Mutually M-intersecting Hermitian Varieties

Ryoh Fuji-Hara and Nobuko Miyamoto
(fujihara@sk.tsukuba.ac.jp)
(nmiyamot@sk.tsukuba.ac.jp)

Systems, Information and Mathematical Sciences,
University of Tsukuba,
Tsukuba, Ibaraki, Japan 305

Abstract

Let M be a set of a few integers. We consider a set of varieties in $\text{PG}(n, q)$ such that each variety contains ρ points and the number of points in the intersection of two distinct varieties is contained in M. Such set is called a set of mutually M-intersecting varieties. In this paper, it will be shown that there exist new sets of mutually M-intersecting varieties by using Hermitian varieties in $\text{PG}(2, q^2)$ and a unitary group of order $q + 1$.

Let f be a homogeneous polynomial. The set of points \mathbf{x} of $\text{PG}(n, q)$ satisfying $f(\mathbf{x}) = 0$ is called a variety and denoted by $V(f)$. In a previous paper [4], we proposed a problem called mutually M-intersecting varieties. It is a set of varieties $V(f_1), V(f_2), \cdots, V(f_s)$ which satisfies the following three conditions:

(i) M is a set of non-negative integers.

(ii) $|V(f_i)| = \rho$ for $1 \leq i \leq s$.

(iii) $|V(f_i) \cap V(f_j)| \in M$ for $1 \leq i, j \leq s, i \neq j$.

We will use $\mathcal{V}(\rho, M)$ to denote the set and $\mathcal{V}(\rho, \mu)$ when M is a singleton $\{\mu\}$. Note $s = |\mathcal{V}(\rho, M)|$.

Some results on mutually $\{\mu\}$-intersecting varieties are shown in [4]. Using quadrics and a projective group on $\text{PG}(3, q)$, we obtained $\mathcal{V}(q^2 + 1, q + 1)$ consisting of q^2 varieties and $\mathcal{V}((q + 1)^2, 3q + 1)$ of q^2 varieties. Finding $\mathcal{V}(\rho, M)$ which consists of a number of varieties is an interesting problem. $\mathcal{V}(\rho, M)$ is useful to construct combinatorial designs such as (r, λ)-design and arrays like orthogonal, incomplete orthogonal or balanced arrays [2], [3]. In this paper, we will use results on intersections of Hermitian varieties shown by Kestenband [8] and construct new sets of mutually M-intersecting Hermitian varieties in $\text{PG}(2, q^2)$ with M of a few integers.
1 Hermitian variety

A \((n + 1) \times (n + 1)\) square matrix \(H = (h_{ij})\) with elements from \(\text{GF}(q^2)\) is called a Hermitian matrix if \(h_{ij} = h_{ji}^q\) for all \(i, j\). Let \(A^{(q)} = (a_{ij}^{(q)})\) for a matrix \(A = (a_{ij})\), \(a_{ij} \in \text{GF}(q^2)\). A Hermitian variety (abbreviated to HV) is defined as \(\{x \in \text{PG}(2, q^2) : f(x) = x^T H x^{(q)} = 0\}\), where \(H\) is a Hermitian matrix. Here we use \(V(H)\) instead of \(V(f)\) to denote the Hermitian variety.

Two Hermitian matrices \(H\) and \(G\) are said to be equivalent if there exists a nonsingular matrix \(P\) over \(\text{GF}(q^2)\) such that \(P^T HP^{(q)} = G\). When \(H\) is a rank \(r\) Hermitian matrix, \(V(H)\) is called a rank \(r\) HV. A rank \(n + 1\) HV in \(\text{PG}(n, q^2)\) is also called a nondegenerate HV. The properties of a HV in \(\text{PG}(2, q^2)\) have been studied [1], [8]. A HV in \(\text{PG}(2, q^2)\) contains \(q^2 + 1, q^3 + q^2 + 1\) or \(q^3 + 1\) points, according to the rank 1, 2, or 3, respectively. It is also known that any nonsingular Hermitian matrix is equivalent to a unit matrix \(I\).

Kestenband [8] has showed a classification of \(V(H)\) in \(\text{PG}(2, q^2)\) with respect to intersections with \(V(I)\). Note that the minimal polynomial \(m(x)\) of a matrix \(H\) satisfies \(m(H) = 0\) and \(m'(H) \neq 0\) for any polynomial \(m'(x)\) with \(\deg(m'(x)) < \deg(m(x))\).

