of the assumptions SP and
TU, we will illustrate the derivation of games with side payments from sev-
eral models of social and economic situations. As noted earlier, some solution
concepts may deviate from the intentions of SP and TU. We consider to what
extent such deviations exist and to what extent they may be justified.

A game without side payments requires neither the assumption SP nor the
assumption TU. For these games, standard economic utility theory suffices.
Since neither transferable utility nor side payments are required for games
without side payments, solution concepts developed for games without side
payments might avoid subtle difficulties in utility theories. Many solution con-
cepts have been developed first, however, for games with side payments and
then extended to games without side payments. Thus, the difficulties present
in interpretation of solution concepts for games with side payments also may
arise in extensions of these solution concepts to games without side payments.
Games without side payments, together with some solution concepts, are dis-
cussed in the later part of this chapter.

In Section 2, we review the concept of a game with side payments and several
examples from the literature. In Section 3, we consider the assumptions of
transferable utility and of side payments. We give axiomatic characterizations
of the transferable utility assumption in the cases of no uncertainty and of
uncertainty. In Section 4, we discuss some solution concepts for games with
side payments, specifically, the core, the von Neumann-Morgenstern stable set,
the Shapley value and the nucleolus. In Section 5, we discuss games without side
payments and see how those solution concepts depend upon the assumptions
of transferable utility and of side payments.

2 Games with Side Payments

In the literature of game theory, a game with side payments is often given as an
abstract mathematical construct, but this construct is typically derived from a
model of a social or an economic situation. The consideration of utility theory
behind a game with side payments is relevant to this derivation and especially
to the question of how faithfully the derived game describes the underlying
situation. Hence our method of evaluating the utility theory behind a game
with side payments begins with the derivation of games from underlying social
and economic situations.
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Such a derivation relies upon the following two assumptions, mentioned in
Section 1:

(SP): side payments;

(TU): transferable utility.

The assumption of transferable utility is a requirement on the utility function
of each player while the assumption of side payments is a part of the rules of the
game. The term “a game with side payments” is a slight misnomer in that both
assumptions SP and TU are required for the theory. If at least one of them is
violated, the derived game does not faithfully describe the underlying situation,
and then the general theory of games without side payments is needed. The
assumptions SP and TU are logically independent, but are often related in
specific situations. We will illustrate that in some situations, side payments
are regarded as a part of the situation, and in other situations, TU is assumed
but side payments are prohibited.

Before the discussions on the assumptions SP and TU, we give some basic
definitions. A game with side payments is given as a pair (N, v), where N =
{1, ..., n} is the player set and v : 2N → R is the characteristic function
satisfying v(∅) = 0 and v(S) + v(T ) ≤ v(S ∪ T ) for disjoint subsets S, T of N.
The second condition is called superadditivity. The function v assigns to each
coalition S in 2N the “maximum total payoff” that can be obtained by collective
activities of the players in S. A game (N, v) describes a social situation in terms
of the payoffs achievable by the collective activities of groups of players.

Typically a characteristic function v is used to describe what can be obtained
by each coalition of players in a game. The total payoff v(S) is interpreted as
available to the players in S. This suggests the following definition: a payoff
vector (ai)i∈S is said to be feasible for a coalition S iff

∑

i∈S

ai ≤ v(S). (2.1)

The characteristic function v is also used to restrict the payoff possibilities to
players. An example is individual rationality: a payoff vector (ai)i∈S is said to
be individually rational iff

ai ≥ v({i}) for all i ∈ S. (2.2)

This states that cooperation gives each player at least what he can indepen-
dently guarantee for himself. Those are basic concepts for solution theory,
discussed further in Section 4.
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The above definition of feasibility is based on the assumptions TU and SP.
Without these assumptions, we may lose the intended meaning of (2.1). In the
following subsections, we discuss the roles of the assumptions of transferable
utility and side payments in three examples.

2.1 Transferable Utility and Side Payments

Consider an individual player i with utility function Ui : X × R → R. The
domain X × R is called the outcome space for player i. The set X may rep-
resent a commodity space, a set of social alternatives or the outcome space
of a noncooperative game. The set R of real numbers is typically interpreted
as representing the set of increments (and decrements) of a perfectly divisible
composite commodity called “money”. This commodity represents purchasing
power for other commodities outside the model. The value Ui(x, ξ) represents
the utility from the outcome x and the increment (or decrement) ξ of money
from a given initial level.

The interpretation of the unbounded domain of money is that, without
meeting any boundary conditions, any individually rational outcome can be
achieved. That is, relative to individually rational payoffs that might arise
from the game, incomes are sufficiently large to avoid the need for boundary
conditions. This is also related to the assumption SP and will be clarified
further in a subsequent example.

The transferable utility assumption TU, also called “quasi-linearity” in the
economics literature, is that Ui is linearly separable with respect to ξ, that is,
there is a function ui : X → R such that

Ui(x, ξ) = ui(x) + ξ for all (x, ξ) ∈ X × R. (2.3)

The utility function in (2.3) is interpreted as uniquely determined up to a
parallel transformation. That is, as will be clarified in Section 3.1, if Vi(x, ξ) =
vi(x)+ξ and vi(x) = ui(x)+c for some constant c, then Vi(x, ξ) can be regarded
as equivalent to Ui(x, ξ).

The term “transferable utility” is motivated by the following observation.
When two players have utility functions of form (2.3), since the utility level of
each player changes by the amount of a transfer, a transfer of money between
the players appears to be a transfer of utility.

Let x0 ∈ X be an arbitrarily chosen outcome, interpreted as an initial situ-
ation or the “status quo”. For a utility function Ui(x, ξ) of form (2.3), it holds
that for any x ∈ X

Ui(x, ξ) = Ui(x0, ui(x) − ui(x0) + ξ).

This formula implies that ui(x)−ui(x0) represents the monetary equivalent of
the change in utility brought about by the change from x0 to x. In other words,
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ui(x)−ui(x0) is the amount of “willingness to pay” for the transition of the
outcome from x0 to x.

In the terminology of economics, (2.3) implies that there are no income
effects on the choice behavior of player i. “No income effects” means that pref-
erences over X are independent of money holdings, that is, ui(x)−ui(x0) does
not depend on ξ. TU is also a sufficient condition for the well-definedness of
consumer surplus. When player i compares paying the amounts of money p
and p0 for x and x0 respectively, his “surplus” due to the change from x0 to
x is (ui(x)−p)−(ui(x0)−p0). When ui(x0)−p0 is normalized to equal zero by
a parallel transformation of ui, ui(x)−p is defined as the player’s consumer
surplus due to the change [cf. Hicks (1956)].

The no income effects condition can be regarded as a local approximation
to a situation where the initial income of the consumer is large relative to any
money transfers that may arise in the game. This also provides a justification
for the assumption of the unbounded domain of money, which will be further
clarified in the next subsection. We should always keep these justifications in
mind: some applications or extensions of games with side payments are not
consistent with these justifications.

“Side payments” simply means that transfers of money are allowed, in ad-
dition to any sort of transfer embodied in the outcome x. The assumption
of side payments is independent of the assumption of transferable utility. In
the following, we consider the role of side payments in the contexts of market
games, majority voting games and games derived from strategic games.

