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Abstract

We study the difference between two differential rent vectors in a rental housing mar-
ket model, where the apartments are classified into a finite number of categories and each
household demands (at most) one apartment unit. A differential rent vector is the repre-
sentative solution of the maximum (or minimum) competitive rent vector. We show that
the difference between the maximum and minimum differential rent vectors is bounded
by the income difference of specific two neighboring households. This implies that the
difference is rather small, and thus, the gap between two analyses using the maximum
or minimum rent vector is also small. As an application of results, we show that the
differential rent difference shrinks to zero as the market size gets large and the household
income distribution becomes dense.

Keywords: Rental housing market; Indivisibilities; Differential rent; Multiplicity of equi-
librium prices

JEL classification: R31; R30; D58

1 Introduction

This paper investigates a certain property of a differential rent vector in a rental housing
market model by Kaneko, Ito and Osawa [9]. In particular, we evaluate the difference between
the maximum and minimum values of the differential rent vectors.

This model is an application of the generalized assignment market by Kaneko [7],} where
the market participants are divided into households and landlords, the rental housings to be
traded are treated as indivisible goods and classified into finite categories, and each household

*Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573 Japan; Tel./Fax: +81-29-853-5580; E-mail: seiken.sai@gmail.com.

"Kancko (1982) studied a generalized model of Shapley and Shubik’s [6] assignment game, where the quasi-
linear assumption on the buyers’ utility functions is removed. Kaneko showed the existence of a competitive
equilibrium in the model. Furthermore, the existence of the maximum and minimum competitive price vectors
is guaranteed.



can consume (at most) one housing unit. A differential rent vector (which plays a key role in
their model) is a solution of a certain system of equations called “the rent equation”. This
vector coincides with the maximum competitive rent vector under some reasonable conditions.
Thus, a differential rent vector is regarded as a good approximation of the maximum compet-
itive rent vector. Kaneko et al. and their following papers (e.g., Ito [4]) presented numerous
comparative statics results using a differential rent vector.

On the other hand, there is a concern regarding the adequacy of adopting the maximum
competitive rent vector to represent the market equilibrium. While there are multiple equi-
librium candidates in the market model, we cannot observe which one is actually selected in
the real housing market. There may be a gap between the comparative statics results of the
model the and real markets. Regarding this problem, Kaneko et al. noted the availability of
the minimum instead of the maximum competitive rent vector to represent the market equi-
librium. However, a similar concern still remains, even when we adopt the minimum vector.
There has been little investigation concerning this problem.

One reasonable solution to the above problem is to study the difference between the
maximum and minimum differential rent vectors. In this manner, we can identify the gap
between the two comparative statics results. Here, we introduce a summary of one of our
results, Theorem 3.5 in Section 3.2. Theorem 3.5 states that the difference between the
maximum and minimum differential rent vectors is bounded by the largest income difference
between two specific neighboring households. This implies that the rent difference is not large,
and that it tends to smaller as the distribution of household income gets dense. Thus, we
could argue that, when we target a considerably large housing market, the difference of the
comparative statics results is small whether we use the maximum or minimum vectors. The
numerical examples in Section 4.1 confirm our results. We present a more precise discussion
on the shrinkage of the difference of the differential rent vectors in Section 4.2.

Our results are related to a recent paper by Sai [11], who studied the difference of the
maximum and minimum competitive price vectors under weaker conditions. His approach
is different from ours in that he characterizes the price difference by the difference in the
seller’s marginal costs. On the other hand, the cost structure is not easily observable from the
real data in comparison to the household income data. Furthermore, the households (buyers)
rather than the landlords (sellers) play the main role in our market model. Therefore, we could
be say that, for studying the housing market model, our characterization is more helpful in a
housing market analysis.

We should note that the following two assumptions are important in our market model: the
identical utility function, and the normality of the quality of housing. The former assumption
is necessary for the derivation of the differential rent vectors, and the latter assumption
plays a crucial role in the results. These assumptions imply that the difference in housing
preferences (i.e., the difference between households) is only characterized by the difference in
incomes. These assumptions are salient features of our model because the quasi-linear utility
assumption is still the main-stream view of markets with indivisibilities. Recently, Méittinen
and Tervio [5] studied the housing market using a one-sided assignment model that assumed
the identical utility function and the normality of the quality of housing, as outlined above.?

In their model, the set of buyers (who are, at the same time, sellers) is assumed to be continuum and the



They presented comparative statics results on the relation between income distribution and
housing prices.

As viewed from the perspective of the urban economics literature, we can find the source
of our approach from Alonso’s [1] bid rent theory. He studied a mechanism of land pricing
in urban area with a central business district, where land sizes are treated as continuous
variables. Our differential rent approach is based on his bid rent theory.?

This paper is organized as follows. Section 2 formulates our rental housing market model
and gives our definition of competitive equilibrium. Section 3 first introduces two recursive
equation systems, the mazimum and minimum rent equations, from which we can derive the
maximum and minimum differential rent vectors. This section then outlines the main results
of our study. Section 4 provides some numerical examples and an application of our theorems.
Section 5 presents our conclusions and further remarks.

2 The market model

This section introduces the rental housing market model of Kaneko et al. [9]. In Section 2.1,
we give our basic assumptions and the definition of competitive equilibrium. In Section 2.2,
we introduce additional assumptions that facilitate our study.

2.1 General formulation

The rental housing market is denoted by (M, N), where M = {1,...,m} denotes the set of
households, and N = {1’,...,n} denotes the set of landlords. The apartments are classified
into finite categories 1,...,T, and are assumed to be already built.

Each household ¢ € M initially has an income I; > 0 but no dwelling. The household wants
to rent at most one apartment unit paying rent from his income. Without loss of generality,
we can assume that the households are ordered in their incomes as Iy > Iy > --- > I,,. The
consumption set is written by X := {e°,e!,..., e’} x R, where e is the T-dimensional unit
vector with eﬁ =1 (e’ = 0), and R is the set of nonnegative real numbers. A consumption
vector (e€¥,¢) € X with k # 0 means that household i rents one unit of the k-th category
of an apartment and enjoys the consumption ¢ = I; — pg, where pg is the rent of the k-th
apartment. For k = 0, no apartment is consumed. An initial endowment of i € M is given as
(€%, I;) with I; > 0.

A wtility function of household 7 is given by u; : X — R. We make the following assump-
tion.

