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Abstract

This thesis is a study of the combinatorial structure of a certain kind of complexes:
constructible complexes and strongly constructible complexes. The notion of constructible
complexes is known as a weaker notion than that of shellable complexes, and this thesis is
aimed to be a foundation of the study of shellable complexes. The theme of this thesis is a
characterization of constructible complexes in terms of their face posets, and the relation
between constructibility and partitionability.

After reviewing some preliminaries on posets and complexes in Chapter 2, the property
of constructible complexes is studied in Chapter 3. In this chapter, a new notion named
recursively dividable posets is defined and it is shown that a complex is constructible if
and only if its face poset is recursively dividable. Usually constructibility is defined only
for simplicial complexes, but corresponding to the notion of recursively dividable posets,
constructibility is generalized for non-simplicial complexes.

In Chapter 4, a notion of strongly constructible complexes is defined by strengthening
the condition of constructible complexes. For this notion, as like as Chapter 3, a notion of
strongly dividable posets is defined and it is shown that a complex is strongly constructible
if and only if its face poset is strongly dividable. Moreover, strongly dividable posets are
shown to be signable. Since it is known that a simplicial complex is partitionable if and
only if its face poset is signable, this result means that strongly constructible simplicial

complexes are partitionable.
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Chapter 1

Introduction

After Brugesser and Mani [2] introduced the notion, shellability has come to be of funda-
mental importance in the study of complexes and has been extensively studied by many
researchers. (See [8], [19, Chapter 8], [20].) One of the most famous applications is the
proof of the Upper Bound Theorem for convex polytopes by McMullen [12] which used the
result of Brugesser and Mani [2] that convex polytopes are shellable. Shellability is indeed
a very useful notion, but it is sometimes so strong that it is hard to show whether the com-
plex in interest is shellable or not. Spherical fans and oriented matroid polytopes are the
examples that are not known whether they are shellable or not. (c.f. [10].) The difficulty
comes from the fact that shellability is not a topological property: all shellable pseudo-
manifolds (i.e., d-dimensional complexes in which every (d — 1)-dimensional face belongs
to at most 2 facets) are homeomorphic to balls or spheres, but there exist non-shellable
balls and non-shellable spheres. For example, the extension of the Upper Bound Theorem
for simplicial spheres could not be solved until Stanley [16] finally proved it by using the
notion of Cohen-Macaulayness. (The definition of Cohen-Macaulayness is in Appendix A.)
Cohen-Macaulayness is a weaker notion than shellability. Other than Cohen-Macaulayness,
there are also important notions weaker than shellability such as partitionability and con-
structibility. Among these, we treat constructibility in this thesis. Constructibility is a

very important notion in the study of shellability as Chapter 5 indicates, but there is so



little known about constructibility. So this thesis is aimed to be a foundation of the study
of constructibility. The theme of this thesis is a characterization of constructibility in terms
of their face posets, and the relation with partitionability.

The combinatorial properties of complexes are reflected in their face posets, so the no-
tions of complexes must be translated into the terms of face posets. For example, Bjorner
and Wachs [6] showed that a complex is shellable if and only if its face poset admits a
recursive coatom ordering. Similarly, Kleinschmidt and Onn [10] showed that a simpli-
cial complex is partitionable if and only if its face poset is signable. These translations
make the notions tractable, so we must first seek the condition of face posets equivalent
to constructibility. For this sake, in Chapter 3 we introduce a notion of recursively di-
vidable posets and show that a complex is constructible if and only if its face poset is
recursively dividable. Usually constructibility is defined only for simplicial complexes, but
corresponding to the notion of recursively dividable posets, we generalize constructibility
for non-simplicial complexes in Section 3.2.

Next we study the partitionability of constructible complexes. In Chapter 4, we define a
notion of strongly constructible complexes by strengthening the condition of constructible
complexes. For this notion, as like as Chapter 3, we define a notion of strongly dividable
posets and show that a complex is strongly constructible if and only if its face poset is
strongly dividable. Then we show that strongly dividable posets are signable. This result
means that strongly constructible simplicial complexes are partitionable.

Before proceeding to the main subjects, we review some preliminaries on posets and

complexes in Chapter 2.



Chapter 2

Preliminaries

In this chapter, we review the terminology on posets, complexes, and the notion of shella-

bility and partitionability.

2.1 Posets

A poset P is a finite partially ordered set, i.e., a finite set with an order relation < which

satisfies the conditions below.
(i) < z. (reflexive law)
(ii) z <y and y < z imply z < z. (transitive law)
(iii) z <y and y < z imply z = y. (antisymmetric law)

Generally, the order relation is not defined for all pairs of two elements in a poset. If the
order relation is defined for all pairs in a poset P, P is called a totally ordered set or a
linearly ordered set.

Any subset of a poset P is again a poset with the induced order relation. A chain in
a poset P is a totally ordered subset of P. The length of a chain is the number of its
elements minus 1.