2.2 A Market Game

Consider an exchange economy with players 1, ..., n and commodities 1, ...,m,
m + 1. The set X, called the consumption space of the first m commodities, is
taken as the non-negative orthant Rm

+ of Rm. Each player i has an endowment of
commodities ωi ∈ X, describing his initial holding of the first m commodities.
Each player also has an endowment of the (m + 1)th commodity but this is
assumed to be sufficiently large so that it is not binding. Thus we do not need to
specify the endowment of money: only increments or decrements from the initial
level are considered. The value Ui(x, ξ) represents the utility from consuming
commodity bundle x and the initial money holdings plus the increment or
decrement in ξ.
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Under the transferable utility assumption (2.3) for all players, a game with
side payments is defined as follows: for each coalition S,2

v(S) = max
∑

i∈S

ui(xi) subject to

(2.4)
∑

i∈S

xi =
∑

i∈S

ωi and xi ∈ X for all i ∈ S.

The characteristic function assigns to each coalition the maximum total payoff
achievable by exchanges of commodities among the members of the coalition.

The characteristic function (2.4) may appear to suggest that the players in
a coalition maximize total utility and players make interpersonal comparisons
of utilities. As we discuss below, some solution concepts based on the charac-
teristic function may indeed make interpersonal comparisons of utilities. These
deviate from the interpretation of the value v(S) as simply a description of the
Pareto frontier and the feasible payoffs for S, as intended by von-Neumann-
Morgenstern (1944). Definition (2.4) itself is a mathematical one and does not
involve any behavioral assumptions or interpersonal utility comparisons.

To describe the Pareto frontier, define an allocation (xi, ξi)i∈S for S by

(xi, ξi) ∈ X × R for all i ∈ S and
∑

i∈S

(xi, ξi) =
∑

i∈S

(ωi, 0). (2.5)

An allocation (xi, ξi)i∈S is said to be Pareto-optimal for S iff there is no other
allocation (yi, ηi)i∈S for S such that

Ui(yi, ηi) ≥ Ui(xi, ξi) for all i ∈ S; and

Ui(yi, ηi) > Ui(xi, ξi) for some i ∈ S.
(2.6)

The value v(S) describes Pareto-optimal allocations in the following sense:

Proposition 2.1 An allocation (xi, ξi)i∈S is Pareto-optimal for S if and
only if v(S) =

∑
i∈S ui(xi).

Proof If (xi, ξi)i∈S is not Pareto-optimal for S, then (2.6) holds for some
allocation (yi, ηi)i∈S for S. This, together with

∑
i∈S ηi =

∑
i∈S ξi = 0,

implies that
∑

i∈S ui(xi) <
∑

i∈S ui(yi) ≤ v(S). Conversely, if
∑

i∈S ui(xi)
< v(S), there is a feasible vector (yi)i∈S with

∑
i∈S ui(xi) <

∑
i∈S ui(yi).

This implies that (2.6) holds for an appropriate choice of (ηi)i∈S.

2When ui(xi) is continuous, the following maximization problem is well defined. In the
sequel, when we use “max”, we assume that the maximum is well defined.
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The characteristic function v delineates feasible payoffs. In the market, the
feasibility of payoffs (ai)i∈S for coalition S is given by:

for some allocation (xi, ξi)i∈S , ai ≤ ui(xi) + ξi for all i ∈ S. (2.7)

This feasibility is summarized by the characteristic function v, since (ai)i∈S is
feasible for S if and only if ∑

i∈S

ai ≤ v(S). (2.8)

Thus, we obtain (2.1). In the terminology of economics, the value v(S) is the
maximum sum of the consumer surpluses over the players in S. From the no
income effects condition, this sum v(S) is independent of the distribution of
the money holdings among the members of S.

The definition of Pareto-optimality (2.6) is unaffected by monotone increas-
ing transformations of utility functions. That is, the Pareto-optimality of an
allocation for a coalition S is unaffected by such transformations of the utility
functions of its members. On the other hand, the definition of the character-
istic function requires particular (transformations of) utility functions. Never-
theless, Proposition 2.1 guarantees that the value v(S) determines the Pareto
frontier for coalition S.

In the context of markets, the side payments assumption simply means that
transfers of the last commodity are possible. In other contexts such as vot-
ing games, discussed in the next subsection, side payments have a nontrivial
meaning.

One criticism of the above formulation is that players’ allocations of money
are unbounded below. Even with budget constraints, if incomes are sufficiently
large relative to the value of the activity of the game, then individual rationality
will ensure that the budget constraint is not binding. This can be formulated
without any difficulty; the budget constraint is ignored in the above formulation
for simplicity. Moreover, the TU assumption implies that there are no income
effects. This suggests that amounts of payments and receipts of transfers must
be small relative to incomes. Thus, to ignore the budget constraint is consistent
with the interpretation of TU as the absence of income effects. If income
effects are not negligible, the concept of a game without side payments is more
appropriate.

An implication of the above paragraph is that a game with side payments
and certain solution concepts may be inappropriate if the game is large and
large coalitions are required to achieve the solution of the game. That is,
these payoffs may require transfers from individual players to other players in
excess of the players’ (hidden) budget constraints. This may be the case, for
example, for the von-Neumann-Morgenstern stable set concept, to be discussed
in Section 4.
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2.3 A Majority Voting Game with Side Payments

In the above example, side payments arise naturally. In voting games, this may
not be the case. In fact, side payments may well be prohibited.

Consider a voting situation with n players where one alternative is chosen
by majority voting from a set X of social alternatives. Suppose that the utility
function of each player i, Ui: X×R → R, is of form (2.3). Define a characteristic
function v : 2N → R by

v(S) =






maxx∈X
∑

i∈S ui(x) if |S| > n
2

minx∈X
∑

i∈S ui(x) otherwise,
(2.9)

where |S| is the number of members in S. A majority coalition S, |S| > n
2 , can

choose any social alternative x from X. Therefore the members of a majority
coalition can maximize the total payoff

∑
i∈S ui(x). A minority coalition S,

|S| ≤ n
2 , cannot make an effective choice. Thus v(S) is defined as the value the

members of S can certainly guarantee for themselves.
The main issue of the majority voting game is the choice of a social alternative

x ∈ X. Besides choosing x, the players are allowed to make transfers of money,
that is, side payments. This allows the possibility of obtaining the consent of
other players to a particular outcome by purchasing their votes.

In a voting game, as in a market game, for a majority coalition S the value
v(S) determines the Pareto frontier for S. For a minority coalition S, v(S) also
determines the Pareto frontier among all feasible outcomes that the members
of S can guarantee for themselves.

In the market game of the above subsection, side payments have only a trivial
meaning in the sense that transfers of money are essential to the definition of
a market; if such transfers are prohibited, the situation is no longer a market.
On the other hand, in voting situations, such side payments are sometimes
difficult or regarded as impossible. In such a case, the formulation (2.9) is
inappropriate: we need the formulation of a game without side payments.

The following example illustrates a difference between the cases with and
without side payments.

Example 2.1 Consider a three-person voting games with total player set N =
{1, 2, 3} and X = {x, y}. The utility functions of the players are given by

u1(x) = u2(x) = 10, u3(x) = 0,

u1(y) = u2(y) = 0, u3(y) = 15.
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The characteristic function, calculated according to (2.9), is:

v(N) = 20, v({1, 2}) = 20,

v({2, 3}) = v({1, 3}) = 15, and v({1}) = v({2}) = v({3}) = 0.

An individually rational and Pareto optimal payoff is given by a vector a =
(a1, a2, a3) where a1 + a2 + a3 = 20 and ai ≥ 0 for all i = 1, 2, 3. Suppose
a = (5, 5, 10). To achieve the payoff vector a, it is necessary that each of players
1 and 2 make a transfer of 5 to player 3. When side payments are prohibited,
only two payoff vectors, (10, 10, 0) and (0, 0, 15), are possible. Thus the voting
situations with and without side payments are dramatically different.