Assumption A. For eachi € M and z € {e°,e!,...,e"}, u;(z;,c) is a continuous and strictly
monotone function of ¢, and u;(e%, I;) > u;(e*,0) for all k with 1 <k < T.

The first part of Assumption A allows a utility function to have an “income effect”. An
inequality in the last part is a boundary condition, meaning that a household prefers keeping
his income to rent any apartment by paying all his income.

housing attributes are also continuous variables.
*We can find a survey of the urban economics literatures in the textbook by Fujita [2].



Each landlord j € N provides apartments of exactly one category (say k), but may provide
more than one unit. The landlord has a cost function Cj(y;) : Zy — R, where Z is the set
of nonnegative integers. For each y; € Z;, Cj(y;) represents the cost (in terms of money) of
supplying y; units of the k-th category. We make the following assumption for C;(-).

Assumption B. For each j € N, C;(0) =0 and Cj(y; +2) —Cj(y; +1) > Cj(y; +1) — C;i(y;)
for all y; € Z.

The first part of Assumption B means that no fixed cost is required for no production. The
last part is a discrete version of the standard convexity assumption on a cost function, meaning
that the marginal cost is increasing. As mentioned above, we assume that the apartments
in the market are already built, and thus only the operating costs need to be covered by the
landlords.*

For notational simplicity, we assume that only one landlord k provides apartments in the
k-th category. Thus, the set N becomes {1,...,T}, and landlord k& € N is the only landlord
providing the k-th apartments. As far as the competitive equilibrium is concerned, this can
be assumed without loss of generality.?

Let (p,z,y) = ((p1,....p1), (@1,..-.2m), (y1,...,yr)) be a triple of p € RL, z €

{eo, e, ..., eT}m and y € ZJTF. The competitive equilibrium is defined by the following:

Definition 2.1. We say that a triple (p, z,y) is a competitive equilibrium iff
(1) Utility Maximization under the Budget Constraint (UMC): for all i € M,

(i) I; — px; > 0, where pm; = Y| prin;
(i) wi(zi, I; — ra;) > iz}, I; — ra}) for all o} € {°,€,... e’} with I; — ra; > 0.

(2) Profit Maximization (PM): For all k£ with 1 <k <T,
Peyr — Crlyr) > pryy, — Cr(yy,) for all v, € Z .
(3) Balance of the Total Demand and Supply (BDS): > .,z = ZI{:l yre.

Under Assumptions A and B, we have a competitive equilibrium in (M, N).

Theorem 2.1 (Kaneko, 1982; Kaneko and Yamamoto, 1986). There ezists a competitive
equilibrium (p,x,y) in a rental housing market (M, N).

We say that p = (p1,...,pr) is a competitive rent vector iff (p,z,y) is a competitive
equilibrium for some = € {0,e!,...,e’}™ and y € Zz. Note that there may be multiple
competitive equilibria. In particular, the maximum and minimum competitive rent vectors
exist and play an important role in our analysis.%

Theorem 2.2. There ezist the mazimum and minimum competitive rent vectors in (M, N).

*The operating costs contain, for example, the maintenance and operation costs and real estate taxes.
Kaneko et al. [9], Section 2.1 presents a detailed discussion.

Under this simplification, each seller is interpreted as an “aggregated seller”. Sai [9], Section 5.1 presents
a detailed discussion.

6 A competitive rent vector p is the maximum (minimum) iff for any competitive rent vector p’, p: > p;
(pe <p}) forallt with 1 <t <T.



Kaneko [8] and Kaneko et al. [9] proved the existence of the maximum competitive rent
vector. A complete proof is in Appendix A. We say that (p,z,y) is a mazimum (minimum)
competitive equilibrium iff p is the maximum (minimum). By definition, the maximum (min-
imum) competitive rent vector is uniquely determined; however, multiple maximum (mini-
mum) competitive equilibria may exist.

Kaneko et al. and their following subsequent papers (e.g. Ito [4]) adopted the maximum
competitive rent vector to represent the market equilibrium rent of their comparative statics.
In their analysis, the maximum competitive rent vector is calculated according to a certain
system of equations called “the rent equation.” On the other hand, it is also possible to use
the minimum competitive rent vector in their analysis. As stated in the introduction, we
cannot observe what (competitive) equilibrium rent is selected when the real market achieves
equilibrium. Thus, there is room to consider the adequacy of using the maximum competitive
rent vector as the market equilibrium.

2.2 Specific assumptions for (M, N)

In addition to Assumptions A and B, we assume that every household has identical utility
function; that is,

Assumption C. u;(-,-) = u;(-,-) for all i,j € M.

By Assumption C, we can simplify the utility function u; as u. In an urban economics
context, Assumption C implies that the housing market (M, N) represents a mono-centric
city, and all the households commute to an identical business district. Thus, under C, each
household only is characterized by its initial income level. Some readers may be concerned
that C implies an identical apartment preference for each household. However, this concern
will be eliminated by the next assumption.

Assumption D. If u(z;,c¢) = u(z}, ), and ¢ < ¢, then u(z;,c + 6) > u(a}, ¢ + ) for any
0> 0.

Assumption D is the normality assumption on the quality of apartments. In D, apartment
z; is better than z} because a household living in ; with a smaller consumption c is indifferent
to living in &, with a larger consumption ¢. This implies that, for each household, the demand
shifts to a better apartment or remains the same if their income increases.

The next assumption is regarding the quality of apartments.

Assumption E. u(e!,0) > u(e?,0) > --- > u(el,0).7

Thus, the apartments are numbered according to their quality level. The first category is
the best one and the T-th category is the worst. These assumptions facilitate our study of
using the “differential rent approach”.

"This assumption together with Assumptions A and D imply that u(e',c) > u(e?,¢c) > --- > u(e”,¢) for
all ce Ry.



3 The rent equation and the evaluation of the differential rent
vector

In Section 3.1, we introduce two systems of equations. One was formulated by Kaneko et
al., which we call the mazimum rent equation. Another is newly formulated in a parallel
manner, which we call the minimum rent equation. Each solution of the equations is called
the mazimum/minimum differential rent vector, corresponding to the maximum and minimum
competitive rent vectors, respectively. Using both differential rent vectors, we present two
theorems on the evaluation of the difference between the maximum and minimum differential
rent vectors in Section 3.2. Section 3.3 gives proofs of two theorems.

