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Abstract

One-way carsharing is becoming increasingly popular because it is more convenient for users than
conventional round-trip carsharing. However, a one-way service suffers from a mismatch between
user demand and the distribution of vehicles (supply). A number of methods have been studied
in attempts to resolve this issue. In particular, “last-mile mobility”, a type of one-way carsharing
providing short trips between stations at public transport hubs and origins/destinations in local
areas, reserves destination parking spaces in addition to vehicles at origins, and it needs to control
both resources carefully.
Here, we develop a mixed integer linear programming (MILP) model of an existing short-trip last-
mile mobility service (Ha:mo RIDE) in Japan and optimize the vehicle distribution and relocations
to maximize the operator’s profit. The optimal solution indicates that the operator should reduce
relocation disproportionately because of the low revenue per short trip. However, a low satisfied
demand rate would result in customer defection and lead to a long-term loss. As solution, we
propose autonomous relocation by low-speed automated driving and show that slow but frequent
relocations would yield both a benefit to the user (high satisfied demand) and profit for the operator
as well as a virtual increase in parking capacity for last-mile mobility operations with many small
stations.

1 Introduction

The Japanese government is promoting “Society 5.0” [1], a “super smart” society as a successor to
hunter-gatherer, agricultural, industrial, and information societies that came before it. Society 5.0 is
described in the 5th Science and Technology Basic Plan [2]; one of its pillars is MaaS, mobility as a
service, such as carsharing and ridesharing.

Carsharing has become a popular means of transportation in the 21st century. For instance, Zipcar,
founded in 2000 in the US, has expanded to Canada and Europe and provided services to more than 1
million members in 2017. Members can find and reserve vehicles with a smartphone app and get access to
vehicles simply by using their member’s cards as entry badges. In 2007, car2go started as a free-floating
one-way carsharing experiment in Ulm, Germany, and it is now the world’s largest carsharing company
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with operations all over the globe. Car2go has a convenient one-way service which allows users to return
vehicles anywhere within the service area, while a round-trip service requires vehicles to be returned
their original points. Autolib’, initiated in Paris in 2011, is a one-way carsharing scheme that provides
electric vehicles (EVs). Autolib’ is a non-floating (station-base) system and EVs have to be returned to
Autolib’ stations to be recharged.

Station-base one-way carsharing using ultra-compact EVs started in Japan in 2012. Yokohama city and
Nissan launched “Choimobi Yokohama”, a two-person EV sharing service, whose main objectives are to
encourage low-carbon emission transport and promote tourism. One-way service was available for the
first two years, and round-trip service is currently available. In the same year, Toyota launched “Ha:mo
RIDE” [3], a new type of mobility service for last-mile transport. Providing one-way sharing service
with ultra-compact EVs such as i-ROAD [4] and COMS [5], Ha:mo is intended to be a stress-free and
eco-friendly “Harmonious Mobility Network” that utilizes both personal and public transport. Since its
launch in Toyota city, Ha:mo RIDE has expanded to Tokyo, Okinawa, and Okayama in Japan, Grenoble
in France, and Chulalongkorn University in Thailand.

One-way carsharing provides more flexibility for users, but has an issue of imbalanced user demand
and vehicle supply. To increase satisfied demand, many carsharing operators hire personnel to relocate
vehicles from lower demand areas to higher demand areas in a time dependent manner, but the labor
cost of the relocation staff puts pressure on their profitability. Another approach to ease the imbalance
is adaptive pricing, which controls user demand by placing premiums on trips from high-demand areas
(or giving discounts for trips to high-demand areas). There are several studies on adaptive pricing for
on-demand mobility, such as that of Drwal, Gerding, Stein, Hayakawa, and Kitaoka [6]. Ridesharing
services such as Uber and Lyft use dynamic pricing to control both demand and supply [7]. To increase
both the number of demands served and revenue, companies have placed premiums of attracting drivers
(increasing supply) as well as discouraging potential users (decreasing demand). By allying with car
makers, ridesharing companies are developing self-driving vehicles [8] to maximize vehicle utilization.