Our next example illustrates a voting game where the description of the set
of alternatives X effectively allows side payments.

Example 2.2 Consider again a three-person voting game with total player
set N = {1, 2, 3} but X = {(x1, x2, x3) : x1 + x2 + x3 = 1 and xi ≥ 0 for
all i = 1, 2, 3}; one dollar is to be distributed by majority voting. The utility
functions of the players are given by

Ui(x, ξ) = xi + ξ for (x, ξ) ∈ X × R and i = 1, 2, 3.

Then the derived characteristic function is

v(S) =






1 if |S| ≥ 2

0 otherwise.

In the game theory literature this is often called a simple majority game. An
individually rational and Pareto-optimal payoff vector for the game is given by
(a1, a2, a3) with a1 + a2 + a3 = 1 and ai ≥ 0 for all i = 1, 2, 3. In fact, this
payoff vector can be realized without any transfers. Therefore side payments
are effectively built into the description of the political situation underlying the
game with side payments.

Example 2.1 illustrates a situation where allowing side payments dramati-
cally changes the set of feasible outcomes. In Example 2.2, side payments are
an intrinsic part of the game and whether side payments are allowed does not
affect the set of possible outcomes. In general, “direct” payments may be in-
cluded in the description of the game. The assumption of SP further facilitates
the possibility of payments between players.
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2.4 A Cooperative Game Derived from a Strategic Form Game

Let G = (N, {Σi}i∈N,{hi}i∈N ) be an n-person finite strategic form game, that
is, N = {1, ..., n} is the player set, Σi is a finite strategy space for player i ∈ N,
and hi : Σ1×· · ·×Σn → R is the payoff function of player i. The space of mixed
strategies of player i is the set of all probability distributions over Σi, denoted
by M(Σi). Note that M(Σi) is the | Σi |−1 dimensional unit simplex. When
the players in a coalition S cooperate, they can coordinate their strategies to
play a joint mixed strategy, a probability distribution over ΣS = Πi∈S Σi.
We denote the set of all joint strategies for S by M(ΣS), which is also a unit
simplex. The payoff function hi(·) is extended to M(ΣN ) as the expectation of
hi(s) over ΣN . In fact, we substitute hi(·) for ui in the expression (2.3) so that
Ui(s, ξ) = hi(s)+ξ. Thus the whole utility function Ui is defined on M(ΣN )×R,
where the set X of Section 2.1 is now M(ΣN ).

In the derivation of a cooperative game with side payments from a strategic
game, transfers of money between the players in a coalition are permitted, that
is, SP is assumed. When transferable utility in the sense of Subsection 2.1 is
assumed, the total utility

∑

i∈S

hi(σS ,σ−S), where σS ∈ M(ΣS) and σ−S ∈ M(Σ−S),

is independent of the monetary transfers. This means that the total utility∑
i∈S hi(σS ,σ−S) can be freely distributed among the players in S by the

players via side payments (ξi)i∈S with
∑

i∈S ξi = 0. Each player evaluates an
outcome (σS ,σ−S) by the expected value of hi(·) and may make transfers to
other players in return for the agreements to play the joint mixed strategy.

Von Neumann and Morgenstern (1944) defined the characteristic function v,

v(S) = max
σS∈M(ΣS)

min
σ−S∈M(ΣN−S)

∑

i∈S

hi(σS ,σ−S) for all S ∈ 2N . (2.10)

That is, the value v(S) is defined by regarding the game situation as a two-
person zero-sum game with one player taken as S and the other as the comple-
mentary coalition N−S.

The situation discussed in this subsection differs from the previous situations
in that uncertainty is involved; players can choose joint mixed strategies.3 This
raises the question of the rationales for TU and SP. We will discuss this further
in Section 3. There, we assume that when side payments are permitted, even

3By uncertainty we mean the Knightian risk in the sense that probabilities are well-defined
and objectively gernerated.
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though they might play mixed strategies, players can make monetary transfers
without uncertainty.4

In the standard treatment of a strategic game G = (N, {Σi}i∈N , {hi}i∈N ),
the game G is a closed world in the sense that no additional structure is as-
sumed. In the treatment here, side payments can be made by making transfers
of money. Money represents purchasing power in the world outside the game.
In this sense, here the game is not a closed world.

3 Axiomatic Characterization of Transferable Utility

It may be helpful in understanding the assumption of transferable utility to
look at an axiomatic characterization of preferences having transferable utility
representations. We will discuss axioms for both preferences over outcomes
with and without uncertainty. The derivation with no uncertainty is close to
the classical utility theory [cf., Debreu (1959)]. With uncertainty, the derivation
is a special case of the von Neumann-Morgenstern utility theory.

3.1 Transferable Utility with no Uncertainty

In the absence of uncertainty, a preference relation !i is defined on X × R.
Consider the following four conditions on !i:

(T1): !i is a complete preordering on X × R;

(T2): !i is strictly monotone on R;

(T3): for any (x, ξ), (y, η) ∈ X × R with (x, ξ) !i (y, η), there is an ε ∈ R such
that (x, ξ) ∼i (y, η + ε);

(T4): (x, ξ) ∼i (y, η) and ε ∈ R imply (x, ξ + ε) ∼i (y, η + ε),

where ∼i is the indifference part of the relation !i . Conditions T1 and T2 are
standard. Condition T3 means that some amount of money substitutes for a
change in outcome. Under T2 the ε in T3 is nonnegative. Condition T4, the
most essential for TU, means that the player’s choice behavior on X does not
depend on his money holdings.

The following result5 holds [cf. Kaneko (1976)]:

4This is a simplifying assumption. Since we assume risk neutrality, uncertain monetary
transfers are equivalent to transfers without uncertainty.
5Applying T4 to the expression Ui(x, ξ), Aumann (1960) obtained ui(x) + ξ.
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Proposition 3.1 A preference relation !i satisfies T1-T4 if and only if there
is a function ui : X → R such that (x, ξ) !i (y, η) ⇔ ui(x) + ξ ≥ ui(y) + η.

A utility function Ui(x, ξ) = ui(x) + ξ is one representation of a preference
relation !i satisfying T1-T4. Note that any monotone transformation ϕ(ui(x)+
ξ) of Ui is also a representation of the preference relation !i . Nevertheless, as
already seen in Section 2, the representation ui(x) + ξ has a special status in
defining a game with side payments.

Without assuming T4 and with a specified total income Ii, we would not
have a utility function of the form ui(x) + ξ. When we would like to consider
a game situation with income effects, T4 may be modified to express income
effects. Specifically: for any (x, ξ), (y, η) ∈ X × {ζ ∈ R : ζ ≥ −Ii},

(T4′): (x, ξ) ∼i (y, η) and ξ < η imply (x, ξ + ε) !i (y, η + ε) for any ε > 0.

In economics terminology, the decision variable x is assumed to be “normal”.
This means that when income increases, player i chooses (or demands) a “bet-
ter” x than y.6 Under T4′ together with T1-T3 and some additional condition,
e.g., X is a finite set, we can obtain a utility function representation of a pref-
erence, but not necessarily of the form ui(x) + ξ. In this case, a game without
side payments is required.

Proof of Proposition 3.1 If there is a utility function Ui of form (2.3), then
!i determined by Ui satisfies T1-T4. Suppose, conversely, that !i satisfies T1-
T4. Choose an arbitrary x0 in X. For each x in X, define ui(x) by

ui(x) = η − ξ, where (x, ξ) ∼i (x0, η). (3.1)

The existence of such numbers ξ and η is ensured by T3 and the difference η−ξ
is uniquely determined by T2 and T4. Note that (3.1) and T2 imply ui(x0) =
0 and (x, ξ) ∼i (x0, ui(x) + ξ), i.e., ui(x) is the amount of willingness-to-pay
for the transition from x0 to x. The function ui(x) represents the preference
relation !i . Indeed, (x, ξ) !i (y, η) ⇐⇒ (x0, ui(x) + ξ) ∼i (x, ξ) !i (y, η) ∼i

(x0, ui(y) + η) ⇐⇒ ui(x) + ξ ≥ ui(y) + η.