3.1 The rent equation

To introduce the rent equation, we give more detailed assumptions and some lemmas. The
purpose of this paper is to evaluate the difference between the maximum and minimum com-
petitive rent vectors. Therefore, hereafter, we consider the case where the maximum com-
petitive rent vector (denoted by p™®*) and the minimum competitive rent vector (denoted by
pmi“) satisfy p}fin < pp®* for all k with 1 < k <T. This assumption together with Theorem
3.1 by Sai (2014) (also Lemma A.2 in the Appendix) imply that for any competitive equilibria
(p,z,y) and (p',2',y"),

yr =y for all k with 1 <k < T, (3.1)

that is, for any category k, the equilibrium supply for & is uniquely determined.
The following lemma has an important role.

Lemma 3.1 (Kaneko et al., 2006). Let (p,x,y) be a competitive equilibrium. Then,
(1) If k' <k and x; = ¥ for some i, then py < pur;
(2) If z; =€k, xy =¥ and I; > Iy for some i,7, then k < k.

This lemma states that in any competitive equilibrium, (1) the price of a better apartment
is higher, and (2) a household with a higher income rents a better apartment. Note that in
(1), it may be possible that no one rents an apartment in the k’-th category, while the k-th
apartment is rented by someone. To eliminate this case, we assume that there is a category
f dividing the apartments into active categories and inactive categories. That is,

Assumption F. There exists some category f such that for any competitive equilibrium
(p,x,y), yr > 0 for k with 1 <k < f and y,, =0 for k with f <k <T.

We call this f the marginal category. Note that Assumption F includes the same f for
each competitive equilibria. The condition of equation (3.1) guarantees such a treatment. In
the literature of urban economics, the marginal category corresponds to the marginal land in
Ricardo’s differential rent theory.

Recall that all the households M = {1,...,m} are ordered by their incomes as I; > I, >
-+ > I,. We next define the household with the lowest income in each active category. This
household plays a crucial role in the rent equation. Let (p, z,y) be a competitive equilibrium.
For each category k(< f), we define the household G(k) with the lowest income in the k-th



category as:
k
G(k) := t; Y.

For each k, we call G(k) the boundary household of the k-th category. Note that by
equation (3.1), G(k) is uniquely determined for each k.

We now introduce the rent equation. The maximum rent equation is defined as the system
of equations with the unknowns (71, ...,7f). The formulation is from Kaneko et al. In a parallel
manner, the minimum rent equation is defined with the unknowns (ry,...,rs).

Definition 3.1. (1) (Kaneko et al, 2006): We call the following system of equations the
mazximum rent equation:

(el = Ig(pa) = Tp1) = ule! Iogr1) = 7),
u(e! 2, Ig(y—g) — Ty—2) = u(e/! Ig(s_o) = T-1),

(3.2)
u(e!, Igqy — T1) - u(e?, Igay — T2).
(2) We call the following system of equations the minimum rent equation:
w(e! ™ Ig(p—1ys1 —rpoq) = ulel, Igp_1)11 — 14,
u(e’ 2, Igp_ay41 — 15 o) - w(e’ ! Ig_ayp1 —rp 1), (3:3)

u(e', Iy+1 — ry) = u(e?, Icy+1 — Ty).

The difference between equations (3.2) and (3.3) is the replacement of the boundary in-
come Igpy by Iggys for k =1, ..., f — 1. In equation (3.2), if 7y is given with u(e’,0) <
u(el, Ig(f—1)—Ty), then the unknown 7y _1 is uniquely determined by the first equation. In the
same manner, the remaining unknowns 71, ...,7y_o are recursively and uniquely determined,
and it holds that 7y > - >7;_; > 7;.% Similarly, a solution (ry, -, Ty_1) is uniquely deter-
mined if 7 is given with u(e!,0) < u(ef,IGv(f_l) —r1¢) and it holds that 7y > - > 1, 4 > 1/
We say that (71,...,7f) is a mazimum differential rent vector iff it is a solution of the rent
equation (3.2) and (ry, ...,1) is a minimum differential rent vector iff it it is a solution of the
rent equation (3.3).

We then have the following relationships for the vectors (71, ...,7f), (ry,...,7¢) and the
maximum and minimum competitive rent vectors.

Theorem 3.1. (1) Let (p,x,y) be a maximum competitive equilibrium and (T1,...,T7f) with
Tt =pys be a solution of equation (3.2). Then T > py, for all k with 1 <k < f —1.

(2) Let (p,=,y) be a minimum competitive equilibrium and (ry,...,r¢) with v, = py be a
solution of equation (3.3). Then r), < py for all k with 1 <k < f —1.

Proof is in Appendix B. In our study, although the competitive rent p; of the marginal
category is endogenously determined, the rent p; of the marginal category f is exogenously

8See Kaneko et al., Lemma 2.5.
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Figure 1: An illustration of Theorem 3.1.

given (e.g., Kaneko et al. adopted an estimated rent py from the real data). The meaning
of Theorem 3.1.(2) is that if such a py is close to the maximum competitive rent, the vector
(T1,...,7f) derived from equation (3.2) corresponds to an upper bound of the set of competitive
rent vectors. Similarly, (2) means that if ps is close to the minimum competitive rent, the
vector (ry,...,7¢) derived from equation (3.3) corresponds to an lower bound of the set of
competitive rent vectors. An illustration of Theorem 3.1 is given by Fig. 1, which depict a
positional relationship of a differential and a competitive rent vectors.

Kaneko et al. provided two sufficient conditions for the maximum differential rent vector
to coincide with the maximum competitive rent vector (Theorem 3.2). We can also expect
a similar condition for the minimum competitive rent vector to coincide with the minimum
differential rent vector (Theorem 3.3).

Theorem 3.2. (Kaneko et al., 2006) Let (p,x,y) be a maximum competitive equilibrium. If
at least one of the following holds:

(1) Igw) = Lg)+1 for each k with 1 <k < f —1;
(2) pr < Ci (Y + 1) — Ci (yr) for each k with 1 <k < f—1,

then the maximum differential rent vector (71,...,7f) determined by 7y = ps coincides with
(p1, "'7pf)'

Theorem 3.3. Let (p,z,y) be a minimum competitive equilibrium. If at least one of the
following holds:

(1) Ig(k) = IG(k)H for each k with 1 <k < f —1;
(2) pr > Ck (yr) — Cx (yr — 1) for each k with 1 <k < f —1,

then the minimum differential rent vector (ry,...,r;) determined by r; = py coincides with
(P13 DF)-



The proof is in Appendix C. Each theorem has the same Condition (1), which states that
the income of the last household in the k-th category coincides with the income of the first
household in the k+ 1-th category. This implies that, when the number of households is large
and the income distribution is more or less dense (i.e., Condition (1) holds approximately),
then the maximum and minimum differential rent vectors can be regarded as approximations
of the maximum and minimum competitive rent vectors, respectively. Condition (2) of each
theorem states that a profit maximization condition strictly holds for the k-th category, in
other words, a competitive price pp does not coincide with a marginal cost for the k-th
category.