Result (B.C. Kestenband)

Let \(H\) be a nonsingular Hermitian matrix. Let \(m(x)\) and \(g(x)\) be minimal and characteristic polynomial of it respectively. \(V(H) \cap V(I)\) contains

1. \((q + 1)^2\) points, if \(m(x) = g(x) = (x - \alpha)(x - \beta)(x - \gamma)\), \(\alpha, \beta, \gamma\) distinct elements of \(\text{GF}(q)\).

2. \(q^2 + q + 1\) points, if \(m(x) = g(x) = (x - \alpha)(x - \beta)^2\), \(\alpha, \beta\), distinct elements of \(\text{GF}(q)\).

3. \(q + 1\) collinear points if \(m(x) = (x - \alpha)(x - \beta)\), \(\alpha, \beta\), distinct elements of \(\text{GF}(q)\).

4. \(q^2 + 1\) points, if \(m(x) = g(x) = (x - \alpha)p(x), \alpha \in \text{GF}(q), p(x) : \text{irreducible over } \text{GF}(q)\).

5. \(q^2 + 1\) points, if \(m(x) = g(x) = (x - \lambda)^3\).

6. one point if \(m(x) = (x - \lambda)^2\).

7. \(q^2 - q + 1\) points, no three of which are collinear, if \(g(x)\) is irreducible over \(\text{GF}(q^2)\).
In addition to the above result, Kestenband [7] generated a set χ consisting of $q^2 + q + 1$ Hermitian matrices with irreducible characteristic polynomials over GF(q). The set of varieties from χ directly forms $V(q^3 + 1, q^2 - q + 1)$. Since χ is isomorphic to PG(2, q), the incidence matrix of the varieties $V(q^3 + 1, q^2 - q + 1)$ and the points on PG(2, q^2) contains $q^2 - q + 1$ copies of PG(2, q). In the next section, we use a Hermitian matrix with minimal polynomial $(x - 1)^3$ and construct new mutually M-intersecting varieties which are different from the result of Kestenband.

2 Constructions

We assume in the rest of this paper that q is an even prime power. A matrix U is unitary if $U^T U(q) = I$. Consider the following unitary matrix U and group U of order $q + 1$ over GF(q^2).

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha^2 \end{pmatrix}, \quad \text{where } \alpha^{q+1} = 1, \alpha \neq 1 \text{ over GF} (q^2),$$

$$U = \left\{ I, U, U^2, \ldots, U^q \right\}.$$

Let H be a non-singular Hermitian matrix with minimal polynomial $m(x) = (x - 1)^3$. Without loss of generality, we can put

$$H = \begin{pmatrix} 1 & a & 0 \\ a^q & 1 & b \\ 0 & b^q & 1 \end{pmatrix}, \quad \text{where } a, b \in \text{GF}(q^2) \setminus \{0\}, \quad a^{q+1} + b^{q+1} = 0.$$

Using above unitary group U, we define a set of HV’s by

$$H = \{V(H_1), V(H_2), \ldots, V(H_{q+1})\}, \text{where } H_i = U_i^T H U_i(q), \quad U_i \in U.$$

Then H_i is expressed by

$$H_i = \begin{pmatrix} 1 & a \alpha^i q & 0 \\ a^q \alpha^i & 1 & b \alpha^i q \\ 0 & b^q \alpha^i & 1 \end{pmatrix}.$$

Note that any $V(H_i) \in H$ is a nondegenerate HV and it contains $q^3 + 1$ points.

Theorem 1 Let q be an even prime power. Then H is a set of mutually M-intersecting varieties $V(q^3 + 1, q^2 + 1)$, where $|V(q^3 + 1, q^2 + 1)| = q + 1$.

3
Proof. We will show that any distinct two HV’s $V(H_i)$ and $V(H_j)$ of \mathcal{H} have $q^2 + 1$ points in common. We can say that $|V(H_i) \cap V(H_j)| = |V(U_i^T H U_j^{i(q)}) \cap V(U_j^T H U_j^{i(q)})| = |V(U_i^T H U_j^{i+k(q)}) \cap V(H)|$ for some k such that $U_j^{i+k} = I$. So we only show that the number of points of $V(H_i) \cap V(H)$ for any $V(H_i) \in \mathcal{H}$, $H_i \neq H$ is $q^2 + 1$. Moreover we have $|V(H_i) \cap V(H)| = |V(P_i^T H P(q)) \cap V(I)|$, where P is a non-singular matrix such that $P_i H P(q) = I$:

$$P = \begin{pmatrix} 1 & a^q t & a^q b^2 t \\ 0 & t & b^2 t^q \\ 0 & 0 & t^{-1} \end{pmatrix}, \quad \text{where } t^{q+1}(a^{q+1} + 1) = 1 \text{ over } GF(q^2).$$