The following facts hold [Kaneko (1976)]:

Ui(x, ξ) = ui(x) + ξ is quasi-concave iff ui(x) is concave; (3.2)

Ui(x, ξ) = ui(x) + ξ is continuous iff ui(x) is continuous. (3.3)

6This is useful, especially for comparative statics analysis [cf. Kaneko (1983)].
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In (3.2) and (3.3) some algebraic and topological structures on X are assumed.
It follows from (3.2) and (3.3) that a condition for !i to be convex or to be
continuous is the concavity or continuity of ui respectively.

3.2 Transferable Utility with Uncertainty

When the game situation involves uncertainty, as in Section 2.4, Ui(x, ξ) =
ui(x) + ξ is a von Neumann-Morgenstern utility representation. In this case,
the domain of a preference relation !i is the set of probability distributions on
X×R. Now we describe conditions on a preference relation !i with this domain
implying that there exists a utility function representation of form (2.3).

A probability distribution on X × R with finite support is a function p :
X × R → [0, 1] satisfying the property that for some finite subset S of X ×
R,

∑
t∈S

p(x, ξ) = 1 and p(x, ξ) > 0 implies (x, ξ) ∈ S. We extend X ×R to the

set M(X × R) of all probability distributions on X × R with finite supports.
Regarding a one-point distribution f(x,ξ) (i.e., f(x,ξ)(x, ξ) = 1) as (x, ξ) itself,
the space X × R becomes a subset of M(X × R). Also, M(X) × R is a subset
of M(X × R); this is relevant in Section 2.4 (where we take X as ΣN ). For
p, q ∈ M(X × R) and λ ∈ [0, 1], we define a convex combination λp ∗ (1 − λ)q
by

(λp ∗ (1 − λ)q)(x, ξ) = λp(x, ξ) + (1 − λ)q(x, ξ) for all (x, ξ) ∈ X × R. (3.4)

With this operation, M(X×R) is a convex set. Usually, λp∗(1−λ)q is regarded
as a compound lottery in the sense that p and q occur with probabilities λ
and (1 − λ) respectively and then the random choice according to p or q is
made. Condition (3.4) requires that the compound lottery be reducible into
one lottery.

We impose the following three axioms on !i;

(NM1): !i is a complete preordering on M(X × R);

(NM2): p !i q !i r implies αp ∗ (1 − α)r ∼i q for some α ∈ [0, 1] ;

(NM3): for any α ∈ (0, 1), (1) p .i q implies αp ∗ (1 − α)r ∼.i αq ∗ (1 − α)r;
and (2) p ∼i q implies αp∗(1−α)r ∼i αq∗(1−α)r, where .i is the nonsymetric
part of !i.

Condition NM1 is the same as T1 except that condition NM1 is applied to
the larger domain M(X×R); thus NM1 implies T1. Condition NM2 states that
for any lottery q between two other lotteries p and r, there is a compound lottery
αp ∗ (1− α)r indifferent to q. Condition NM2, as condition T3, is a continuity
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property. Condition NM3 is called the independence axiom, a sort of “Sure-
Thing” Principle. This condition means that the comparison of compound
lotteries is based on the (surer) outcomes of these lotteries, which implies that
the evaluation of a lottery depends eventually upon the sure outcomes of the
lottery, as is shown in (3.7) below.

The following is known as the Expected Utility Theorem [cf. von Neumann-
Morgenstern (1944), Herstein-Milnor (1953)]:

Proposition 3.2 A preference relation !i satisfies NM1-NM3 if and only if
there is a function Vi : M(X ×R) → R such that for any p, q ∈ M(X ×R) and
λ ∈ [0, 1],

p !i q ⇐⇒ Vi(p) ≥ Vi(q); (3.5)

Vi(λp ∗ (1 − λ)q) = λVi(p) + (1 − λ)Vi(q). (3.6)

The function Vi is called a von Neumann-Morgenstern utility function. In
contrast to the representability in Section 3.1, Vi(x, ξ) allows only a positive
linear transformation, not necessarily an arbitrary monotonic transformation,
i.e., if Ui also satisfies (3.5) and (3.6), there are real numbers a > 0 and b such
that Ui(p) = aVi(p) + b for all p ∈ M(X × R).

Since X × R is a subset of M(X × R), Vi assigns a value Vi(x, ξ) to each
(x, ξ) in X × R. For each p ∈ M(X × R), the value Vi(p) is represented as the
expected value of Vi(x, ξ) with p(x, ξ) > 0. Indeed, since each p ∈ M(X × R)
has finite support S, by repeating application of (3.6) a finite number of times,
we obtain

Vi(p) =
∑

(x,ξ)∈S

p(x, ξ)Vi(x, ξ). (3.7)

That is, the utility from the probability distribution p is given as the expected
utility value with respect to the distribution p. This fact motivates the term
“expected utility theory”.7

Proposition 3.2, the Expected Utility Theorem, is more fully discussed in
Hammond (1998). Here we give a sketch of the proof.

Proof of Proposition 3.2 The “if” part is straightforward. Consider the
“only-if” part. First of all, we note that it follows from NM1 and NM3.(1) that

p .i q and α > β imply αp ∗ (1 − α)q .i βp + (1 − β)q. (3.8)

7The space M(X × R) of probability distributions with finite supports is not big enough to
treat some interesting examples such as the St. Petersburg game. For this purpose M(X×R)
can be extended to the space of probability distributions with countable supports, for which
Proposition 3.2 holds. To obtain (3.7) for a distribution with countable support, however, an
additional condition is required.
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Indeed, since p = β
αp ∗ (1 − β

α )p .i
β
αp ∗ (1 − β

α )q, we have αp ∗ (1 − α)q .i

α(β
αp ∗ (1 − β

α )q) ∗ (1 − α)q = βp ∗ (1 − β)q.

Suppose that a .i b for some a, b ∈ M(X × R). If such distributions a and b
do not exist, the claim is shown by assigning zero to every p. Now we define
Vab(p) for any p with a !i p !i b by

Vab(p) = λ, where p ∼i λa ∗ (1 − λ)b. (3.9)

The unique existence of such λ is ensured by NM2 and (3.8). Then it follows
from NM1 and (3.8) that Vab(p) ≥ Vab(q) ⇔ p !i q, which is (3.5). Finally,
µ := Vab(λp ∗ (1 − λ)q) satisfies

µa ∗ (1 − µ)b ∼i λp ∗ (1 − λ)q (by ( 3.9))
∼i λ[Vab(p)a ∗ (1 − Vab(p))b] ∗ (1 − λ)[Vab(q)a ∗ (1 − Vab(q)b] (by NM3.(2))

∼i [λVab(p) + (1 − λ)Vab(q)]a ∗ (1 − [λVab(p) + (1 − λ)Vab(q)])b.

The coefficients for a in the first and last terms must be the same by NM1 and
(3.8), that is, µ = Vab(λp ∗ (1 − λ)q) = λVab(p)+ (1 − λ)Vab(q). Thus (3.6)
holds.