For x < yin P, [z,ylp = {z € P|z < z < y} is called an interval. If there is no

confusion, we will omit the subscript P.



A poset is called bounded if it has a unique minimal element 0 and a unique maximal
element 1. A bounded poset is called graded if every maximal chain has the same length.
Every interval of a graded poset is again a graded poset. The rank of an element x in a
graded poset P is the length of a maximal chain of [ﬁ, x]p. The rank of P is the rank of 1,
i.e., the length of a maximal chain of P. The rank of P is denoted by rank(P).

The covering relation is denoted by x < y which means that x < y and there is no
z € P such that x <z <y. If x <y, y is called a cover of x, and z is called a cocover of
y. The elements of P which covers 0 are called atoms and those that are covered by 1 are

called coatoms.



2.2 Complexes

A (convex) polytope P means the convex hull of a finite set of points in a Euclidean space.
A hyperplane defines two closed halfspaces in this space. If one of these closed halfspaces
contains the whole polytope P, the intersection of P and this hyperplane is called a face
of P. The dimension of a polytope or a face is the dimension of the affine hull of it. The
0-dimensional faces are called vertices and the 1-dimensional faces are called edges. The
empty set ¢ is defined to be a face of dimension —1. A d-dimensional polytope which has
exactly d + 1 vertices is called a simplex.

A polyhedral complexr A is defined to be a finite set of polytopes P in some Euclidean

space such that
(i) if P € A, then all the faces of P (including the empty set) is contained in A, and
(i) if P,@ € A, then PN Q is a face of both P and Q.

The underlying space ||Al| of a polyhedral complex A is the set UpcaP. The maximal
faces (concerning the inclusion relation) of a polyhedral complex are called facets. The
dimension of a polyhedral complex is the maximum dimension of its facets. If all the
facets have the same dimension, the polyhedral complex is called pure. If all the faces of a
polyhedral complex are simplices, it is called a simplicial complez. (See Figure 2.1.)

The notion of polyhedral complexes is a special case of a more general notion. Next

we review this notion called regular cell complexes. (See [5, Section 4.7]. They are called

polyhedral complex simplicial complex pure complex

Figure 2.1: Examples.
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Figure 2.2: A regular cell complex and its face poset.

regular CW complexes in [3].)

A ball in a topological space T is a subspace ¢ € T which is homeomorphic to the
standard d-dimensional ball, for some d. The relative interior of o is denoted by o. The
boundary Oo of a ball ¢ is o— o. A reqular cell compler A is a finite collection of balls o

in a Hausdorff space ||A|| = Uyeao such that
(i) the interiors & partition ||A|| (i.e., every z € ||A]| lies in exactly one ), and
(ii) the boundary 0o is a union of some members of A, for all o € A.

The space ||A|| is called the underlying space of A. The balls o are called faces and the
maximal faces are called facets. The dimension of a regular cell complex is the maximum
dimension of the facets. If every facets has the same dimension, the complex is called pure.
The boundary complex do of o is the complex made of all the faces in the boundary do.
The face poset F(A) of a regular cell complex A is a poset consisting of all the faces
of A ordered by inclusion and adjoining a greatest element 1. Note that the face poset of
a pure complex is always a graded poset with a unique maximal element 1 and a unique
minimal element 0 = ¢. (See Figure 2.2. In this figure, a poset is represented by a Hasse

diagram, i.e., a graph in which vertices denote the elements of the poset and a pair of



vertices are joined with an edge if and only if the upper vertex in the figure covers the
lower vertex.)

In this thesis, we are interested in the notions of complexes such as shellability, par-
titionability and constructibility, but all of these are defined only for pure complexes.
Therefore the posets we are concerning are always graded posets. So in the rest of this
thesis, by a poset we mean a graded poset.

A d-dimensional regular cell complex A is called a pseudomanifold if every (d — 1)-
dimensional face of A belongs to at most two facets. If the underlying space |A|| of a
pseudomanifold A is homeomorphic to a ball or a sphere, A is called a ball or a sphere

respectively.



2.3 Shellable complexes

Definition 2.1. An ordering Fi, F;, ..., F, of facets of a pure d-dimensional regular cell

complex is called a shelling if d = 0, or if
(i) the boundary complex 0F; of F; has a shelling, and

(ii) for2 < j <m, F; N (Uf;lle) is a (d — 1)-dimensional regular cell complex having a

shelling which can extend to a shelling of the boundary complex 0F; of Fj},
and a regular cell complex is called shellable if it admits a shelling.

An example of a shellable complex is the boundary complex of a polytope. The shella-
bility of the boundary complex of a polytope is proved by Brugesser and Mani [2] by using
the method called “line shelling”. In fact, they proved a weaker version of shellability than
Definition 2.1, (They did not require the condition that the shelling of F; N (ug;l F;) can
be extended to a shelling of 0Fj.) but their proof is also valid for our definition. (See [19,
Chapter 8|.)

