DBNS near-factors and 1-overlapped factors

篠原英裕 (大阪大学情報科学研究科)

A pair (A, B) of subsets of a finite group G is *near-factor* if $AB = G \setminus \{g\}$ for some $g \in G$ and $|A|, |B| \ge 2$. Near-factors play important roles in the perfect graph theory and the set packing problems. On the other hand, A pair (A, B)of subsets of a finite group G is 1-*overlapped factor* if $AB = G \cup \{g\}$ for some $g \in G$ and $|A|, |B| \ge 2$. 1-overlapped factors play an important role in the set covering problems. In this talk, we introduce some results on near-factors and 1-overlapped factors.

For integers l and m, let [l, m] denote the set of integers from l by m. Let φ_k be an isomorphism from \mathbb{Z} to \mathbb{Z}_k such that $\varphi_k(i)$ is the residue of i divided by k and ψ_k be the inverse map of φ_k . Let $\rho(\geq 1)$ and $m_1, m_2, \ldots, m_{2\rho}(\geq 2)$, $r, s(\geq 2)$ be integers such that $r = \prod_{i=1}^{\rho} m_{2i-1}$, $s = \prod_{i=1}^{\rho} m_{2i}$ and $n = \prod_{i=1}^{2\rho} m_i$. Let $\mu_j = \prod_{i=1}^{j-1} m_i$ for $2 \leq j \leq 2\rho$ and $\mu_1 = 1$. Define a subset M_i of \mathbb{N} by $[0, m_i - 1]\mu_i$, $A' := M_1 + M_3 + \cdots + M_{2\rho-1}$ and $B' := M_2 + M_4 + \cdots + M_{2\rho}$. It is clear that $(A, B) := (\varphi_{n-1}(A'), \varphi_{n-1}(B'))$ is a 1-overlapped factorization of \mathbb{Z}_{n-1} , $(\varphi_{n+1}(A'), \varphi_{n+1}(B'))$ is a near-factorization of \mathbb{Z}_{n+1} and $(\varphi_n(A), \varphi_n(B))$ is a factorization of \mathbb{Z}_n . We say that this (A, B) is a basic DBNS 1-overlapped factorization (resp. to a basic DBNS near-factorization, a basic DBNS factorization) of \mathbb{Z}_n . For this 1-overlapped factor (resp. to near-factor and factorization), the following three operations construct other 1-overlapped factors (resp. to near-factors and factorizations).

- Shifting: Consider (A + a, B + b) for some $a, b \in \mathbb{Z}_n$.
- Scaling: Consider $(\lambda A, \lambda B)$ for some $\lambda \in \mathbb{Z}_n^{\times}$.
- Swapping: Consider (-A, B).

We say a 1-overlapped factor (resp. to a near-factorization and a factorization) constructed by this method is a *DBNS* 1-overlapped factor (resp. to a *DBNS* near-factorization, a factorization) of \mathbb{Z}_n and the associated Lehman matrix is a *DBNS* Lehman matrix (resp. to a *DBNS* partitionable graph).

Theorem 1 (D. de Caen, D. A. Gregory, I. G. Hughes and D. L. Kreher 1990). If (A, B) is a near-factor of G, then

$$\langle A \rangle = \langle B \rangle = G.$$

Theorem 2. If (A, B) is a 1-overlapped factor of G, then

$$\langle A \rangle = \langle B \rangle = G.$$

Theorem 3 (D. de Caen, D. A. Gregory, I. G. Hughes and D. L. Kreher 1990). For a near-factor (A, B) of a finite abelian group G, there exist elements $a, b \in G$ such that (A + a, B + b) is a symmetric near-factor of G, and the uncovered element of (A + a, B + b) is the identity.

Theorem 4. For a 1-overlapped factor (A, B) of a finite abelian group G, there exist elements $a, b \in G$ such that (A + a, B + b) is a symmetric 1-overlapped factor of G, and the doubly covered element of (A + a, B + b) is the identity.

Theorem 5 (K. Kashiwabara and T. Sakuma 2006). A near-factor (A, B) of \mathbb{Z}_n is a DBNS near-factor if $\min(|A|, |B|) \leq 8$.

Theorem 6. A 1-overlapped factor (A, B) of \mathbb{Z}_n is a DBNS 1-overlapped factor if $\min(|A|, |B|) \leq 8$.

A near-factor (1-overlapped factor) is *Krasner* if $0 \le \psi_n(a) + \psi_n(b) \le n$ for each $a, b \in \mathbb{Z}_n$.

Theorem 7. Krasner near-factors and 1-overlapped factors of cyclic groups are DBNS.

A hypergraph is a *clutter* if no two hyperedges have inclusion relations. A clutter \mathscr{H} is called an *ideal clutter* if its *set covering polytope* $\{\vec{x} \in \mathbb{R}^n; M(\mathscr{H}) \vec{x} \ge 1, \vec{0} \le \vec{x} \le \vec{1}\}$ is an integral polytope. If \mathscr{H} is an ideal clutter, we say that $M(\mathscr{H})$ is an *ideal matrix*. D. R. Fulkerson defined the following two operations, *deletion* and *contraction* of column j.

- deletion: Delete *j*-th column, and delete *i*-th row if (i, j)-th entry is 1.
- contraction: Delete *j*-th column. If there exist dominating rows in resulting matrix, delete them too.

minor of a matrix M if we can obtain M' from M by repeatedly using deletions and contractions. P. Seymour [?] proved that each minor of an ideal matrix is also an ideal matrix. A matrix is called a minimally non-ideal matrix if it is not an ideal matrix, but its each minor is an ideal matrix. On the other hand, a clutter is perfect if its set packing polytope $\{\vec{x} \in \mathbb{R}^n; M(\mathcal{H})\vec{x} \leq 1, \vec{0} \leq \vec{x} \leq \vec{1}\}$ is an integral polytope. Padberg proved the following operation preserves of perfectness of a clutter.

• Delete *j*-th column. If there exist dominating rows in resulting matrix, delete dominated rows.

A matrix is *minimally imperfect* if it is not perfect, but its each minor is perfect.

Theorem 8 (Grinstead 1982). A clutter defined by a DBNS near-factor is minimally imperfect if and only if it is a clique clutter of an odd hole or an odd antihole.

Theorem 9. A clutter defined by a DBNS 1-overlapped factor is minimally non-ideal if and only if it is an edge clutter of an odd cycle or one of exceptional 10 clutters.