It remains to extend the function Vab to the entire space M(X × R). We
give a sketch of how this extension is made [cf., Herstein-Milnor (1953) for a
more detailed proof]. Let c, d, e, f be arbitrary elements in M(X × R) with
e !i c !i a and b !i d !i f. Applying the above proof, we obtain utility
functions Vcd and Vef satisfying (3.5) and (3.6) with domains {p : c !i p !i d}
and {p : e !i p !i f}. Then Vcd(c) = Vef (e) = 1 and Vcd(d) = Vef (f) = 0.
We define new utility functions Ucd and Uef by the following positive linear
transformations:

Ucd(p) = (Vcd(p) − Vcd(a))/(Vcd(b) − Vcd(a)) for all p with c !i p !i d;

Uef (p) = (Vef (p) − Vef (a))/(Vef (b) − Vef (a)) for all p with e !i p !i f.

Then it can be shown that these functions Ucd and Uef coincide on {p : c !i p !i

d}. This fact ensures that we can define Vi(p) = Ucd(p) for any p ∈ M(X ×R),
where c, d are chosen so that c !i p !i d and c !i a .i b !i d. Since Ucd(p)
satisfies (3.5) and (3.6), so does the function Vi.

When !i satisfies T2-T4 on the domain X ×R in addition to NM1-NM3 on
M(X × R), it holds that there is a monotone function ϕ : R → R satisfying

Vi(x, ξ) = ϕ(ui(x) + ξ) for all (x, ξ) ∈ X × R.

Indeed, since the preference !i over X × R is represented by ui(x) + ξ and is
also represented by the restriction of Vi to X × R, the functions ui(x) + ξ and
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Vi(x, ξ) are related by a monotone transformation ϕ. The function ϕ expresses
the risk attitude of player i.

For ui(x) + ξ to be a von Neumann-Morgenstern utility function, we need
one more assumption:

(RN): 1
2 (x, ξ) ∗ 1

2 (x, η) ∼i (x, 1
2ξ + 1

2η) for all (x, ξ), (x, η) ∈ X × R.

This assumption describes risk neutrality with respect to money; given x, player
i is indifferent between ξ and η with equal probabilities and the average of ξ
and η.

From RN and (3.6) it follows that

1
2
ϕ(ui(x) + ξ) +

1
2
ϕ(ui(x) + η) = ϕ(ui(x) +

1
2
ξ +

1
2
h). (3.10)

Indeed since ξ, η are arbitrary elements of R, ui(x) + ξ and ui(x) + η can take
arbitrary values. Thus (3.10) can be regarded as a functional equation: for
each α and β in R,

1
2
ϕ(α) +

1
2
ϕ(β) = ϕ(

1
2
α+

1
2
β).

This, together with the monotonicity of ϕ, implies that ϕ can be represented
as ϕ(α) = aα + b for all α, where a > 0 and b are given constants. We can
normalize a and b to be a = 1 and b = 0. Thus we have the following:

Proposition 3.3 A preference relation !i satisfies NM1-NM3, T2-T4 and
RN if and only if !i is represented by a utility function of the form Vi(x, ξ) =
ui(x) + ξ in the sense of (3.5), (3.6) and (3.7).

The assumption RN of risk neutrality coheres to the assumption TU for the
following reason. We can regard the theory of games we are considering here
as static but describing a recurrent sitation behind the theory. Each game
is a representative of the recurrent and stationary game situation, and the
solution represents a stationary state. In this interpretation, TU means that
incomes are large enough relative to money transfers occurring in each period.
Suppose that financial institutions are well developed in the sense that each
individual can borrow or lend money freely if borrowings are small relative to
his income. Then an individual player can borrow and lend money to make
his consumption level constant over periods. This is preferable if his utility
function is concave over consumption. In this case, it suffices to calculate the
average gains or loses in such a recurrent situation. Hence his utility function
can be best approximated by risk-neutral utility function.



CHAPTER 19: UTILITY THEORIES IN COOPERATIVE GAMES 1083

4 Solution Concepts for Games with Side Payments

A game with (or without) side payments describes the payoff each coalition S
can obtain by the cooperation of the members of S. Solution theory addresses
the question of how payoffs are distributed. Each solution concept explicitly
or implicitly describes the behavior of coalitions and makes some prediction on
the occurrence of distributions of payoffs. Some solution concepts are faith-
ful to the basic objective of the definition of the characteristic function dis-
cussed in Section 2, but some depend critically upon the numerical expression
of the characteristic function. In this section, we discuss four solution concepts,
namely, the core, the von Neumann-Morgenstern stable set, the nucleolus, and
the Shapley value.

Let a game (N, v) with side payments be given. An imputation is an individ-
ually rational Pareto optimal payoff vector a = (a1, ..., an), that is, a satisfies
ai ≥ v({i}) for all i ∈ N and

∑
i∈N ai = v(N). We denote the set of imputa-

tions by I(N, v). For imputations a and b in I(N, v), we say that a dominates
b via a coalition S,denoted by a domS b, iff

ai > bi for all i ∈ S (4.1)

and
v(S) ≥

∑

i∈S

ai. (4.2)

Condition (4.1) means that every player in S prefers a to b and (4.2), called
effectiveness by von Neumann-Morgenstern (1944), means that the imputation
a is feasible for coalition S [cf. (2.7) and (2.8)]. We denote a domS b for some
S by a dom b.

4.1 The Core

The core is defined to be the set of all undominated imputations, that is,

{a ∈ I(N, v) : not b dom a for any b ∈ I(N, v)}.

Although the core is defined to be a set, the stability property of the core is an
attribute of each imputation in the core. The core can alternatively be defined
to be the set of all imputations satisfying coalitional rationality:

∑

i∈S

ai ≥ v(S) for all S ∈ 2N . (4.3)

In the market game of Section 2.2, if v(S) >
∑

i∈S ai for some coalition S
then there is an allocation (xi, ξi)i∈S for S such that ui(xi) + ξi > ai for all
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i ∈ S, that is, the players in S can be better off by their own exchanges of
commodities. The coalitional rationality of the core rules out such possibilities.
This definition simply depends upon individual preferences and the feasibility
described by the characteristic function. No interpersonal comparisons are
involved in the definition of the core.8,9

For two-player games, the core is simply the imputation space I(N, v). For
more than two players, games may have empty cores. In the following we
consider the role of side payments in some examples of games with empty cores
and some with nonempty cores.

The core of the game (N, v) of Example 2.1 is empty. Indeed, consider the
regular triangle with height 20, as in Figure 4.1.

Each point in the triangle in Figure 4.1 corresponds to a vector (a1, a2, a3),
where ai is the height of the perpendicular to the base i. The inequalities

a1 + a2 ≥ 20 = v({1, 2}), a2 + a3 ≥ 15 = v({2, 3}),

and a1 + a3 ≥ 15 = v({1, 3})

determine the areas that the corresponding coalitions can guarantee. The core
is the intersection of those three areas. In this example, the core is empty.

Example 3.1 Consider another three-person voting games with total player
set N = {1, 2, 3} and X = {x, y}. The utility functions of the players are given
by

u1(x) = u2(x) = 10, u3(x) = 0

u1(y) = u2(y) = 0, u3(y) = 0.

8In the literature on market games, the nonemptiness of the core and the relationship between
the core and the competitive equilibria has been extensively studied. The reader can find a
comprehensive list of references in Shubik (1984).
9Since side payments permit unbounded transfers of the commodity “money,” the compet-
itive equilibrium concept requires some modification. A competitive equilibrium is a pair
(p, (xi, p(ωi − xi))i∈N ) consisting of a price vector p and an allocation (xi, p(ωi − xi)))i∈N

with the following properties:

ui(xi) + p(ωi − xi) ≥ ui(yi) + p(ωi − y) for all y ∈ X.