It is clear that a shellable pseudomanifold is a ball or a sphere, but the converse is not
true. It is easy to see that all 2-dimensional balls and spheres are shellable as the following
proposition shows, but in 3 and higher dimensional cases, some examples of non-shellable
balls and non-shellable spheres are known. (See [1], [11], [13], [19, Chapter 8], [20].) Later,
we show an example of a non-shellable ball made by Ziegler [20] in Section 3.1 and another

one made by Walker [18] in Section 3.2.
Proposition 2.2. 2-dimensional balls and spheres are shellable.

Proof. A facet of a ball A is called free if its intersection with the boundary of A is a
(d — 1)-dimensional ball. If A has no free facets, it is called strongly non-shellable. If A
is not shellable, it has a strongly non-shellable ball as its subcomplex. In fact, if there is

no strongly non-shellable ball, then we can remove free facets one by one until there is no

8



=

Figure 2.3: Proof of Proposition 2.2.

facet left. But if this is possible, we get a shelling of A by following the removing process
reversively. This is a contradiction. (See also [20].)

Now we show that there is no 2-dimensional strongly non-shellable ball at all. Let A’
be a 2-dimensional strongly non-shellable ball. Take one facet F' of A’. The boundary of F’
has a path which divides A’ into two balls Ciey and Chighy such that Cieg; does not contain
F as Figure 2.3. (If not, F' must be a free facet.) Then Ci also has a non-free facet of
A and we can similarly divide Cieg into two balls. Proceeding this process, we get a free
facet in the leftmost side. This is a contradiction. So there is no strongly non-shellable
ball, and hence every 2-dimensional ball is shellable.

Let A be a 2-dimensional sphere and F' be one of its facet. Then if we remove the
facet F' from A, the remainder is a 2-dimensional ball and it is shellable. So A is also

shellable. ]
The notion of shellability is translated into the terms of face posets as below.

Definition 2.3. (Bjérner and Wachs [6])
An ordering ay,as ..., a, of coatoms of a poset P is called a recursive coatom ordering if

rank(P) = 1, or if the following conditions hold.

(i) If 2 < aj,a; in P and i < j, then there exist an index k& < j and an element v € P

such that z < v < ag, a;.

(ii) For every j, there is a recursive coatom ordering of [0, a;] in which the coatoms of

[0, a;] that come first are those that are covered by some a; for i < j.



Theorem 2.4. (Bjorner [3])
A regular cell complex A is shellable if and only if its face poset F'(A) admits a recursive

coatom ordering.

10



2.4 Partitionable complexes

The notion of partitionable complexes is defined only for simplicial complexes.

Definition 2.5. Let A be a pure simplicial complex and F(A) be its face poset. Then A is
called partitionable if F(A)—{1} can be partitioned into intervals of the form [¢(G), G]r(a),

where G is a facet and ¢ (G) is a face of G. (See Figure 2.4.)

Partitionability is known to be weaker than shellability, i.e., all shellable simplicial
complexes are partitionable. To see this fact, let A be a shellable simplicial complex and
Fi, F,, ..., F, beashelling of A. If we define 9)(F;) as the face consists of the vertices v € F;
such that F; — v is contained in one of the previous facets, where F; — v means the face
consists of the vertices of F; except v. (See Figure 2.5.) Then the faces in [¢)(F}), Fi]p(a)
are exactly the faces of F; that are not contained in some previous facets. In fact, if a
face G of F; is not in [¢(F;), Fi]r(a), i-e., G does not contain 9 (F;), then G is contained in
F; — v for some v € ¥(F;) and it is contained in some previous facets. Conversely, if a face
G of F; is in [(F}), Fi]p(a), i-e., G contains ¢(F;), the previous facets cannot contain G
from the construction of 1(F;). Hence we can easily see that the intervals [¢)(F;), Fi]p(a)
partition F'(A) and A is partitionable. (See [19].)

The notion of partitionable complexes is translated into the notion of signable posets

by Kleinschmidt and Onn [10].

>

F(y \ A

A
0

Figure 2.4: Partitionable complex.
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W(F)=¢

Ww(F)=a
W(F)=b
W(Fy) =ab
YR =c

Figure 2.5: Example of a shelling and ¢ (F;).

Definition 2.6. (Kleinschmidt and Onn [10])
A signing of a poset P is an assignment x(x,y) € {—, +} of signs to each pair of elements
z,y,€ P such that < y < 1. A coatom y is called positive under vy if x(z,y) = + for all
its cocovers x.

Every upper interval [w, 1] for each w € P inherits a signing from that of P by restric-
tion. A signing ¥ is called ezact if there is exactly one positive coatom in the interval [w, 1]
(under the restricted signing) for every w € P, and a poset P is called signable if it admits

an exact signing. (See Figure 2.6.)