Note that under condition (1) of Theorems 3.2 and 3.3, if the competitive rent p; of
the marginal category is determined uniquely, then by the rent equations, the maximum
differential rent vector (determined by 7f = py) coincides with the minimum differential rent
vector (determined by 7y = py). When conditions (1) and (2) fail, however, the difference
between the maximum and minimum differential rent vectors is an open question.

3.2 The difference between the maximum and the minimum differential
rent vectors

As presented in the previous section, the maximum/minimum differential rent vectors coin-
cides with the maximum/minimum competitive rent vectors under a certain condition. We
may use either of the maximum or minimum differential rent vectors for comparative statics;
however, our results may differ, depending on which one we use.

This section provides an answer to this question. In particular, we evaluate the difference
between the maximum and minimum differential rent vectors. The proofs of theorems are in
Section 3.3.

The following theorem concerns the relationship between the income difference and the
rent difference.

Theorem 3.4. Let (T1,...,7f) and (ry,...,7¢) be the mavimum and minimum differential
rent vectors determined by Ty =py and 1y = P, with P, <Py, and k with 1 <k < f. Then,

Tr — 7k < Igr—1) — La—1)+1 if and only if Ty — 1) ST — 144 (3.4)
Note that < of equation (3.4) can be replaced by >, >, < or =.

The form of Theorem 3.4 is similar to the “Basic comparative statics theorem” of Kaneko
[8] and Kaneko et al. [9]. Nevertheless, the meaning is quite different. Theorem 3.4 states
that the rent difference of the k-th category is smaller than the income difference of two
neighboring households numbered G(k — 1) and G(k — 1) + 1 if and only if the rent difference
of k—1 is greater than the rent difference of k. This implies that we can reduce the comparison
of the differences 7, — r;, and 7x_; — r;_; to the comparison of the differences 7 — r;, and
Iek—1) — lo(k-1)+1-

Fig. 2 depicts three examples of a shape of rent differences 7, — 1, (1 <k < f). Fig.2.(1)
explains the case of (3.4) holds for each k. In this case, the difference 7, — r; gradually
increases as k reaches 1. Fig.2.(2) explains the case where the opposite inequality of (3.4)
holds for each k. In this case, the difference 7, — r;, gradually decreases as k reaches 1. The
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Figure 2: Shapes of the rent difference

remaining Fig.2.(3) explains the case where there is a category | (1 < ! < f) such that an
inequality of (3.4) switches at [: the difference 7, —r), gradually increases for k with | < k < f
and decreases for k with 1 < k < [. Numerical examples are given in Section 4.1.

The next theorem evaluates the rent difference by the income difference.

Theorem 3.5. Let (71,...,7f) and (ry,...,rs) be the mazimum and minimum differential
rent vectors determined by Ty = py and 1y = P, with P, < py. Suppose that Ty — 1y <

IG(ffl) - Ig(f,1)+1. Then,

0<7r—r; < le{g’nﬁ}il}{fg(l) —Ig@y+1) for all k with 1 <k < f —1.

Theorem 3.5 states that if the rent difference 7y — 1, of the marginal category f is less
than the income difference Ig(y_1) — Ig(f—1)4+1 of two neighboring households, then the rent
difference of the k-th (k < f) category is bounded by at most the largest income difference
Icqy — loyr (<1< f).

In our differential rent approach, the rent of the marginal category f is regarded as a
uniquely determined value.” This implies that the maximum and minimum differential rent
vectors are determined by the same p}(: Tr = zf); thus, the supposition of Theorem 3.5
holds. Under this situation, the theorem implies that the rent differences 7 — r;, for each k
are rather small. In particular, when we target a considerably large housing market with a
dense household income distribution (i.e., the equality Iqw) = Ig(k)+1 approximately holds),
the difference can be approximated by zero. Consequently, the comparative statics results are
not very different, whether or not we use the maximum or minimum differential rent vectors.

Theorem 3.5, together with Theorem 3.1 in Section 3.1, imply the following:

p};nax _pglin S le{]gil”a’}(il}{IG(l) — IG(Z)+1} for all £ with 1 S k S f —1 (35)
if oy < PSP STl

For instance, Kaneko et al. adopted the estimated rent py from the real rent data as the differential rent
r¢, and Ito adopted the (constant) marginal cost of the marginal category ay as ry.

10



that is, the difference of the maximum and minimum competitive rents of k-th category is
also bounded by the largest income difference Iy — Ig ()41 with & <1 < f. This implies the
shrinkage result on the competitive rent vector set, which will be presented in Section 4.2.

3.3 Proofs of Theorems 3.4 and 3.5

Here, we prove Theorems 3.4 and 3.5.

Proof of Theorem 3.4. (Only if) By (3.3), we have u(e*~1, Ig(k—1)41~Tk—1) = u(e”, To(e—1)+1—
ry.). Let 6 = Ig—1) =Tk —(Ig(k—1)+1—7%) > 0. By Assumption D, u(e* ™, Igp_1)41— 11+
6) > u(ek’IG(k—1)+1 -7+ 6)7 that is,

u (ek_l, Iak—1) —Th—1 —Ti + rk) > u(e®, Igg-1) — %)
= u(ek_l,Ig(k_l) —Tr—1) by (3.2).