Since money can be traded in any amount, positive or negative, the budget constraint is
non-binding. Under the assumptions of concavity and continuity on the utility functions and
the assumption that Σi∈N ωi > 0, the existence of a competitive equilibrium is proven by
using the Kuhn-Tucker Theorem [cf. Uzawa (1958) and Negishi (1960)].
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3

1

2
a  + a  = 201 2

a  + a  = 152 3

a  + a  = 151 3

Figure 4.1 (N, v)

The characteristic functions, defined by (2.9), are given as follows:

v(N) = 20,

v({2, 3}) = v({1, 3}) = 10, and

v({1, 2}) = 20,

v({1}) = v({2}) = v({3}) = 0.

The core of the game (N, v) consists of the single imputation, (10,10,0), des-
ignated by A in Figure 4.2. Since (10,10,0) = (u1(x), u2(x), u3(x)) this im-
putation is obtained by choosing alternative x and making no side payments.
Any other imputation is dominated. For domination, side payments may be
required. For example, the imputation (14,6,0) is dominated by (10,8,2). Play-
ers 2 and 3 can choose x and make a side payment of 2 units of money from
player 2 to player 3, so as to ensure the payoffs of 8 and 2 for themselves.

A necessary and sufficient condition for the nonemptiness of the core of the
voting game in Section 2.3 was given in Kaneko (1975). This condition states
that every majority coalition has the same most preferred social alternative
x∗, i.e., v(S) =

∑
i∈S ui(x∗) for all S ∈ 2N with |S| > n

2 . In this case the core
consists of the unique payoff vector (u1(x∗), ..., un(x∗)); the common alternative
x∗ is chosen and no side payments are made.
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(14,6,0)

(10,8,2)
A:(10,10,0)

Figure 4.2 (N, v̄)

Now we will see how much side payments are required for the core. For
this purpose, we consider briefly the Shapley-Shubik (1971) assignment game
and its core. In the assignment game model, only pairs of players from two
groups L and M (L ∪ M = N and L ∩ M = ∅) play essential roles, i.e., an
essential coalition T is T = {i, j}, i ∈ L and j ∈ M. We denote the set of all
such essential pairs by P. Now Π(S) denotes the set of all partitions of S into
essential pairs or singleton coalitions. The value v(S) of an arbitrary coalition
S is obtained by partitioning coalition S into pairs and singletons, that is, a
game (N, v) with side payments is called an assignment game iff

v(S) = max
π∈Π(S)

∑

T∈π

v(T ) for all S ∈ 2N . (4.4)

The assignment game has interesting applications to markets with indivisible
goods [cf. Shapley-Shubik (1971)].

For the core of the assignment game (N, v), side payments are effectively
required only for essential pairs. Indeed, define a pairwise feasible payoff vector
a = (a1, ..., an) by ai ≥ v({i}) for all i ∈ N, where for some partition π ∈
Π(N), ai + aj ≤ v({i, j}) if {i, j} ∈ π, and ai = v({i}) if {i} ∈ π.

That is, a pairwise feasible payoff vector is obtained by cooperation of essen-
tial pairs in some partition π. We denote the set of all pairwise feasible payoff
vectors by P (N, v). This set is typically much smaller than the entire imputa-
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tion space I(N, v). One can prove that the core of the assignment game (N, v)
coincides with the set {a ∈ P (N, v) : ai + aj ≥ v({i, j}) for all {i, j} ∈ P}.
In the definition of a pairwise feasible payoff vector and in coalitional ratio-
nality for essential pairs {i, j} ∈ P, side payments are allowed only between
two players in each essential coalition. Thus, for the consideration of the core
of an assignment game, side payments are only required within essential coali-
tions. In different game models, we may not be able to make exactly the same
assertion, but often a similar tendency can be found.

4.2 The von Neumann-Morgenstern Stable Set

Now consider the von Neumann-Morgenstern stable set. Let (N, v) be a game
with side payments. A subset K of I(N, v) is called a stable set iff it satisfies
the following two properties:

Internal stability: for any a, b ∈ K, neither “a dom b” nor “b dom a”;

External stability: for any a ∈ I(N, v) − K, there is b ∈ K such that “b
dom a.”

Von Neumann-Morgenstern described the stability property of a stable set as
follows: each stable set is a candidate for a stable standard of behavior in recur-
rent situations of the game. Once a stable set has become socially acceptable,
each imputation in the stable set is a possible stable (stationary) outcome. The
stability of each outcome in the stable set is supported by the entire structure
of the stable set. In general each game also has a great multiplicity of stable
sets. Two of these stable sets for the above three person game examples are
depicted in Figures 4.3 and 4.4.

In Figures 4.3 and 4.4, the stable sets consist of the points in the bold lines.
Which outcome in a stable set and which stable set arises is determined by the
history of the society. For a full explanation, see von Neumann-Morgenstern
(1944).

The definition of a stable set is based on dominance relations. Thus, like the
core, the definition depends only upon individual preferences and the feasibility
described by the characteristic function. Nevertheless, the definition of a stable
set depends crucially upon the entire imputation space I(N, v), in contrast
to the core. Some imputations in I(N, v) need large transfers among all the
players. For example, the point B = (15, 0, 5) in Figure 4.4 is in the stable set
and is obtained by choosing alternative x and making the transfer of 5 each to
players 1 and 3 from player 2. The point C = (0, 20, 0) is not in the stable set
but needs to be taken into account for a stable set.
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Figure 4.3 (N, v)

B:(15,5,0)

C:(0,20,0)

Figure 4.4 (N, v̄)
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When the game involves a large number of players, the dependence of a stable
set upon the entire imputation space becomes problematic. Imputations where
a few players get all the surplus and the others only receive their individually
rational payoffs cannot be ignored. It may require cooperation and agreement
among a large number of players to make large amounts of side payments
to obtain such imputations. In this case, the justification for the framework
of games with side payments and with no boundary conditions for money,
discussed in Section 2, becomes problematic.

In the Shapley-Shubik assignment game described above, for example, the
core can be defined by coalitional rationality for essential pairs in P and the
pairwise feasible payoff space P (N, v); it does not need the entire imputation
space I(N, v). In contrast to the core, a stable set crucially depends upon the
specification of the entire feasible payoff set. If we adopt a different set of
feasible payoff vectors, a stable set would change drastically.

Here we do not intend to suggest the superiority of the core to the stable set.
The stable set has a richer underlying interpretation than the core, and may give
some good hints for applications of game theory to new and different models
of social problems. Our intent is to suggest that simplistic applications or
extensions of the stable set may violate the original justification and motivation
for the framework of games with side payments.

4.3 The Nucleolus

Some solution concepts appear to make intrinsic use of the monetary repre-
sentation of v(S). In this and the following subsections we discuss two such
solution concepts, the nucleolus and the Shapley value. It is often claimed that
these concepts involve interpersonal utility comparisons. We consider how we
might interpret these interpersonal comparisons.

Let (N, v) be a game and let a be an imputation. Define the “dissatisfaction”
of coalition S ∈ 2N by

e(a, S) = v(S) −
∑

i∈S

ai. (4.5)

Let θ(a) be the 2n-vectors whose components are e(a, S), S ∈ 2N and are
ordered in a descending way, i.e., θt(a) ≥ θs(a) for all s and t from 1 to 2n with
t ≤ s. The lexicographic ordering .& is defined as follows:

a .& b iff there is an s (s = 1, · · ·, 2n) such that

θt(a) = θt(b) for all t = 1, ..., s − 1 and θs(a) > θs(b).
(4.6)
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The relation .& is a complete ordering on I(N, v). The nucleolus is defined to
be the minimal element in I(N, v) with respect to the ordering .& . Schmeidler
(1969) showed that the nucleolus exists and is unique.