In this paper, we focus on last-mile mobility, one-way carsharing designated for short trips within a
city, and develop an optimization model for making optimal operation decisions. The next section
2 reviews previous research related to the one-way carsharing optimization. Section 3 explains the
characteristics of last-mile mobility and develops an optimization model for Ha:mo RIDE. Section 4
describes our application and the developed model for Ha:mo RIDE in Toyota city (Ha:mo RIDE Toyota)
and it compares the optimal solution with the actual operation. It also describes two case studies
involving modifications to the model: (1) a “premium service” guaranteeing reservations in return for
price premiums and (2) autonomous relocation by slow-speed automated self-driving. The last section
5 provides conclusions and ideas for future research.

2 Recent research on optimization-based analysis of carsharing

There is a growing body of research on optimization-based analysis of carsharing and other kinds of
mobility sharing. Jorge and Correia [9] reviewed the history of carsharing, from its beginnings as a
cooperative initiative to recent one-way services and related research. Boyaci, Zografos, and Gerolimi-
nis [10] classified models related to planning and operation of carsharing systems into two categories: (i)
models addressing strategic planning decisions and (ii) models supporting operational decisions. In order
to maximize performance metrics such as the number of uses, strategic planning decides the locations
and sizes of stations and the number of vehicles assigned to each station, while operational decisions
relocate the vehicles among the stations.

Correia and Antunes [11] presented an optimization approach for determining the location of stations to
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maximize one-way carsharing operator’s profit including revenues from users and costs of maintaining
vehicles, parking space, and relocating vehicles. The interest of the study was strategic decision making,
and neither detailed relocation operations nor constraints on maximum parking space per station or the
total number of vehicles was considered. Later, Jorge and Correia [12] incorporated the relocation opera-
tion into the optimization models for maximizing profit and examined relocation policies in simulations.
They found that a dynamic (frequent) relocation policy significantly improved profitability.

Correia, Jorge, and Antunes [13] introduced a notion of user flexibility by offering a choice of disembark-
ing at the second or third closest stations. When exploited in combination with real-time information
about vehicle availability, such user flexibility increases the number of demands served and raises the
operator’s profit. Although this notion reflects the situation of actual carsharing services that pro-
vide information on nearby vehicles, an actual user’s willingness to use alternative stations can only be
supposed until he or she states it.

Kek, Cheu, Meng, and Fung [14] proposed a three-phase optimization-trend-simulation (OTS) decision
support system for the staff-based vehicle relocation problem. Phase one of the OTS Optimizer returns
the lowest-cost resource allocation, phase two Trend Filter filters the output through a series of heuristics,
and phase three Simulator evaluates the performance of the result. In the optimization, the problem is
modeled as an MILP on a time-space network in which nodes represent staff behaviors. It was found
that an increase in variables such as number of stations and time steps increased the computational
complexity of the model, and no effective solution was presented in their paper.

Boyaci, Zografos, and Geroliminis [15] proposed an integrated multi-objective mixed integer linear pro-
gramming (MMILP) optimization and discrete event simulation framework for vehicle and personnel
relocation in a one-way carsharing system with reservations. By clustering stations, the number of
variables is reduced and the computational complexity of the optimization decreases as result. The op-
timization model was developed on a time-augmented network, using time intervals (15 minutes) during
which each vehicle and each personnel had only one status. This network contributes to a clear formu-
lation including the flow conservations of the vehicles and relocation staff. Our optimization modeling
for last-mile mobility in section 3.2 uses the same network structure.

As shown above, there has been research pursuing optimal vehicle distributions and relocation operations
for one-way carsharing. However, the developed models are inappropriate for last-mile mobility because
of the characteristics described in section 3.1.