This inequation together with Assumption A imply Igx—1) —Tk—1 — Tk + T = Igr—1) —Tk-1,
that iS, T — Tk < Te_1— Th—1- O
(If) We prove the contraposition of the claim. Suppose that 7 — 1), > Ig-1) — Igk-1)+1-
By (3.2), we have u(e" ™!, Igp_1y) — Tho1) = u(e®, Igp-1) — 7). Let & = Igg—1)41 — Iy,
_(IG(kfl) — Fk) > 0. By Assumption D, u(ek_l, Ig(kfl) —Tg—1+ 5) > u(ek, IG(kfl) — T+ 5),
that is,

U(ek_la Ig-1)41 —Tk—1 — 13 + Tr) > u (ek7 Igk-1)41 — £k>
= u(e* !, Igp-1)41 — r4_1) by (3.3).
This inequation together with Assumption A imply Ig—1)41 —Tk—1 — Tk + Tk > Igr—1)4+1 —
Tp_1, thatis, 7y — 1), > Th_1 — 151 a
Proof of Theorem 3.5. We proof this by mathematical induction over k = f — 1, f —
2,.., 1. Let k = f— 1. By the hypothesis and monotonicity (Assumption A), we have
u(el, Ig(r-1)+1 —Qf) < u(ef, Ig(s—1) —Py)- The left hand side is equal to u(ef 1, Ig(p—1)41—
rs_1) by (3.3), and the right hand side is equal to u(effl,fg(f_l) —T_1) by (3.2). Hence,
we have u(ef_l,fg(f,l)ﬂ —r5q) < u(el 1, Ig(f—1) —Tf-1). This and Assumption A imply

Tro1— 151 < Ig-1) — logs-1)+1- (3.6)
Let § = Ig(f_l) - IG(f—1)+1 > 0. Since u(ef’l,fg(f_l) — ?ffl) = u(ef,Ig(f_l) - ?f) by

(3.2), we have, by Assumption D, u(ef_l,IG(f,l) —Tr1—0) < u(ef,Ig(f,l) — 75 —¢). This
inequation is restated as

IN

u(e! ™ Ig( -1y — Ty-1) u (ef’IG(f_l)“ B ?f>
< u (ef, Ig(r—1)41 — ff)
= u(effl,fg(ffl)Jd —rs1) by (3.3).
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This and Assumption A imply Igs—_1)41 —Tf-1 < Ig(y—1)+1 — rf_1, that is, 7y_y > r, 4. By
this and (3.6), we have the relation 0 <7y 1 —1; 1 < Igr-1) — la(r—1)+1-
Suppose that for k =7 with 1 < j < f -1,
0<7; < max 1 -1 . 3.7
j 1 < {j,...,ffl}{ aw — low+1} (3.7)
Then, for k =j — 1,
(i) Suppose 7 —1; < Ig(;— 1)—IG(] 1)+1- Then, u(e IgG-1y41—15) < u(el, Ig(j—1)—T;)- The
left hand side is equal to u(e’ ! Iag—1)+1 —rj-1) by (3.3), and the right hand side is equal
to u(e’ !, Ig(j 1) —Tj-1) by (3.2). Hence, U( gy — o) Su(ed T Iggoy 7o)
This and Assumption A imply Ig(j—1)+1 — 71 < lg(j—1) — Tj-1, that is,
Tji—1 =11 < Igg-1) = Io(j-1)+1- (3.8)
Let 6 = Ig(j-1)—Ig(j-1)+1 = 0 Since u(e/~! Aa-) —Fj,‘l) = u(e’, Ig(—1)—T;) by (3.2), we
have, by Assumption D, u(e’~ IGU 1) —Tj—1—0) <u(e, Ig;—1) —Tj — §). This inequation
is restated as

u(e’ ™ Igg-n —Ti-1) < u(e, Igg-n1 — 7))
< (e Ig(] +1 — 7']) by (3.7)
= u(e’ ! Ig 14 —1;1) by (3.3).

This and Assumption A imply Ig(j,l)ﬂ —7Tj1 < Ig(j,l)ﬂ — 1, that is, 7;_1 > Ti_q- By
this and (3.8), we get

0<7j1—1; 1 <Igi-1) — Lai-1)+1- (3.9)
(ii) Suppose 7j —r; > Igi—1) — Lagi—1)+1- Then u(el, Ig- 1)+1 —r;) > u(e Ig(—1) —Tj)-
This together with (3 2) and (3.3) we have u(e/ ™1, Ig(j_1y41 -1, 1) > u(eJ Aag—1)—Tj-1)-

This and Assumption A imply Ig_1)41 —7j-1 > lg(j—1) — 7“] 1, that is,

Ti—1— 11 > Igi-1) — lag-1)+1- (3.10)
Let 6 =7;_1 A (IG(jfl) —Ig(j,1)+1) > 0 Since u(ej_l, IG(jfl) 7“] 1) = u(e] IG(y 1)~
7j) by (3.2), we have, by Assumption D, u(e’, Igj_1) —7; +6) < u(e’ I(;( 1) —Tj-1+0).
This is restated as
u(ej, Ig(j_1)+1 —Tj+7Tj—1— fj_l) < (ej_17 IG(j—l)—H - fj—l)
u(e’, Ig-1y+1 —1;) by (3.3).
This and Assumption A imply Ig(j_1)41—Tj+7j-1—1;_1 < Ig(j—1)41—1;, that is, 7j_1—1;_; <

7j — ;. By this and (3.10), we get Ig(j_1) — lg(j—1)+1 <Tj-1 —1j_1 <T; —r;. This together
with (3.7) implies

0<lIgi-1)—Igg-1)+1 <Tj-1—rj 1 < le{f{{?}(_l}{fc(l) = Ic@y+1}-

This inequation together with (3.9), we have

0<7j1—1;_1 < ke{jfll?ff_l}{fc(k) — Iy}

Hence, for all £ with 1 <k < f —1, we have 0 <7, —r;, < l {kl:na}( 1}{1(;(” —Ig@)+1}- a
e{k,...f—
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4 Numerical examples and the application

In this section, we give three examples of the rental housing market model. The examples con-
firm our results in Section 3.2. As an application of Theorem 3.5, we also present the shrinkage
result on the difference between the maximum and minimum differential rent vectors.

4.1 Numerical examples: Calculation of maximum and minimum differen-
tial rent vector

First, we give common settings for our examples. Suppose that there are six categories of
apartments (T' = 6). Let wy (k = 1,...,6) be the number of apartment units for rent in the
k-th category. We assume that the number of households and apartments for rent are the
same, and that all the apartments are ultimately rented. That is, the marginal category is
f = 6 and the number of households is m = 22:1 wg. Assume that each household has the
following utility function:

w(z,c) = hg ++/cfor k=0,1,...,6,

where h1 =9, ho =7, h3 =5, hgy = 4, hs = 3, hg = 2 and hg = 0. Assume that the income of
each household is uniformly distributed over the interval [100, 500] . (Then this utility function
satisfies Assumption A, C,D and E).