The nucleolus has various technical merits. One merit is the unique exis-
tence; this facilitates comparative statics, for example. Also, when the core is
nonempty, the nucleolus belongs to the core and, for any ε ≥ 0, when the ε-core
is nonempty, the nucleolus belongs to the ε-core. In the examples of Section
4.1, the nucleoli are ( 25

3 , 25
3 , 10

3 ) and (10,10,0) respectively. In the first case the
nucleolus is in the ε−core, and in the second case the nucleolus coincides with
the core. The nucleolus is related to other solution concepts—the bargaining
set M i

1 of Aumann-Maschler (1964) and the kernel of Davis-Maschler (1965).
The nucleolus is frequently regarded as a possible candidate for a norma-

tive outcome of a game, meaning that the nucleolus expresses some equity or
fairness.10 Sometimes, it is regarded as a descriptive concept since it always
belongs to the core or the ε-core. Either interpretation, normative or descrip-
tive, presents, however, some difficulties related to the treatments of TU and
SP. The first difficulty is in the question of how to interpret comparisons of
dissatisfactions v(S)−

∑
i∈S ai and v(T )−

∑
i∈T bi for different coalitions S, T

and different imputations a, b. If the dissatisfactions are compared for a single
coalition, the minimization of dissatisfaction is equivalent to the original role of
v(S) described by (2.7) and (2.8), but comparisons are required over different
coalitions. The second difficulty is the lack of motivation for the criterion of
lexicographic minimization of dissatisfactions.

The first difficulty consists of two parts: (a) individual utilities (gains or
losses) are compared over players; and (b) sums of utilities (gains or losses) for
some players are compared for different coalitions. In either case, making such
comparisons already deviates from the initial intention of the characteristic
function discussed in Section 2.

Since a normative observer may be motivated to minimize dissatisfactions,
the second difficulty is less problematic if the nucleolus is regarded as normative
rather than as descriptive. The question here is the basis for the criterion of
minimizing dissatisfactions in the lexicographic manner. Thus the first question
is more relevant form the normative viewpoint.

The intuitive appeal of the nucleolus to some researchers may be based on
the feature that dissatisfactions are compared using monetary units, perhaps
because monetary comparisons are familiar from our everyday life. This may
be the basis for interpersonal utility comparisons inherent in the nucleolus.
However, this does not clarify the meaning of comparisons of dissatisfaction

10The normative aspect attributed to the nucleolus is derived chiefly by its similarity to
Rawles’ (1970) minmax principle or the leximin welfare function as the interpretation of the
maximin principle given by economists.
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over different coalitions. Moreover, as discussed in Section 2, the assumption
of transferable utility prohibits income effects and for distributional normative
issues, income effects are central.

4.4 The Shapley Value

The value, introduced by Shapley (1953), resembles the nucleolus as a game
theoretical concept; it exists uniquely for any game (N, v). From the viewpoint
of utility theory, the Shapley value also needs the intrinsic use of the particular
definition of a characteristic function. Nevertheless, it is less problematic than
the nucleolus. First, we give a brief review of the Shapley value.

Shapley (1953) derived his value originally from four axioms on a solution
function. A solution function ψ is a function on the set Γ of all n-person su-
peradditive characteristic function games (N, v), with fixed player set N, which
assigns a payoff vector to each game. Since the player set N is fixed, the game
is identified with a characteristic function v. Thus, a value function ψ : Γ→ Rn

is denoted by ψ(v) = (ψ1(v), ...,ψn(v)). Shapley gave the following four axioms
on ψ:

(S1): Pareto Optimality: for any game (N, v) ∈ Γ,
∑

i∈N ψi(v) = v(N);

(S2): Symmetry: for any permutation π of N,ψ(πv) = (ψπ(1)(v), ...,ψπ(n)(v)),
where πv is defined by πv(S) = v({π(i) : i ∈ S}) for all S ∈ 2N ;

(S3): Additivity: for any two games, v, w ∈ Γ, ψ(v + w) = ψ(v) + ψ(w),
where v + w is defined by (v + w)(S) = v(S) + w(S) for all S ∈ 2N ;

(S4): Dummy Axiom: for any game v ∈ Γ and i ∈ N , if v(S ∪ {i})
= v(S) + v({i}) for all S ∈ 2N with i /∈ S, then ψi(v) = v({i}).

In general, the solution function ψ depends upon the game described by a
characteristic function, but condition S2 means that ψ should not depend on
the names of players given by the index numbers 1, 2, ..., n.

Shapley (1953) proved the following: if a solution function ψ satisfies condi-
tions S1 through S4, then ψ is uniquely determined as

ψi(v) =
∑

S⊆N−{i}

|S|!(n − |S|− 1)!
n!

[v(S ∪ {i}) − v(S)] for all i ∈ N. (4.7)

Although each of the above axioms and Shapley’s result are mathematically
clear, they do not indicate the utility theory underlying the concept of the
Shapley value. Formula (4.7), however, does provide some utility theoretic in-
terpretation of the Shapley value.



1092 MAMORU KANEKO AND MYRNA H. WOODERS

Suppose that the players come to participate in the game in random order
and that each player i is paid his marginal contribution v(S ∪{i})− v(S) when
the players S are already in the game and then player i enters the game. Before
the game is played, it is equally probable for player i that he comes to the game
at any place in the ordering of 1, 2, ..., n. The probability that player i follows
the players in S is given by the coefficients in formula (4.7). Thus player i’s
expected utility from the random entry process is given as formula (4.7).

In the above interpretation, the utility theory underlying the Shapley value
is relatively clear. The marginal contribution v(S ∪ {i}) − v(S) is the mone-
tary payoff to player i and the expectation of these marginal payoffs is taken:
the risk neutral von Neumann-Morgenstern utility function suffices. In this in-
terpretation, however, the game is assumed to be played in a different manner
than that intended by the motivation initially given for a game in characteristic
function form.

Similarly to the nucleolus, the Shapley value is also interpreted as a norma-
tive (fair or equitable) outcome, mainly because of the symmetry condition. As
already mentioned, Symmetry simply states that a solution function does not
depend upon the names of the players, a necessary but not sufficient condition
for an equitable outcome, since the game itself may be inequitable.

5 Games Without Side Payments and Some Solution Concepts

Although a game with side payments is a convenient tool, it requires SP and
TU. The transferable utility assumption may be inappropriate for some situ-
ations in that it ignores income effects. Side payments may be prohibited or
impossible. When either SP or TU does not hold, games without side payments
are required. In this section we discuss a game without side payments together
with some solution concepts from the viewpoint of utility theories.

The term “game without side payments” is slightly misleading since the
game may satisfy SP and TU. However, we follow the standard terminology.

5.1 Games Without Side Payments

A game without side payments is given as a pair (N,V ) consisting of the player
set N and a characteristic function V on 2N . For each coalition S, the set
V (S) is a subset of RS , where RS is |S|−dimensional Euclidean space with
coordinates labelled by the members of S.11 The set V (S) describes the set
of all payoff vector for coalition S that are attainable by the members in S
themselves. We assume the following technical conditions: for all S ∈ 2N ,

V (S) is a closed subset of RS ; (5.1)

11R∅ = {0}.
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aS ∈ V (S) and bS ≤ aS imply bS ∈ V (S); (5.2)

{aS ∈ V (S) : aS
i ≥ max V ({i}) for all i ∈ S} is nonempty and bounded. (5.3)

Within the framework of games without side payments, a game with side
payments is described as

V (S) = {aS :
∑

i∈S

aS
i ≤ v(S)} (5.4)

for all S ∈ 2N . Thus V (S) describes directly the set of attainable payoffs for
S. The three examples of games with side payments in Section 2 are directly
described by (5.4). It will be seen below that using the framework without side
payments, the assumptions of transferable utility and side payments are not
needed.