3 Framework and modeling

3.1 Last-mile mobility sharing

Last-mile mobility sharing has different aspects from the usual one-way carsharing. Here, taking Ha:mo
RIDE as an example, we describe the characteristics of last-mile mobility. To be used as last-mile
transport, vehicles are parked at stations close to public transport stations, bus stops, and other points
of interest such as shopping malls, office, and homes (Fig.1). In last-mile mobility, users typically travel
from the origin to the destination without taking any detours, as in the case of other kinds of last-mile
transportation such as bus or taxi. Round-trips account for only a few rides, and most last-mile one-way
trips end in a shorter time than other kinds of one-way carsharing. The actual data on use of Ha:mo
RIDE Toyota clearly reflects these features.

A characteristic of last-mile mobility is that users reserve parking spaces at destinations as well as
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Fig. 1: Last-mile mobility network - Ha:mo RIDE [3]

vehicles at origins. Assigning parking spaces before departure allows users to end their trips on arrival,
just as other last-mile transport such as bus and taxi do. This feature is necessary for last-mile mobility:
while it is frustrating if it takes 10 minutes to find a parking space after driving for 1 hour, it is nearly
intolerable if it takes 10 minutes to park after driving for only10 minutes. On the other hand, users
cannot make reservations if they cannot find available parking spaces at the destinations, even if they
find vehicles at the origin station (Fig.2). In last-mile mobility with parking assignments, both vehicles
and parking spaces need to be managed more carefully than in carsharing without parking assignments
in order to meet demand.

Fig. 2: No parking, no reservation. Users reserve parking spaces as well as vehicles. Users don’t need to look
for available parking spaces when they arrive, but parking spaces have to be available when they make
reservations.

Ha:mo RIDE is operated by local operators in each area a under common service procedure as follows.
First, users reserve vehicles with smartphone apps or through a web page by registering both origin and
destination stations. If there is no “free” (available) vehicle at the origin or no “free” parking space at
the destination, the applications fail (vanish). Once made, reservations are valid for 20 to 30 minutes
depending on each service, and both vehicles and parking spaces become “assigned”, i.e., not available to
other users. When a registered user depart from an origin station, a parking space becomes “free”, i.e.,
available to other users and vehicles. When the user arrives at the destination station, the driven vehicle
becomes “free” again. Fig. 3 shows this process together with the changes in state of the resources.

To avoid imbalances between supply and demand and at the same time increase the number of uses,
operators set vehicle distribution targets (relocation thresholds at each station) based on use-history
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Fig. 3: Service procedure and changes in resource status. Note that optimization modeling assumes that users
depart the origin station immediately after making a reservation; i.e., the resource state transitions
reflecting reservation and departure occur at the same time.

analyses and experience. In practice though, actual operations depend on the on-site relocation staff.
Despite the operators’ efforts and costs, there still remains customer dissatisfaction due to imbalances,
which means lost business and if, not corrected, long-term reductions in the number of customers. In
the next section 3.2, we develop a mixed integer linear programming (MILP) model that optimizes the
vehicle distribution and relocations to maximize the operator’s profit.

3.2 Optimization modeling

Our optimization model is based on the idea described in Boyaci et al. [15], but it is more restrictive
than theirs [15]. In particular, it puts specific assumptions on last-mile mobility sharing, as follows.

1. Last-mile mobility is modeled on a time-augmented network, which consists of stations and time
intervals. Note that each time interval is 5 minutes, shorter than in previous research (e.g., 15
minutes), because last-mile mobility is used for relatively short trips.

2. The demand for the whole day is given at once, though actual reservations are made 30 min-
utes before rides. There is no time gap between reservation and departure, and there are no
cancellations.

3. For a trip to occur, there have to be vehicles at the origin and parking spaces at the destination
at the time of departure.

4. Travel time is the trip duration plus a constant period, assuming one-way short trips without
making any detours. The constant period is thus a margin for departure and arrival that includes
the time spent getting into and out of the vehicle and getting the vehicle ready to move. The
travel time of moving staff and relocating vehicles is calculated in the same way.

5. The trip duration is expressed in terms of parameters depending on the traffic conditions as well
as the distance between stations. Travel times between the same stations at different times of the
day can be different.