Theorem 2.7. (Kleinschmidt and Onn [10])

A simplicial complex A is partitionable if and only if its face poset F(A) is signable.

positive
coatom

N
0

Figure 2.6: Signing and positive coatom.
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Chapter 3

Constructible complexes

3.1 Constructible complexes

The notion of constructible complexes appears in [15]. (See also [4].) This notion is defined

for simplicial complexes as below.
Definition 3.1. A pure d-dimensional simplicial complex A is said to be constructible if
(i) A is a simplex, or

(ii) there exist d-dimensional constructible subcomplexes C; and Cy such that A = C; U

C5 and that C; N Cy is a (d — 1)-dimensional constructible complex.

Intuitively, a shellable complex is made by adding facets one by one, but in the case
of a constructible complex, we can add a lump of complexes at one time. (See Figure
3.1.) So constructibility is weaker than shellability, i.e., all shellable simplicial complexes
are constructible. More precisely, if Fi, Fy, ..., F, is a shelling of a shellable simplicial

complex A, then C1y = F1UF,U---U F,_; and Cy = F,, satisfy the condition above.

Example 3.2. Ziegler [20] made an example of a 3-dimensional non-shellable simplicial
ball which has 10 vertices and 21 facets. This complex A has vertices {1,2,...,9,0} and

facets:

13



a: 1234 b: 1256
c: 2367
d: 3478
e: 4185

f: 1569
g: 1629
h: 1249
i: 1489
j: 1859

k: 2560
l: 2670
m: 2730
n: 2310
o: 2150

p: 3678 s: 4578
q: 3248 t: 4137
r: 3268 u: 4157

This complex is indeed non-shellable, (In fact, this is strongly non-shellable.) but if

we divide this complex into two 3-dimensional balls | = dUpUqUrUsUtUu and

Cy = U{other facets}, both C; and C, are shellable. Because every 2-dimensional ball is

shellable, C; N C} is also shellable. So this complex is an example of a non-shellable but

constructible complex.

As like as the case of shellable pseudomanifolds, constructible pseudomanifolds are balls

or spheres. Whether there are non-constructible simplicial balls or not is not known yet.

(It is very unlikely that all balls and spheres are constructible.)

Open Problem. Are there non-constructible simplicial balls?

e
V

<
<

V

e

shellable complex

<

= B
TR
< >

N\

3

ke

constructible complex

Figure 3.1: Shellable complex and constructible complex.



3.2 Recursively dividable posets

In this section, we define the notion of recursively dividable posets, which is related to the

notion of constructible complexes. In what follows, we denote
i(X)={yeP|*reX, y<apuii}

for a subset X of P, i.e., I(X) is the order ideal generated by X and adjoining the maximal

element.

Definition 3.3. We call a poset P recursively dividable if rank(P) = 1, or if the following

conditions hold.
(R1) For each coatom z of P, [0, z] is recursively dividable.

(R2) If there exists more than one coatom in P, the set of coatoms can be divided into

two disjoint non-empty sets X and Y satisfying the following.

(a) I(X) and I(Y) are recursively dividable.
(b) Let Z={z€ P|3z € X,y €V, z <xz,y}. Then I(Z) is recursively dividable.

A~

(c) I(X)NI(Y)=1I(2).

(See Figure 3.2.) We call such a division a recursive division.

>

N N
1 1

[(X) 5 5 1Y) 1(Z) A

Figure 3.2: I(X), I(Y) and I(Z2).
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It turns out that a poset admitting a recursive coatom ordering is recursively dividable.

Proposition 3.4. A poset which admits a recursive coatom ordering is recursively divid-

able.
Proof. Let x1,x,,...,x, be a recursive coatom ordering of a poset P of rank d, and let
the coatoms be divided into {z1,zs,...,2, 1} and {z,}. Then this division is a recursive

division of P. To see this, we use an induction on the rank of P and the number of the

coatoms. When the rank is 1, the statement is clear.

(R1) [0, ;] admits a recursive coatom ordering and is rank d — 1, so is recursively dividable

by the induction hypothesis.

(R2)(a) I ({z1,%2,...,%n_1}) has a recursive coatom ordering z1,%s,--- ,&n_1 and has
only n — 1 coatoms, so is recursively dividable by the induction hypothesis. And

I ({z,}) is recursively dividable because [0, z,,] is recursively dividable as above.

(R2)(b) Let Z ={z € P|z < m;,x, , for 1 < 3 < n —1}. Then Z is the first part of
a recursive coatom ordering of [0, z,] from the condition (ii) of Definition 2.3. So it
is clear that I(Z) has a recursive coatom ordering induced by that of [0, z,]. Since

I(Z) is rank d — 1, I(Z) is recursively dividable by the induction hypothesis.

(R2)(c) Let w < z;,z, (1 < 3 < n). Then from the condition (i) of Definition 2.3,
w< 2 <z, x,, for 1 < 35 < n. Sowe have.f({xl,xg, .. .,xn_l})ﬁf ({zn}) C f(Z)
On the other hand, we have 1(Z) C I ({z1,22,...,2n_1}) and 1(Z) C I ({z,}), so
we conclude that I ({zy,z,...,2,1}) NI ({z,}) = 1(Z).

