DBNS near－factors and 1－overlapped factors篠原英裕（大阪大学情報科学研究科）

A pair (A, B) of subsets of a finite group G is near－factor if $A B=G \backslash\{g\}$ for some $g \in G$ and $|A|,|B| \geq 2$ ．Near－factors play important roles in the perfect graph theory and the set packing problems．On the other hand，A pair (A, B) of subsets of a finite group G is 1－overlapped factor if $A B=G \cup\{g\}$ for some $g \in G$ and $|A|,|B| \geq 2$ ．1－overlapped factors play an important role in the set covering problems．In this talk，we introduce some results on near－factors and 1 －overlapped factors．

For integers l and m ，let $[l, m]$ denote the set of integers from l by m ．Let φ_{k} be an isomorphism from \mathbb{Z} to \mathbb{Z}_{k} such that $\varphi_{k}(i)$ is the residue of i divided by k and ψ_{k} be the inverse map of φ_{k} ．Let $\rho(\geq 1)$ and $m_{1}, m_{2}, \ldots, m_{2 \rho}(\geq$ 2），$r, s(\geq 2)$ be integers such that $r=\prod_{i=1}^{\rho} m_{2 i-1}, s=\prod_{i=1}^{\rho} m_{2 i}$ and $n=$ $\prod_{i=1}^{2 \rho} m_{i}$ ．Let $\mu_{j}=\prod_{i=1}^{j-1} m_{i}$ for $2 \leq j \leq 2 \rho$ and $\mu_{1}=1$ ．Define a subset M_{i} of \mathbb{N} by $\left[0, m_{i}-1\right] \mu_{i}, A^{\prime}:=M_{1}+M_{3}+\cdots+M_{2 \rho-1}$ and $B^{\prime}:=M_{2}+M_{4}+$ $\cdots+M_{2 \rho}$ ．It is clear that $(A, B):=\left(\varphi_{n-1}\left(A^{\prime}\right), \varphi_{n-1}\left(B^{\prime}\right)\right)$ is a 1－overlapped factorization of $\mathbb{Z}_{n-1},\left(\varphi_{n+1}\left(A^{\prime}\right), \varphi_{n+1}\left(B^{\prime}\right)\right)$ is a near－factorization of \mathbb{Z}_{n+1} and $\left(\varphi_{n}(A), \varphi_{n}(B)\right)$ is a factorization of \mathbb{Z}_{n} ．We say that this (A, B) is a basic DBNS 1－overlapped factorization（resp．to a basic DBNS near－factorization，a basic $D B N S$ factorization）of \mathbb{Z}_{n} ．For this 1－overlapped factor（resp．to near－factor and factorization），the following three operations construct other 1－overlapped factors（resp．to near－factors and factorizations）．
－Shifting：Consider $(A+a, B+b)$ for some $a, b \in \mathbb{Z}_{n}$ ．
－Scaling：Consider $(\lambda A, \lambda B)$ for some $\lambda \in \mathbb{Z}_{n}^{\times}$．
－Swapping：Consider $(-A, B)$ ．
We say a 1－overlapped factor（resp．to a near－factorization and a factorization） constructed by this method is a $D B N S 1$－overlapped factor（resp．to a $D B N S$ near－factorization，a factorization）of \mathbb{Z}_{n} and the associated Lehman matrix is a DBNS Lehman matrix（resp．to a DBNS partitionable graph）．

Theorem 1 （D．de Caen，D．A．Gregory，I．G．Hughes and D．L．Kreher 1990）． If (A, B) is a near－factor of G ，then

$$
\langle A\rangle=\langle B\rangle=G .
$$

Theorem 2．If (A, B) is a 1－overlapped factor of G ，then

$$
\langle A\rangle=\langle B\rangle=G .
$$

Theorem 3 (D. de Caen, D. A. Gregory, I. G. Hughes and D. L. Kreher 1990). For a near-factor (A, B) of a finite abelian group G, there exist elements $a, b \in G$ such that $(A+a, B+b)$ is a symmetric near-factor of G, and the uncovered element of $(A+a, B+b)$ is the identity.
Theorem 4. For a 1-overlapped factor (A, B) of a finite abelian group G, there exist elements $a, b \in G$ such that $(A+a, B+b)$ is a symmetric 1-overlapped factor of G, and the doubly covered element of $(A+a, B+b)$ is the identity.

Theorem 5 (K. Kashiwabara and T. Sakuma 2006). A near-factor (A, B) of \mathbb{Z}_{n} is a DBNS near-factor if $\min (|A|,|B|) \leq 8$.

Theorem 6. A 1-overlapped factor (A, B) of \mathbb{Z}_{n} is a DBNS 1-overlapped factor if $\min (|A|,|B|) \leq 8$.

A near-factor (1-overlapped factor) is $\operatorname{Krasner}$ if $0 \leq \psi_{n}(a)+\psi_{n}(b) \leq n$ for each $a, b \in \mathbb{Z}_{n}$.
Theorem 7. Krasner near-factors and 1-overlapped factors of cyclic groups are $D B N S$.

A hypergraph is a clutter if no two hyperedges have inclusion relations. A clutter \mathscr{H} is called an ideal clutter if its set covering polytope $\left\{\vec{x} \in \mathbb{R}^{n} ; M(\mathscr{H}) \vec{x} \geq\right.$ $1, \overrightarrow{0} \leq \vec{x} \leq \overrightarrow{1}\}$ is an integral polytope. If \mathscr{H} is an ideal clutter, we say that $M(\mathscr{H})$ is an ideal matrix. D. R. Fulkerson defined the following two operations, deletion and contraction of column j.

- deletion: Delete j-th column, and delete i-th row if (i, j)-th entry is 1 .
- contraction: Delete j-th column. If there exist dominating rows in resulting matrix, delete them too.
minor of a matrix M if we can obtain M^{\prime} from M by repeatedly using deletions and contractions. P. Seymour [?] proved that each minor of an ideal matrix is also an ideal matrix. A matrix is called a minimally non-ideal matrix if it is not an ideal matrix, but its each minor is an ideal matrix. On the other hand, a clutter is perfect if its set packing polytope $\left\{\vec{x} \in \mathbb{R}^{n} ; M(\mathscr{H}) \vec{x} \leq 1, \overrightarrow{0} \leq \vec{x} \leq \overrightarrow{1}\right\}$ is an integral polytope. Padberg proved the following operation preserves of perfectness of a clutter.
- Delete j-th column. If there exist dominating rows in resulting matrix, delete dominated rows.

A matrix is minimally imperfect if it is not perfect, but its each minor is perfect.
Theorem 8 (Grinstead 1982). A clutter defined by a DBNS near-factor is minimally imperfect if and only if it is a clique clutter of an odd hole or an odd antihole.

Theorem 9. A clutter defined by a DBNS 1-overlapped factor is minimally non-ideal if and only if it is an edge clutter of an odd cycle or one of exceptional 10 clutters.