6. Every trip or relocation takes at least 1 time interval.
7. Each node of the network is represented as (j, t), where j identifies the station and t the time

interval, is a state including the number of parked vehicles, number of assigned parking spaces,
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and number of relocation staff.
8. In each time interval, each vehicle can have only one status: “free” or “assigned”. “Assigned”

includes rides of users and relocation of staff.
9. In each time interval, each parking space can have only one status: “free” (available) or “assigned”

or “parked” (both unavailable).
10. In each time interval, each relocation staff can have only one status: “idle”, “moving”, or “relo-

cating”.
11. Relocation staff work for one shift, and each shift has a beginning time and a finishing time. The

manager must work a specific shift (the shift in dark green in Fig. 4), while other staff work when
relocation becomes necessary.

Fig. 4: Staff shift

12. The relocation staff move on a staff vehicle as a team (a two-man team), and they relocate vehicles
by one driving the vehicle that was used and the other driving the staff vehicle (Fig.5). Previous
research did not clearly define how the staff moves or otherwise assumed they did so by bicycle
over a long distance. Instead, we followed the actual operation procedure of Ha:mo RIDE Toyota
*1.

Fig. 5: Moving and relocating using staff vehicle

13. The state of charge (SOC) of the vehicle’s battery is not considered. Last-mile mobility is mostly
intended for one-way short trips, and electricity consumption is low enough for the battery to be
recharged during time between one trip and the next. In the Ha:mo RIDE Toyota case study, we
ran simulations on a simulator )updated by Shimazaki, Kuwahara, Yoshioka, Homma, Yamada,
and Matsui [16]) and found that no vehicles became unavailable because of a low SOC.

14. The number of vehicles and the number, capacity (number of parking spaces), and locations of
stations are given as parameters.

Assumptions 2, 3, 4, 5, 9, 12, 13, 14 are different from previous research.

Fig. 6 shows the time-augmented network and arcs representing trips and relocations.

• The arcs represent movements of vehicles between nodes. There are four vehicle movements,
three for trips and one for relocation: three vehicles driven by users from node (2, 2) to (j, t) (from

*1 Staff walk between neighboring stations within walking distance, but for the sake of simplicity, we assume that they
walk between all stations.
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Fig. 6: Time-augmented network and arcs representing vehicle movements

station 2 at time interval 2 to station j at time interval t), from (2, t−1) to (1, t+1), from (j, t+1)
to (1, t+ 2), and one vehicle driven by relocation staff from (1, t+ 2) to (2, t+ 3).
• Because each vehicle can have only one status during each time interval, a vehicle starting at
station j in time interval t must be ready by the end of the previous time interval t−1. Moreover,
a vehicle arriving at station j in time interval t must be ready starting from the next time interval
t+ 1. The same is true for parking spaces and relocation staff.
• Parking spaces must be assigned to each trip from the beginning of the trip. For example, for a
trip from (2, 2) to (j, t), a parking space at station j must be assigned from the beginning of time
interval 2.
• Relocation must be accompanied by relocation staff, obviously because relocating vehicles are
driven by staff. During the relocation from (1, t + 2) to (2, t + 3), the relocation staff move just
the same as the vehicle.
• Besides using the staff vehicle for relocation, staff also move between stations in it, as described
in section 3.2. The operation is limited to serial relocation from a station where the staff start
working when only one member is working. For example, after relocation to (2, t + 3), the staff
cannot move from station 2 without the staff vehicle.

For staff-moving and vehicle-relocating, stations are clustered in order to decrease the number of variables
and reduce computational complexity. Fig. 7 shows the moving and relocating arcs on the time-
augmented network with clusters of stations.