O

Now we show the relation between the notion of constructible complexes and that of

recursively dividable posets.

16



Theorem 3.5. A simplicial complex A is constructible if and only if its face poset F(A)

18 recursively dividable.

Proof. We use an induction on the number of the facets and the dimension. If A has only
one facet, then A is a simplex, so it is constructible. And because a simplex is shellable,
its face poset admits a recursive coatom ordering, so F'(A) is recursively dividable. Hence
the statement holds.

Let A be a d-dimensional constructible complex and A has more than one facet. Then
there exist constructible subcomplexes C'; and C5 of A such that C; U Cy = A and that
C1NCyis a (d — 1)-dimensional constructible complex. If we divide the coatoms of F(A)
into {the facets of C;} = X and {the facets of Cy} =Y, this division will be a recursive
division of F(A). Here, the face posets of C; and C, are I(X) and I(Y) respectively.
First, the condition (R1) of Definition 3.3 holds because each facet is a simplex. Next, by
the induction hypothesis, I(X) and I(Y) are recursively dividable because C; and C, are
constructible, so the condition (R2)(a) holds. On the other hand, the face poset F/(C1NC5)
of C1NCs consists of the elements of {w € P|3x € X, 3y € Y, w < z,y}. But since C;NC,
is a pure complex, any w € F(C; N Cy) has a coatom z of F'(Cy N Cy) such that w < z, so
F(Ci;NCy) =1(Z) where Z = {2z € P|?z € X,y €Y, z < x,y}. Using the induction
hypothesis, (Z) becomes recursively dividable because Cy N Cy is constructible and its
dimension is smaller than A. Hence the condition (R2)(b) is satisfied. This observation
also implies that the condition (R2)(c) holds.

Conversely, if F(A) is recursively dividable and it has more than one coatom, the
coatoms of F(A) can be divided into X and Y according to a recursive division of F(A).
Let C; and C5 be the subcomplexes of A whose facets are X and Y respectively. Then
clearly the face posets of C; and C, are I(X) and I(Y) respectively, and C; U Cy = A.
Because I(Z) = I(X)NI(Y), where Z = {z € P|3z € X,y € Y, z < z,y}, by the
condition (R2)(c) of Definition 3.3, we have I(Z) = F(C1NC,). Now I(X), I(Y) and I(2)

17



are recursively dividable, C1, Cy and C; Ny are constructible by the induction hypothesis,

which means that A is constructible. O

The notion of constructibility is defined only for simplicial complexes as Definition 3.1,
but recursive dividability is defined for face posets of more general complexes. Correspond-

ing to this, we can naturally generalize constructibility for regular cell complexes.

Definition 3.6. A pure d-dimensional regular cell complex A is defined to be constructible

if d =0, or if
(i) A is a complex which has only one facet and JA is constructible, or
(ii) if A has more than one facet, then

(a) each facet of A is constructible, and

(b) there exist d-simensional constructible subcomplexes C; and Cy such that A =

C1 U Cy and that C; N Csy is a (d — 1)-dimensional constructible complex.

The same theorem as Theorem 3.5 holds for this generalized constructibility. It can be

easily shown by the same way as Theorem 3.5.

Theorem 3.7. A regular cell complex A is constructible if and only if its face poset F(A)

1s recursively dividable.

Proof. The way of the proof is same as that of Theorem 3.5, but the treatment for the
case when there is only one facet and the verification of the condition (R1) is different. In
Theorem 3.5, the statement for these cases is satisfied because A is a simplex, but here
we use an induction on the dimension. If A has only one facet, then A is constructible
if and only if DA is constructible, and F(A) is recursively dividable if and only if [0, a] is
recursively dividable where a is the only one coatom of F(A). Hence the statement holds
by the induction hypothesis. When there is only one facet and the dimension is 0, the

statement is clearly satisfied. O

18



As is mentioned in Section 3.1, we do not know whether there are non-constructible sim-

plicial balls or not. But as for non-simplicial case, we have an example of non-constructible

balls.

Example 3.8. In [18], Walker made an example of a 3-dimensional non-shellable ball

which have 3 facets in a 3-dimensional Euclidean space as below. (See Figure 3.3.)

([1,3] x [0,1] x [1,3]) U
([2,3] x [1,3] x [1,2]) U
([1,3] x [0,4] x [0,1]) U
([1,2] x [1,2] x [1,3]) U
([0,1] x [0,4] x [0,4]) U

([1,3] x [2,3] x [2,3]).

([1,3] x [3,4] x [1,3]) U
([1,2] x [2,3] x [1,2]),
([1,3] x [0,4] x [3,4]) U
(12,3] x [1,2] x [2,3)),

([3,4] x [0,4] x [0,4]) U

In this example, every two facets form a torus, so this is clearly non-constructible.