The settings for the following Examples 4.1 and 4.2 are the same, except for the number of
apartment units and households. These examples show the difference between the maximum
and minimum differential rents, as well as the smaller difference in a market with a large
number of households compared to a market with a small number of households.

Example 4.1. Let wg = 5 for each k = 1,...,6. This implies Igx) — Igx)+1 =~ 13.8 for each
k. Let ¢ = rq = 20. Then, we can calculate the maximum and minimum differential rent
vectors by the rent equations (3.2) and (3.3). Table 4.1 shows the calculation results of 7,
ry and T — 7.
Table 4.1.
k 1 2 3 4 5 6
Tk 225.7 162.5 100.1 70.3 43.4 20

Ty 2204 1583 972 682 423 20
Ty —rp | 9.3 4.2 2.8 21 12 0

for each k. Furthermore, we observe 7, —r;, < Tyx_; —r;,_; for each k. This is consistent with

Theorem 3.4 because 7 — 11, < Ig(k—1) — Ig(k—1)+1 for each k (which correspond to Fig. 2.(1)
in Section 3.2). To sum up, the difference 7 — 1}, is significantly smaller than Iy — Igk)+1
for each k; however, the difference tends to increase as k reaches 1.

By Table 4.1, an inequality 7 — 1, <  max {Ig() — Ig()+1} of Theorem 3.5 holds

Example 4.2. Let wy = 20 for each k = 1,...,6. This implies Ig) — Ig)4+1 =~ 3.4 for each
k. Let 7¢ = rg = 20. Table 4.2 shows the calculation results of 7y, r;, and 7 — 1.
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Table 4.2.

k=1 2 3 4 5) 6
T 2234 161 994 699 433 20
T 2221 160 98.7 694 43 20

Ty —r, | 1.3 1.0 07 05 03 O

As with Example 4.1, the difference 7 — r;, is smaller than Igg) — Igk)41 for each k;
however,the difference gradually becomes larger as k reaches 1. We can also observe that for
each k, the difference 7, — r;, is significantly smaller than Example 4.1.

Next, we give another example where the hypothesis of Theorem 3.5 fails. This example
shows that whereas the rent difference 7, — 1), exceeds the income difference Igx) — Igr)+1;
the rent difference tends to decrease as k goes to 1.

Example 4.3. Let wy = 20 for each k. This implies Igu) — Igg)+1 ~ 3.4. Let 76 = 20
and rg = 15. Then, we have 76 — 15 = 5 > 3.4 ~ Ig;5) — Ig(5)4+1; that is, the hypothesis of
Theorem 3.5 fails. Table 4.3 shows the calculation results of 7, 1), and, 7y — 1.

Table 4.3.

k 1 2 3 4 ) 6
Tk 2234 161 994 69.9 433 20
T 219 156.5 94.7 65.1 384 15
Te—1 | 44 4.5 4.7 48 49 5

From Table 4.3, we have 7, — 1), > je{l?la}; 1}{IG(j) — Ig(j)41} for each k (Theorem 3.5
fails). On the other hand, the difference 7j, — r;, tends to decrease as k reaches 1. This is
consistent with Theorem 3.4 because 7, — ry, > Ig(s—1) — Ig(k—1)41 for each k (corresponding
to Fig . 2.(2) in Section 3.2). Note that this example does not explain the necessity of the
condition ¢ — 1y < Ig(s—1) — Ig(r—1)41 for Theorem 3.5. It may be possible that Theorem
3.5 holds but Ty — Ty > IG(f—l) — IG(f—l)+1'

4.2 Application: Shrinkage of differential rent vectors with a large number
of households

In their pioneering work of assignment games, Shapley and Shubik [6] conjectured that a set
of competitive price vectors tends to shrink as the number of traders becomes large. However,
they did not suggest a formulation for a suitable limit procedure. For an answer to their
argument, Kamecke [12] and Gretsky, Ostroy and, Zame [3] presented a limit model of the
linear assignment model with continuum of traders. Recently, Sai [11] showed that without
the quasi-linear utility assumption, the set of competitive price vectors shrinks to a unique
point as the number of sellers become large (though they did not deal with a limit model).
The point is that Sai’s result required no condition for the buyers’ set.!'’ According to our
Theorem 3.5, we also obtain the same shrinkage result when only the buyers’ set is large.

"'Nevertheless, Sai stated that it would be natural to require the number of buyers also become large
proportional to the sellers.
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Here, we consider a sequence of rental housing markets {(M", N*)}° ;. We consider the
situation where for a large v, the market has many households and their income distribution
gets dense. This is formalized by the following condition.

Condition 4.1. There is some constant o > 0 such that for any v, {(M", N)}>2, satisfies
(1) |M"| — o0 as v — oo

(2) Let IV < a for all i € MY;

(3) maxi<i<m—1[IY — If] < af [MY].

Condition 4.1.(2) together with (1) implies that, although the number of households be-
comes large, the income of each household is bounded; while (3) implies that an interval of
two adjacent incomes tends to be small as the number of households becomes large.

For v > 1, let f” be a marginal category in the market (M",N") and (71,...,Tfv),
(ryy ., r fu) be the maximum and minimum differential rent vectors determined by 7 =Py
and Tpr =Pp, with 0 < Dyv — P < Ié(fl,_l) — I(”;(fu_l)ﬂ.

Theorem 4.1. Suppose that {(M", N”)}>2, satisfies Condition 4.1. Then, Z£;1 Tr—1, — 0
as v — 00.

fr-1= fr-1 v v
Proof. By Theorem 3.2, we have 0 < > 53 | "7 — 15 < >0 le{k?}?;’{’—l}{IG(l) - IG(l)+1}'

This inequality and Condition 4.1.(3) imply the consequence. O
Theorem 4.1 together with equation (3.5) in Section 3.2 imply that a competitive rent

vector (pi,...,py) of a relevant part also shrinks to a unique point (Zg; ppax — piin () as
v — 00).'2 Thus, we obtain the same shrinkage result for the competitive rent vectors only

under the condition for the household income distribution.

5 Conclusion

We have evaluated the difference between the maximum and minimum differential rent vectors
in a rental housing market model by Kaneko et al., where the identical utility function for
household and the normality for apartment quality are assumed. The differential rent vector
is a solution of a certain system of equations called “the rent equation,” and it is regarded as
a representative of the competitive rent vector in the model.