Fig. 7: Time-augmented network with clusters of stations and moving and relocating arcs

• The moving and relocating operations are divided into three parts. Taking relocation from node
(j, t) to (l, t+2) as an example, part (i) is from origin station j to the origin station’s cluster b in
time interval t, part (ii) is from cluster b at time interval t to the destination station’s cluster d in
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(a) Served trips (b) Autonomous relocation

Fig. 19: Diagram of one-day operation in 50-times trip duration (super low) autonomous relocation without
station clustering at 1.5-times demand

additional revenue to cover relocation costs. The optimal solution to maximize the operator’s profit was
cutting relocation personnel costs, which would result in dissatisfaction and long-term customer defec-
tion. The operator must relocate vehicles not for profit, but for customer retention. The second case
“Premium Service”, which guarantees rides in return for price premiums, could not resolve the issue; low
demand for the new service led to not enough premiums to cover relocation costs, while high demand
was infeasible due to the shortage of resources even assuming whole-day demand given in advance. The
third case, autonomous relocation by low-speed self-driving, showed the prospect for low-cost operation
together with high demand satisfaction. Even driving at 1/10th of walking speed satisfied almost 1.5
times the demand that can be expected in actual use.

Though we assumed that autonomous relocation was available among all stations, this assumption would
face challenges, such as regulations and different road environments, in an actual implementation. To
demonstrate the effect of autonomous relocation, the first step should be a small-scale field test in a
limited area, like a small valet parking. The 5th Science and Technology Basic Plan of the Japanese gov-
ernment [2] calls for implementations in specific areas such as the Tsukuba Mobility Robot Experimental
Zone.

We assumed the demand for the whole day was given at the beginning of the day, but actual demand is
at earliest 30 minutes before a ride. In addition, we generated demand samples from the 1-year average
demand and ignored the deviations. Incorporating a mechanism for dealing with short-notice demand
with deviations will be one of the biggest challenges facing an actual implementation. One idea to
deal with it is combining long-term estimation and short-term modification. We observed substantial
deviations in seasonal demand. Perhaps previous uses such as commuting in the morning can explain
the trend. Or perhaps weather, day of the week, or other events can be explanatory variables.
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Another research idea is adaptive pricing, which has been studied in Ha:mo RIDE but is not implemented
yet. Appropriate pricing in combination with autonomous relocation can balance demand for vehicles
and parking space supply and increase profit.

6 Acknowledgement

This work has been supported by the joint program of the University of Tsukuba and Toyota Motor
Corporation titled “Research on the next generation social systems and mobilities”. We are deeply
grateful to Toyota Motor Corporation for providing the data and valuable comments on our work. We
also thank the Toyota InfoTechnology Center and Kozo Keikaku Engineering for the use of the mobility-
sharing simulator.

References

[1] Prime Minister of Japan and His Cabinet, 未来投資戦略 2017 (Japanese only), https://www.

kantei.go.jp/jp/singi/keizaisaisei/pdf/miraitousi2017_t.pdf (June 2017).
[2] Council for Science, Technology and Innovation Cabinet Office, Government of Japan, Report

on The 5th Science and Technology Basic Plan, http://www8.cao.go.jp/cstp/kihonkeikaku/
5basicplan_en.pdf (December 2015).

[3] Toyota Motor Corporation, Ha:mo, Harmonious Mobility Network, http://www.toyota-global.
com/innovation/intelligent_transport_systems/hamo/ (2013).

[4] Toyota Motor Corporation, i-ROAD, http://www.toyota-global.com/innovation/personal_

mobility/i-road/ (2014).
[5] Toyota Auto Body, COMS (Japanese only), http://coms.toyotabody.jp/ (2012).
[6] M. Drwal, E. Gerding, S. Stein, K. Hayakawa, H. Kitaoka, Adaptive pricing mechanisms for on-

demand mobility, in: 16th International Conference on Autonomous Agents and Multiagent Sys-
tems, Sao Paulo, Brazil, 2017.

[7] RideGuru, How to Navigate Lyft’s Prime Time Fares, https://ride.guru/content/newsroom/
how-to-navigate-lyfts-prime-time-fares (October 2016).

[8] Uber, Steel City’s New Wheels, https://www.uber.com/blog/pittsburgh/new-wheels/ (May
2016).