Cq

Cz Cs
|
)——,——1———
1 / , Al / 4
-4 ;Ko7 7—
/_,n , ’ ,|: 1 1 f’__/
,” r—7 FFA A 1 ! 1.
T 1/) | | [
— - -~ | I

Figure 3.3: Non-constructible 3-ball.
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3.3 Barycentric subdivision

For every face G (not the empty face) of a regular cell complex A, we assign a point G in
COJ. Let us define a simplicial complex A’ to be a collection of faces {(él, Go, ..., ét) ‘ G C

Gy C -+ C G,}, where <é1,é2, .. .,G’t> is a simplex whose vertices are {le,éQ, e ét}
This simplicial complex A’ is called a barycentric subdivision of A. (See Figure 3.4.)

It is known that the barycentric subdivision of a shellable complex is again shellable [6].
Similarly, it is easy to see from the following proposition that the barycentric subdivision
of a constructible complex is again constructible. In this proposition, the order complex
A(P) of a poset P means the simplicial complex whose faces are the chains of P. It is
easy to see that A(P) is constructible if and only if A (P — {0,1}) is constructible, and

the barycentric subdivision of a regular cell complex A is combinatorially equivalent to the

order complex A (F(A) — {0,1}), where F(A) is the face poset of A.
Proposition 3.9. The order complex of a recursively dividable poset is constructible.

Proof. We use an induction on the number of the facets and the dimension. Let us divide
the coatoms of P into X and Y according to a recursive division of P, and let Z = {z €
PPz e X,y €Y, 2 <z,y}. Let C be A(f(X)), and Cy be A(f(Y)) It is clear that
C1UCy = A(P) and that C;NCy = A(f(Z)) We must show that A(f(X)), A(f(Y)) and
A(f (Z )) are constructible, but these conditions are satisfied by the induction hypothesis
because 1(X), I(Y) and I(Z) are recursively dividable. O

Figure 3.4: Barycentric subdivision.
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Chapter 4

Strongly constructible complexes

In this chapter, we discuss the relation between constructible complexes and partitionable
complexes. In the following sections, we define a notion of strongly constructible com-
plexes which is stronger than that of constructible complexes, and show that they are

partitionable.

4.1 Strongly constructible complexes

Definition 4.1. Let A be a pure d-dimensional regular cell complex and D be an empty
set or a (d — 1)-dimensional pure subcomplex of A. A pair (A, D) is defined to be strongly

constructible if d = 0, or if
(i) A is a complex which has only one facet and (0A, ¢) is strongly constructible, or

(ii) there exist d-dimensional subcomplexes C; and C, such that C; U Cy = A and

satisfying,

(a) the pair (C, DN () is strongly constructible,
(b) the pair (Cy, (DU Cy) N Cy) is strongly constructible, and

(c) C1NCyis (d—1)-dimensional and the pair (C; NCy, @) is strongly constructible,

and A is said to be strongly constructible if (A, ¢) is strongly constructible.
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Intuitively, the definition of strongly constructible complexes requires that the cut end
of the division must be inherited in a nice way. Figure 4.1 shows the situation of the
definition. Figure 4.2 is an example of a division satisfying the condition of constructibility
but not satisfying the condition of strong constructibility. The following proposition shows
that if A is a pseudomanifold, (A, D) is strongly constructible only if D is connected.
(Here we say a complex is connected if every two vertices  and y in the complex has a
sequence of vertices * = v, V9, ..., v, = y such that v; and v;, is joined with an edge, for
1 <1< n.) So we can see that the division in Figure 4.2 does not satisfy the condition of

strong constructibility.

Proposition 4.2. Let A be a pseudomanifold and D be its (d — 1)-dimensional pure sub-

complex. If (A, D) is strongly constructible, then D is connected.

Proof. Assume that D is disconnected. Because (A, D) is strongly constructible, A can
be divided into C; and Cj satisfying the condition of Definition 4.1. Then one of D N C}
and (DUC,)NCy = (DN Cy) U(CyNCy) is disconnected. In fact, if DN Cy is connected,

D Ny has only one connected component.

(Case 1) If DNy has only one connected component, then D N Cy and C; N Cy must be

disconnected because if not, DN Cy and C;NCs has a common vertex and this vertex

Cq

A

DNC,

7
G

o

Figure 4.1: Strongly constructible complex.
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G
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Figure 4.2: Division not satisfying the condition of strong constructibility.

must be in D N Cy. This contradicts the disconnectivity of D. So (D U Cy) N Cy has

two connected components D N Cy and C; N Cy, and hence it is disconnected.

(Case 2) If D N Cy has more than one connected component, (D U C1) N Cy can not be

connected because D N C'; has only one connected component.

Thus one of DN C; and (D U Cy) N Cy is disconnected. But in the end of this division
process, all the complexes are divided into simplices and any (d — 1)-dimensional pure

subcomplex of a d-dimensional simplex is connected. This is a contradiction. O

The relation between shellability, constructibility and strong constructibility is as fol-

lows.
Proposition 4.3. Shellable complexes are strongly constructible.