The characteristic polynomial of $P_i H_i P(q)$ is $\det(P_i H_i P(q) - xI) = \det(P_i^T H_i P(q) - xP_i^T H P(q)) = \det(P_i^T) \det(H_i - xH_j) \det(P(q)) = \det(H_i - xH_j) = (x-1)^3$. When the first row of $P_i H_i P(q)$ is expressed by $P_i^T = (1, a^q(1+\alpha)^q, ab(1+\alpha)^q)$, the (1,1)-entry of $(P_i^T H_i P(q) - I)^2$ is $P_i^T P(q) + 1 = 1 + a_t^{q+1} t^{q+1} + d_t^{q+1} t^{q+1} + a_t^{q+1} b_t^{q+1} t^{q+1} + b_t^{q+1} t^{q+1} + 1 = a_t^{q+1} (1 + \alpha)^q + 1 \neq 0$

by $t^{q+1}(1+b_t^{q+1}) = 1$. Since $(P_i^T H_i P(q) - I)^3 \neq 0$, the minimal polynomial of $P_i^T H_i P(q)$ is $(x-1)^3$. Hence we have $|V(H_i) \cap V(H)| = q^2 + 1$ from Result given by the previous section.

Next consider two non-singular Hermitian matrices H and H' both having the minimal polynomial $m(x) = (x-1)^3$. Then as we mentioned before, we can define two sets as follows:

- $\mathcal{H}_{a,b} = \{V(H_1), V(H_2), \ldots, V(H_{q+1})\}$, where $H_i = U_i^T H U_j^{i(q)}$, $U_i \in \mathcal{U}$,
- $\mathcal{H}_{c,d} = \{V(H'_1), V(H'_2), \ldots, V(H'_{q+1})\}$, where $H'_j = U_j^T H' U_j^{j(q)}$, $U_j \in \mathcal{U}$,

where

$$H = \begin{pmatrix} 1 & a & 0 \\ a^q & 1 & b \\ 0 & b & 1 \end{pmatrix}, \quad H' = \begin{pmatrix} 1 & c & 0 \\ c^q & 1 & d \\ 0 & d & 1 \end{pmatrix},$$

$a, b, c, d \in GF(q^2) \setminus \{0\}$, $a^{q+1} + b^{q+1} = 0$, $c^{q+1} + d^{q+1} = 0$.

In order to have $\mathcal{H}_{a,b}$ and $\mathcal{H}_{c,d}$ which are disjoint, we have to restrict $a, b, c,$ and d. Let w be a primitive element of the multiplicative group $GF(q^2) \setminus \{0\}$ of order $q^2 - 1$. Let $K = \{1, w, w^2, \ldots, w^{q(q-1)}\}$ be a multiplicative subgroup of order $q + 1$ and $K_k = K \cdot w^k$ for k cosets of K, $0 \leq k \leq q - 2$. Suppose $a \in K_l$, $0 \leq l \leq q - 2$. Then the (2,2)-entry $a \cdot \alpha^q$ of H_l is also an element of K_l since α is included in K. So for $1 \leq i \leq q + 1$, $a \cdot \alpha^q$ runs over all elements of K_l. From $a^{q+1} + b^{q+1} = 0$, b must be contained in K_l. Hence we must choose c and d from cosets K_k, $k \neq l$, to satisfy $\mathcal{H}_{a,b} \cap \mathcal{H}_{c,d} = \emptyset$.

4
Theorem 2 Let \(q \) be an even prime power. If \(a \) and \(c \) belong to different cosets \(K_k \) and \(K_1 \) respectively, then \(\mathcal{H}_{a,b} \cup \mathcal{H}_{c,d} \) is a set of mutually \(M \)-intersecting varieties \(\mathcal{V}(q^3+1,M) \), where \(M \subseteq \{q^2+1,(q+1)^2\} \) and \(|\mathcal{V}(q^3+1,M)| = 2(q+1) \).