Our main result (Theorem 3.5) is that the rent difference of the k-th category is smaller
than the largest income difference between specific neighboring households numbered G(1)
and G(I) + 1 (k <1< f—1). This implies that the rent difference can be regarded as rather
small and consequently, the difference between the maximum and minimum competitive rent
vectors is also small. Furthermore, the difference shrinks to zero as the market becomes larger
and the household income distribution becomes denser. A precise discussion of the shrinkage
result is presented in Theorem 4.2 of Section 4.2. Another result (Theorem 3.4) indicates
that we can reduce the comparison of two rent differences of the k-th and k — 1-th categories
into a comparison of the rent differences of the k-th category and the income differences of

2Indeed, the remaining categories f + 1, ..., T are inessential in our market model since no units of the k-th
category (f < k < T) are traded (though a competitive rent py (k > f) is determined with p; < Ci(1)).
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neighboring households numbered G(k — 1) and G(k — 1) + 1. Our results argue that, when
we study considerably large housing markets, the difference in the comparative statics results
is small, whether or not we use the maximum or minimum differential rent vectors.

We conclude with a remark on a future empirical study. It may be possible to study
whether our shrinkage result on the rent difference is actually viewed from a real housing
market by comparing real apartment rent data of a densely populated area and a sparsely
populated area.
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Appendix

A. Proof of Theorem 2.2.
To prove Theorem 2.2, we need the following lemma.

Lemma A.1. Let (p,z,y) and (p',2',y') be any competitive equilibria and suppose that there
is i € M such that z; = e* and T, = e, k#1. Then,
(1): pr <), if and only if p; < pj;
(2): pr. = pj, if and only if p = p;;
(3): pr > pl. if and only if p; > p.
The proof of Lemma A.1 needs the following lemma from Sai [11].

Lemma A.2 (Sai, 2014). Let (p,z,y) and (p',2',y") be any competitive equilibria and let
k be an integer with 1 < k < T. Then, py < pj, implies y, = yj.

Proof of Lemma A.1. (If part of (1)): Assume p; < pj. It follows from the assumption and
household i’s UMC, u;(e*, I; — pp) > wi(el, I; — p;) > u;(e!, I; —p)) > ui(e¥, I; — p}.). Thus we
have u;(e*, I; — pi) > u;i(e®, I; — p}.), which implies py < pj.

(Only if of (1)): Suppose py < pj. Suppose, on the contrary, p; > pj. By lemma A.1, it
holds that y, = y;.. On the other hand, in equilibrium (p',2’,y’), one household ¢ switches
his housing choice from & to [. This implies that at least one household j(# i) switches his
housing choice from m(# k) to k. By the assumption and household j’s UMC, u;(e™, I; —pp,)
> uj(ek, I; — pi) > uj(ek, I; — pl) > u;(e™, I; — pl,). This inequality derives p,, < pl,, which
implies m # [. In the same manner with the above discussion, p,, < pl, implies y,, = y,,,
and in equilibrium (p/, 2’,y’), at least one household switches his choice from n(# m) to m.
This also derives p, < p,, n # 1 and y, = y,,, so this process continues. Since M is finite,
this process does not finish even with all the possible household switched. This implies the
hypothesis p; > pj is false. Thus, we obtain p; < pj.

(If of (2)): Suppose p; = p;. By only if part of (1), it is enough to show that py < pj.. It follows
from the supposition and buyer i’s UMC, u;(e*, I; — pr) > ui(e!, I; — p) = wi(e', I; — p}) >
u; (e, I; — p}.)- Thus we have ui(eF, I; — pp) > ui(eF, I, — p}.), which implies py, < pj..

(Only if of (2)): Suppose pp = p). By if part of (1), it is enough to show that p; < p.
Suppose, on the contrary, p; > pj. By lemma A.1, it holds that y; = y;. On the other
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hand, in equilibrium (p’, 2’,y’), one household i switches his housing choice from k to I. This
implies that at least one household j(# i) switches his housing choice from [ to m(# [). By
the supposition and household j’s UMC,u;(e™, I; — p,,) > uj(el,Ij —p)) > uj(el,Ij - m)
> uj(e™,I; — pp). This inequality derives p,, > pl,, which implies m # k. In the same
manner with the above discussion, p,, > p,, implies y,,, = y,,,, and in equilibrium (p’, ', y’),
at least one household switches his choice from m to n(# m). This also derives p, > pl,
n # k and y,, = y,,, so this process continues. Since M is finite, the process does not finish
even with all the possible household switched. This implies the hypothesis p; > pj is false.
Thus, we obtain p; < p.

((3)): Tt is immediately proved by using Lemma A.1.(1) and (2). O

Proof of Theorem 2.2. Let (p,z,y) and (p/,2’,y’) be any competitive equilibria and suppose
that pj < px and p; > p; for some k, I. Then we construct a tuple (p,z,y) such that
(m-1): p, = min{py, p}. } for k with 1 <k < T;

z; if z; = e* and pj < p), for some k with 1 <k < T,
(m-2): for each i € M, z; = z} if 2} = e* and py > p}, for some k with 1 <k < T,
0 otherwise;
(m-3): for k=1,---,T, Yy = Y-

Note that the above z is well defined: Indeed, by Lemma A.1, each ¢ € M chooses at most

one category k in z. In the following, we show that a tuple (p,z,y) satisfies competitive
equilibrium conditions UMC, PM and BDS.

UMC: Let ¢ € M. We have three cases.

(Case 1): z; = z; = €. By (m-1), p, = pk- 1t is obvious that ui(eF, I; —p,) > ui(e™ Ii—p )
for all m with p = py,. Let | be the category which household i chooses in (p',2',y'). By
Lemma A.1, we have p; < p. By this inequality and the UMC, u; (e, I; — pr) > u;(e!, I; — p;)
> u;(e!, I — p}) > ui(e™, I; — p,,) for all m with p = p;,,. Thus i satisfies UMC in (p,z,y).
(Case 2): z; = 2} = e*. By Then pr = Pj,- It is obvious that ui(eF, I; — Bk) > u;(e™, I; — Qm)
for all m with p =~ = pl,. Let | be the category which household i chooses in (p,z,y). By
Lemma A.1, we have p; > p;. By this inequality and the UMC, u; (e, I; —pp) > u; (e, I; —p))
> ui(el, I; — py) > ui(e™, I; —p ) for all m with p,. = Pm- Thus i satisfies UMC in (p,z,y).

m

(Case 3): z; = 0. by (m-2), we have x; = z = 0. Hence i satisfies UMC in (p, z,y).
PM and BDS: Let £ with 1 < k < T. If P, = Pk landlord k£ maximizes his profit with
production y, = yx. By (m-2), z; = 2; = e’ for all i € M. This implies dien, Ti =
landlord k maximizes his profit with production Yp =Yk = vy, (by Lemma A.2f The balance
of total demand and supply is inherited from the equilibrium (p’, ', /).