Proof. It Fy, Fy, ..., F, is a shelling, C} = F; U F, U---U F,_; and Cy = F,, satisfies the

condition. 0
Proposition 4.4. Strongly constructible complexes are constructible.

Proof. This is shown easily by an induction on the number of the facets and the dimension.

O
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Proposition 4.5. There are strongly constructible complezes that are not shellable.
Proof. Example 3.2 is not shellable but strongly constructible. (Easy to see.) O
It is not known whether strong constructibility is strictly stronger than constructibility.

Open Problem. Are there constructible complexes which are not strongly constructible?
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4.2 Strongly dividable posets

In this section, we introduce a notion of strongly dividable posets and show that a complex

is strongly constructible if and only if its face poset is strongly dividable.

Definition 4.6. Let P be a poset and W be a subset of cocovers of coatoms of P. Then

the pair (P,W) is defined to be strongly dividable if rank(P) = 1, or if the following

conditions hold.

(S1) For each coatom z of P, ([0,z],¢) is strongly dividable.

(S2) If there exist more than one coatom in P, the set of coatoms can be divided into two
disjoint non-empty sets X and Y satisfying the conditions below. Here, we define

Z={zeP|zeX,YyeY, z=<mz,y}

A

(a) IW)NI(X) = f(Wﬂf(X)), and the pair (f(X), Wﬂf(X)) is strongly dividable.

(b) IWUZ)NI(Y)=1(WUZ)NI(Y)),and the pair (I(Y),(W U Z)NI(Y)) is
strongly dividable.

(c) (f (Z), ¢) is strongly dividable.

(d) I(X)nI(Y)=1(2).

A poset P is said to be strongly dividable if the pair (P, ¢) is strongly dividable. A division

of coatoms satisfying the conditions above is called a strong division.

Remark. In (S2)(b) of Definition 4.6, the condition (W U Z)NI(Y) = f((WU Z) ﬂf(Y))
is actually redundant because this condition is always satisfied. But it is included in this

definition in order to simplify the argument.

Theorem 4.7. Let A be a d-dimensional pure regular cell complex and F(A) be its face
poset. And let D be a (d — 1)-dimensional pure subcomplex of A or an empty set, and W
be the set of elements of F(A) correspondent to the facets of D. Then the pair (A, D) is

strongly constructible if and only if the pair (F (A),W) 15 strongly dividable.
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Proof. We use an induction on the number of the facets and the dimension. When A
has only one facet, (A, D) is strongly constructible if and only if (0A, ¢) is strongly con-
structible. And (F(A), W) is strongly dividable if and only if ([0,a],¢) = (F(0A), ¢) is
strongly dividable, where a is the only one coatom of F(A). So the statement holds by
the induction on the dimension. When the dimension is 0, the statement clearly holds.

Let us assume that A has more than one facet and the pair (A, D) is strongly con-
structible. Then there exist d-dimensional subcomplexes C'; and Cy of A satisfying the
condition of Definition 4.1. Let us divide the coatoms of F'(A) into {the facets of C1} = X
and {the facets of Cy} = Y. Here, the face posets of C; and C, are I(X) and I(Y)
respectively. Let Z = {z € P|3z € X,3y € Y, 2 < z,y}. Now we verify that all
the conditions of Definition 4.6 hold. First, the condition (S1) of Definition 4.6 holds
by the induction hypothesis because each facet has a smaller dimension than A. Next,
D N Cy is pure because (Cy,D N C4) is strongly constructible. This fact deduce that
IW)nI(X) = IW N X). And by the induction hypothesis, the pair (I(X),W) is
strongly dividable. So the condition (S2)(a) holds. Similarly, we can verify the condition
(S2)(b). On the other hand, the face poset F(C1 N Cs) of C; N Cy consists of the elements
of {w € P|?z € X,%y € Y, w < z,y}. But since C; N C, is a pure complex because
(Cy N Cy, @) is strongly dividable, any w € F(C; N Cy) has a coatom z of F(C; N Cy)
such that w < z, so F(Cy N Cy) = I(Z). Hence (I(Z), ) is also strongly dividable by
the induction hypothesis because (C; N Cy, @) is strongly constructible, and the condition
(S2)(c) holds. This fact also imply condition (S2)(d).