A game without side payments is a heavy mathematical tool. It is suitable to
discuss general problems such as the nonemptiness of the core [cf. Scarf (1967)]
but when a specific game situation is given, it is often more convenient to work
on the situation directly instead of describing it as a game without side pay-
ments. Nevertheless, in order to see general principles underlying cooperative
games, it is useful to formulate game situations in terms of games without side
payments. In the following, we will see the descriptions of the examples given
in Section 2 in terms of games without side payments.

5.2 Examples

Market Games

Consider a market game with n players and m+1 commodities. In contrast to
the previous formulation of market games with quasi-linear utility functions, we
now assume that the continuous utility function Ui is defined on Rm+1

+ and the
endowment of player i is given as a vector in Rm+1

+ . The m+1th commodity is
treated in the same way as the first m commodities. An S-allocation (xi)i∈S is
defined by

∑
i∈S xi =

∑
i∈S ωi and xi ∈ Rm+1

+ for all i ∈ S. The characteristic
function V is defined by

V (S) = {aS ∈ RS : aS
i ≤ Ui(xi) for some S-allocation (xi)i∈S} (5.5)

for all S ∈ 2N . Then this characteristic function V satisfies conditions (5.1)-
(5.3). For this definition, only the existence of a utility function Ui representing
a preference relation !i is required [see Debreu (1959) for conditions ensuring
the existence of a continuous utility function].

For the definition (5.5), we can assume that the utility function Ui satisfies
the transferable utility assumption, i.e., linear separability. If, however, the
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endowments of ωi,m+1 of the m+1th commodity are small, then side payments
may not be freely permitted. If the endowments ωi,m+1 are sufficiently large to
avoid the relevant constraints, then side payments are effectively unbounded.
This is the case of a market game in Section 2.2. Nevertheless, side payments
are still part of the problem.

Voting Games

Consider a voting game where the assumption TU is satisfied but no side pay-
ments are permitted. In such a case, the characteristic function is given by

V (S) =






{aS ∈ RS : for some x ∈ X, ai ≤ ui(x) for all i ∈ S}
if |S| > n

2 ,

{aS ∈ RS : for all x ∈ X, ai ≤ ui(x) for all i ∈ S}
if |S| ≤ n

2 .

(5.6)

This majority voting game has been extensively discussed in the social choice
literature [Nakamura (1975), Moulin (1988), for example].

The above formulation of V (S) illustrates that the assumptions SP and TU
are independent. (Recall also the discussion of the relationships between SP
and TU in Subsection 2.3.) Nevertheless, unless side payments are totally
prohibited, it may be better to take side payments into account when building
a model, since, as discussed in Section 4, they may affect solutions significantly.

Cooperative Games Derived from Strategic Games

Suppose that side payments are not allowed in the normal form game G =
(N, {Σi}i∈N , {hi}i∈N ). This means that either the economy including the game
G has money but money transfers are prohibited, or that G is a full description
of the game in question and nothing other than in the game is available in
playing the game. In either case, the relevant utility functions of players, given
by {hi}i∈N , are von Neumann-Morgenstern utility functions over the domain
M(ΣN ).

Corresponding to definition (2.10), the characteristic function Vα is defined
by: for all S ∈ 2N ,

Vα(S) = {a ∈ RS : there is some σ ∈ M(ΣS) such that

for any σ−S ∈ M(ΣN−S), ai ≤ hi(σS ,σ−S) for all i ∈ S}.
(5.7)

The value Vα(S) of the characteristic function Vα is the set of all payoff vectors
for the members of the coalition S that can be obtained by the cooperation



CHAPTER 19: UTILITY THEORIES IN COOPERATIVE GAMES 1095

of the members of S. This is a faithful extension of definition (2.10) in the
absence of side payments.

In (2.10), in fact, the min-max value, which is obtained by changing the
order of the max and min operators, coincides with the value of (2.10) because
of the von Neumann Mini-Max Theorem. This suggests another definition of a
characteristic function; for all S ∈ 2N ,

Vβ(S) = {a ∈ RS : for any σ−S ∈ M(ΣN−S) there is

a σS ∈ M(ΣS) such that ai ≤ hi(σS ,σ−S) for all i ∈ S}.
(5.8)

Unlike games with side payments, these two definitions may give different
sets [cf. Aumann (1961)]. The first and second are often called the α- and β-
characteristic functions. A general nonemptiness result for the α-core, defined
using the α-characteristic function, is obtained in Scarf (1971). The β-core,
defined by the β-characteristic function, is closely related to the Folk Theorem
for repeated games [cf. Aumann (1959, 1981)].

5.3 Solution Concepts

The characteristic function V of a game without side payments describes, for
each coalition S, the set of payoff vectors attainable by the members of S. Once
V is given, the imputation space and dominance relations are extended to a
game without side payments in a straightforward manner. The imputation
space I(N,V ) is simply the set

{a ∈ V (N) : ai ≥ max V ({i}) for all i ∈ N}.

The dominance relation a dom b is defined by:

for some S ∈ 2N , ai > bi for all i ∈ S and and (ai)i∈S ∈ V (S).

The core is defined to be the set of all undominated imputations. The von
Neumann-Morgenstern stable set is also defined via internal and external sta-
bility requirements in the same way as in a game with side payments.

Consider the core and stable set for a voting game without side payments
for Example 3.1. Since no transfer of money is allowed, the problem is which
alternative x or y to choose. In both examples, players 1 and 2 prefer x to
y and thus x is chosen. Actually, x constitutes the core and also the unique
stable set. In the first example, when side payments are involved, Player 3
can compensate for Player 1 or 2 to obtain his cooperation for the alternative
y. This causes the core to be empty. Our point is that the possibility of side
payments may drastically change the nature of the game. But this is almost
independent of the assumption TU.
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The nucleolus and Shapley value are based intrinsically on the numerical
expression of the characteristic function with side payments. Nevertheless,
some authors modify the definitions of these concepts for games without side
payments. Here we discuss only one example—the λ-transfer value introduced
by Shapley (1969).

Shapley transformed a game (N,V ) without side payments into a game
(N, vλ) with side payments by using “utility transfer weights” λ = (λ1, ...,λn) >
0 by defining

vλ(S) = max{
∑

i∈S

λiai : a ∈ V (S)} for all S ∈ 2N . (5.9)

The λ-transfer value is defined as follows: a payoff vector a = (a1, ..., an) is a
λ-transfer value iff there are transfer weights λ = (λ1, ...,λn) > 0 such that a is
the Shapley value of the game (N, vλ) and a is feasible in (N,V ) i.e., a ∈ V (N).

Shapley (1969) proved the existence of a λ-transfer value for a game without
side payments, but uniqueness does not hold. Aumann (1985) provided an
axiomatization of the λ−transfer value.

From the viewpoint of utility theory, it is difficult to interpret the transfor-
mation from (N,V ) to (N, vλ) and the λ-transfer value. Some authors claim
that utility units are compared with the help of the weights. In fact, the matter
of the interpretation of the NTU value has been the subject of lively debate;
see Roth (1980, 1987), Aumann (1985b, 1986, 1987) and Scafuri and Yannelis
(1984).
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