[9] D. Jorge, G. Correia, Carsharing systems demand estimation and defined operations: a literature
review, European Journal of Transportation Infrastructure Research 13 (2013) 201–220.

[10] B. Boyaci, K. Zografos, N. Geroliminis, An optimization framework for the development of efficient
one-way car-sharing systems, European Journal of Operational Research 240 (2015) 718–733. doi:
10.1016/j.ejor.2014.07.020.

[11] G. Correia, A. Antunes, Optimization approach to depot location and trip selection in one-way
carsharing systems, Transportation Research Part E 48 (2012) 233–247. doi:10.1016/j.tre.

2011.06.003.
[12] D. Jorge, G. Correia, C. Barnhart, Comparing optimal relocation operations with simulated re-

location policies in one-way carsharing systems, IEEE Transactions on Intelligent Transportation
Systems 15 (2014) 1667–1775. doi:10.1109/TITS.2014.2304358.

[13] G. Correia, D. Jorge, A. Antunes, The added value of accounting for users’ flexibility and information
on the potential of a station-based one-way car-sharing system: An application in Lisbon, Portugal,
Journal of Intelligent Transportation Systems: Technology, Planning, and Operations 18 (2014)
299–308. doi:10.1080/15472450.2013.836928.

[14] A. Kek, R. Cheu, Q. Meng, C. Fung, A decision support system for vehicle relocation operations in
carhsring systems, Transportation Research Part E 45 (2009) 149–158. doi:10.1016/j.tre.2008.

29

https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/miraitousi2017_t.pdf
https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/miraitousi2017_t.pdf
http://www8.cao.go.jp/cstp/kihonkeikaku/5basicplan_en.pdf
http://www8.cao.go.jp/cstp/kihonkeikaku/5basicplan_en.pdf
http://www.toyota-global.com/innovation/intelligent_transport_systems/hamo/
http://www.toyota-global.com/innovation/intelligent_transport_systems/hamo/
http://www.toyota-global.com/innovation/personal_mobility/i-road/
http://www.toyota-global.com/innovation/personal_mobility/i-road/
http://coms.toyotabody.jp/
https://ride.guru/content/newsroom/how-to-navigate-lyfts-prime-time-fares
https://ride.guru/content/newsroom/how-to-navigate-lyfts-prime-time-fares
https://www.uber.com/blog/pittsburgh/new-wheels/
http://dx.doi.org/10.1016/j.ejor.2014.07.020
http://dx.doi.org/10.1016/j.ejor.2014.07.020
http://dx.doi.org/10.1016/j.tre.2011.06.003
http://dx.doi.org/10.1016/j.tre.2011.06.003
http://dx.doi.org/10.1109/TITS.2014.2304358
http://dx.doi.org/10.1080/15472450.2013.836928
http://dx.doi.org/10.1016/j.tre.20 08.02.0 08


02.008.
[15] B. Boyaci, K. Zografos, N. Geroliminis, An integrated optimization-simulation framework for vehicle

and personnel relocations of electric carsharing systems with reservations, Transportation Research
Part B 95 (2017) 214–237. doi:10.1016/j.trb.2016.10.007.

[16] K. Shimazaki, M. Kuwahara, A. Yoshioka, Y. Homma, M. Yamada, A. Matsui, Development of a
simulator for one-way ev sharing service, in: 20th ITS World Congress Tokyo 2013, Tokyo, Japan,
2013.

[17] Google, Google Maps Distance Matrix API, https://developers.google.com/maps/

documentation/distance-matrix/ (2017).
[18] UNECE, Automatically Commanded Steering Function, ACSF-01-11-(J) concept paper, https:

//wiki.unece.org/display/trans/ACSF+1st+session (2015).

30

http://dx.doi.org/10.1016/j.tre.20 08.02.0 08
http://dx.doi.org/10.1016/j.trb.2016.10.007
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://wiki.unece.org/display/trans/ACSF+1st+session
https://wiki.unece.org/display/trans/ACSF+1st+session