Proof. From Theorem 1, \(\mathcal{H}_{a,b} \) and \(\mathcal{H}_{c,d} \) are both \(\mathcal{V}(q^3+1,q^2+1) \). So we have to consider the number of points in the intersection of \(V(H_i) \) and \(V(H'_j) \) for \(H_i \in \mathcal{H}_{a,b} \) and \(H'_j \in \mathcal{H}_{c,d} \). It is easily seen that \(|V(H_i) \cap V(H'_j)| = |V(H) \cap V(H'_{j+k})| \) for some \(k \) such that \(U_{i+k} = I \). And we have \(|V(H) \cap V(H'_j)| = |V(I) \cap V(P^TH'_jP^{(q)})| \), where \(P \) is a non-singular matrix such that \(P^THP^{(q)} = I \). The characteristic polynomial \(g(x) \) of \(P^TH'_jP^{(q)} \) is \((x-1)(x^2+\delta x+1) \), where \(\delta = (ac^q + bd^q)\alpha^{q^2} + (a^q c + b^q d)\alpha \). The quadratic equation \(x^2 + \delta x + 1 = 0 \) has one solution over \(GF(q) \) if \(\delta = 0 \). Then we have \(g(x) = (x-1)^3 \) and \((P^TH_jP^{(q)} - xI)^2 \neq 0 \). Hence the minimal polynomial \(m(x) \) of \(P^TH'_jP^{(q)} \) is \(m(x) = (x-1)^3 \). When the equation \(x^2 + \delta x + 1 = 0 \) has two solutions, \(m(x) = g(x) = (x-1)(x-\beta)(x-\gamma) \), where \(1 \neq \beta \neq \gamma \in GF(q) \). When the equation has no solutions, \(m(x) = g(x) = (x-1)(x^2+\delta x+1) \); that is, \(x^2 + \delta x + 1 \) is irreducible over \(GF(q) \). Therefore \(V(P^TH'_jP^{(q)}) \) and \(V(I) \) intersect on \(q^2+1 \) points or \((q+1)^2 \) points.

In the proof of Theorem 2, if \(\delta = 0 \), the minimal polynomial \(m(x) \) of \(P^TH'_jP^{(q)} \) is \((x-1)^3 \). When \(a = b \) and \(c = d \), we always obtain \(\delta = 0 \). Since \(|V(H) \cap V(H'_j)| = q^2+1 \) for \(H_i \in \mathcal{H}_{a,b} \) and \(H'_j \in \mathcal{H}_{c,d} \), we can show the next Corollary.

Corollary 1 Let \(q \) be an even prime power. If \(a = b \) and \(c = d \) then \(\mathcal{H}_{a,b} \cup \mathcal{H}_{c,d} \) is a set of mutually \(M \)-intersecting varieties \(\mathcal{V}(q^3+1,q^2+1) \) consisting of \(2(q+1) \) varieties.

Finally we want to collect a set of Hermitian varieties \(\mathcal{H}_{a,b} \) as many as possible by choosing the values of \(a \) and \(b \) of \(H \).

Theorem 3 Let \(q \) be an even prime power. There exists a set of mutually \(M \)-intersecting varieties \(\mathcal{V}(q^3+1,q^2+1) \) consisting of \(q^2-1 \) varieties.

Proof. Let \(J = \{1, w, \dotsc, w^{q-2}\} \) be a set of representatives of the cosets \(K_k = Kw^k, 0 \leq k \leq q-2 \). Consider a set of varieties \(\bigcup_{a \in J} \mathcal{H}_{a,a} \). If we choose \(a, c \in J, a \neq c \), then \(\mathcal{H}_{a,a} \cup \mathcal{H}_{c,c} \) is \(\mathcal{V}(q^3+1,q^2+1) \) by Corollary 1. Hence \(\bigcup_{a \in J} \mathcal{H}_{a,a} \) is \(\mathcal{V}(q^3+1,q^2+1) \) consisting of \((q+1)(q-1) \) varieties. ■
Theorem 4 Let q be an even prime power. There exists a set of mutually M-intersecting varieties $V(q^3+1, \{q^2+1, (q+1)^2\})$ consisting of $(q+1)^2(q-1)$ varieties.

Proof. Let $J = \{1, w, \ldots, w^{q-2}\}$ be a set of representatives of the cosets K_1. Let $L = \{(a, b); a^{q+1} + b^{q+1} = 0, a \in J, b \in GF(q^2)\}$. Then L consists of $(q-1)(q+1)$ elements and $H_{a,b} \cap H_{c,d} = \emptyset$ for $(a, b), (c, d) \in L, (a, b) \neq (c, d)$. Therefore $\bigcup_{(a, b) \in L} H_{a,b}$ is $V(q^3+1, \{q^2+1, (q+1)^2\})$ by Theorem 2. □

We remark that we can add $V(I)$ to $V(H_i)$ in all theorems because we can show $|V(H_i) \cap V(I)| = q^2 + 1$ for any $V(H_i) \in \mathcal{H}$.

References