The vector p satisfies p < p and p < p’. Since the set of competitive rent vectors is a
compact set, there is the minimum competitive rent vector in the market (M, N). In the dual
manner, we can also prove the existence of the maximum competitive rent vector. O

B. Proof of Theorem 3.1.

ZieMk r; = ypet = gkek, that is, BDS holds for category k. Otherwise (pk = p}), the
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Proof. of (1). We proof this by mathematical induction over k = f —1, f —2 ...,
1. Let k = f — 1. By utility maximization condition and (3.2), we have u(ef_l,Ig(f,l) —
Pr-1) > u(ef,Ig(f_l) —py) and u(e/ 71, Ig(p—1)—Tf1) = u(el, Ig(y—1) —Ty). These together
with 7y = py imply u(ef_l,lg(f_l) —Ppfo1) > u(ef_l,lg(f_l) — 7f_1). This inequality and
Assumption A imply Igy—1) — -1 > Ig(r—1) —Tf-1, that is, 7y > py_1.

Suppose that for k =1,1 <1 < f—1,7; > p; and let £ = [—1. By utility maximization con-
dition and (3.2), we have u(e! ™!, Igg—1y—pi-1) = u(e', Ig—1)—p1) and u(e!1, Igq—1)—T1-1) =
u(el, Ig@q—1) — 71). On the other hand, 7, > p; and Assumption A imply u(el,lg(l,l) —p) >
u(el, I -1y — 71). This inequality together with previous inequalities imply u(e!~1, Igq-1) —
pi—1) > u(e!, Igq_1) —Ti—1). This and Assumption A imply Igg—1) — pi-1 > Igg-1) — Ti-1,
that is, 7;_1 > p;_1. Therefore we have 7 > py for all kK with 1 <k < f —1. O
Proof of (2). It is proved by the dual manner with (1). Let k = f — 1. By utility max-
imization condition and the first equation of (3.3), we have u(ef_l,Ig(f,l)H —py-1) <
u(el, Ig(f—1)41 — py) and U(ef_l,IG(f_1)+1 —Trpq) = u(ef, Ig(s—1)+1 — 1)- These together
with 7, = py imply u(effl,I(;(f_l)H —pr1) < u(effl,Ig(f_l)H —1¢_1). Thus, we have
Tr < pf-1.

Suppose that for £ = [,1 <1 < f—1,r, > p, and let k = [ — 1. By utility maxi-
mization condition and (3.3), we have u(el_l,fg(l,l)ﬂ —p-1) < u(el,Ig(l,l)H — py) and

=1 Igg-1)+1 —11-1) = u(el, Ig@-1)+1 — ;). On the other hand, r; < p; and Assumption

u(e
A imply u(e', Igg-1)41—m) < u(el, Ig@-1)+1—1;)- This inequality together with previous in-
equalities imply u(e! ™1, Igg—1y+1—pi-1) < u(e!=, Ig—1)41—1;—1)- Thus, we have r;_; < p;_1.
Therefore we have r;, < pg for all k with 1 <k < f—1. O
C. Proof of Theorem 3.3.

By the definition of G(k) and the utility maximization condition for households G (k) and
G(k + 1), it holds that

w(e®, Iguy —pr) = u(e® ', Igu) — pry1) and

w(Ee ™ Togmy1 — 1) > ule®, Iogya — i)

Suppose that condition (1) of Theorem 3.3 holds. Then, By the above inequalities, we have

u(e®, Iguy+1 — k) = u(@, Iggy11 — pra1),

that is, the rent equation holds.
Suppose that condition (2) of Theorem 3.3 holds. We prove by contradiction. Suppose that
there is a category t with 1 <t < f — 1 such that
u(e®, Iggyt1 — pr) = w(€® ™, Iggy+1 — prgr) for k with 1 <k <t —1;
u(e!, Igw+r — pe) < w(e™, Igpy i1 — pryr)-
Then, we can decrease p; and p;_1, ..., p1 slightly into p; and p}_, ..., pj such that

U(etafG(t)Jrl —pp) < U(etH,IG(t)H — Pt+1); (C.1)
Py > Ci(y) — Ci(ye — 1).
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u(ek’ IG(k)+1 - P;C) = u(ek+1a IG(k)+1 - p§g+1) and (C 2)
p%>0k(yk)—ck(yk—l) for k with 1 <k <t¢t-—1. '

We now let the new rent vector p* as

« | prfork>t+1;
Pe = p), for k < t.

In the following, we show a tuple (p*, z,y) is also a competitive rent vector: this is a contra-
dictory claim since p is the minimum competitive rent vector. Since (z,y) is a competitive
allocation, the balance of total supply and demand condition is satisfied. Furthermore, by
the bottom of (C.1) and (C.2), each landlord’s profit maximization condition holds with
(p*,y). The utility maximization condition of households is checked by as follows. Let i € M
with z; = eF. We easily find u(e”, I; — py) > u(er', I; — p;,) for price unchanged categories
k' =t+1,...,T. The remaining part is shown by the following case analysis:

(i) The case of k >t + 1. By the definition of G(k), we have I; < I This together with
the top of (C.1) and Assumption E imply u(e¥, I; — p;) > u(ef, I; — p}). Furthermore, this in-
equality together with the top of (C.2) and Assumption E imply u(e*, ILi—p;) > u(e', ;—p;) >
w(e™ I —piy) > - > u(e, I; — pi).

(ii) The case of k < t+ 1. Let k' with £ < k' < ¢t + 1. By the definition of G(k), we have
Ii > Igm) = Igp)+1- This together with (C.2) and Assumption E imply u(ef, I; — ) >
u(et’| I; — pz,). Furthermore let &” with 1 < k” < k. By the definition of G(k), we have I; <
Ig(k—1)+1- This together with (C.2) and Assumption E imply u(ef I; —p;) > u(e”, I; —Din)-
Combining them, we have u(e®, I; — p;) > u(e', I, — p}) for all | = 1,..., t. O
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