Conversely, let us assume that (F(A), W) is strongly dividable and there is more than
one coatom. Then the coatoms of F'(A) can be divided into X and Y according to a strong
division of F(A). Let Z = {2z € P|?r € X,%y €Y, z < x,y}. Let C; and C, be the
subcomplexes of A whose facets are X and Y respectively. Then clearly the face posets of

Cy and Cy are I(X) and I(Y) respectively, and C; UC, = A. Because 1(Z) = I(X)NI(Y),
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we have 1(Z) = F(Cy N Cy). Now the pairs (f(X),W N f(X)), (f(Y), (WU Z)NI(X))
and (f(Z), ¢) are strongly dividable, it follows that the pairs (Cy, D), (02, (DUC))nN 02)
and (C; N Cy, @) are strongly constructible by the induction hypothesis, which means that

A is strongly constructible. O

Corollary 4.8. A reqular cell complex A is strongly constructible if and only if its face

poset F(A) is strongly dividable.
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4.3 Signability of strongly dividable posets

Now we prove the theorem which guarantees the signability of strongly dividable posets.
Theorem 4.9. Strongly dividable posets are signable.
For the proof of the theorem, we need a technical lemma.

Lemma 4.10. Let QQ be a poset and W be a subset of cocovers of coatoms of Q). Then if

the pair (Q,W) is strongly dividable, there is a signing x of @ such that
(i) there is exactly one positive coatom in [w,1)g if w & I(W), and
(ii) there is no positive coatom in [w,1]g if w € I(W).

Proof. We use an induction on the number of the coatoms. When there is only one coatom,

the following signing is the required signing :

— ifaeW
x(a,b) = .
+ ifagW.

If there is more than one coatom, let the coatoms of () be divided into X and Y
according to a strong division of @, andlet Z = {z € Q |’z € X, ¥y €Y, 2z < z,y}. In this
division, we assume that (f(X), Wﬂf(X)) is strongly dividable and (f(Y), (WUZ)ﬂf(Y))
is strongly dividable. Remark that the coatoms of [w,1]p belong only to X if w € I(X)
and w & 1(Z), and that the coatoms of [w, 1]p belong only to Y if w € I(Y) and w & I(Z).

First, by using the induction hypotheses, we have a signing x x for I (X) satisfying that
(i) there is exactly one positive coatom in [w, i]f(X) if w¢ f(W N f(X)), and
(ii) there is no positive coatom in [w, i]f(X) if we f(W N f(X)).
Next we need a signing xy of I(Y’) such that

(i) there is no positive coatom in [w, i]f(y) if we I(Z), and
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(ii) otherwise, satisfying the following :

(a) there is exactly one positive coatom in [w, 1] iy fw ¢ I(W), and
(b) there is no positive coatom in [w, 1] if w € I(W).
The existence of such a signing xy is shown by the induction hypothesis because the

condition for xy is equivalent to the following condition and because (f (Y),(Wuz)nl (Y))

is strongly dividable.

A A

(i) There is no positive coatom in [w, i]f(y) ifwe (f(Z) UIW))NI(Y) = f((WU Z)N
f(Y)), and

(ii) otherwise there is exactly one positive coatom in [w, 1] i)

Let x be a signing such that

(a,b) xx if b€ X and a is its cocover
a/’ = . . .
X xy if b €Y and a is its cocover.

Then we observe that this signing y is the required signing of ). In fact,
e if w is not in I(W), then
— if w is in I(X) and not in I(Z), then all the coatoms of [w, 1] are in X and
[w, 1] has exactly one coatom from the construction of xx,

— if w is in I(Y)) and not in I(Z), then all the coatoms of [w,1]q are in ¥ and

[w, 1] has exactly one coatom from the construction of xy, and

— if wis in I(Z) = I(X) N I(Y), then [w, 1], has one positive coatom in X and
no positive coatom in Y from the construction of yx and xy, so it has exactly

one positive coatom at all,
so there is exactly one positive coatom in [w, 1]g, and

e if w is in I(W), then
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— since I(W) N I(X) must be equal to f(W N f(X)) by the strong dividability
of (Q,W), if w is in I(X), it is also in f(W N f(X)) and [w, 1] has no posi-
tive coatom by the construction of xx and xy, (without assuming the strong
dividability, w can be outside of I (wn I(X )) and [w, 1]g can have one positive

coatom in X.)

— if w is in I(Y), [w, 1]g has no positive coatom from the construction of xx and

XY,

so there is no positive coatom in [w, 1]g.
0

Proof of Theorem 4.9. We use an induction on the number of the coatoms. If there is only
one coatom, the statement is clear.

If there is more than one coatom, let the coatoms of P be divided into X and Y
according to a strong division of P, and let Z = {z € P|7z € X,y €Y, 2z < =z,y}.
In this division, we assume that (f (X), (/5) is strongly dividable and (f Y), Z ) is strongly
dividable.

First, by the induction hypothesis, we have an exact signing x x of I (X).

Next we need a signing xy of I(Y") which satisfies that
(i) there is exactly one positive coatom in [w, 1] iy fw ¢ 1(Z), and
(ii) there is no positive coatom in [w, i]f(y) if we I(Z).

The existence of such a signing xy is assured by Lemma 4.10 because (f (Y),Z ) is strongly
dividable.

Let x be a signing such that

(a,b) xx if b€ X and a is its cocover
al’ = . . .
X xy ifb€Y and a is its cocover.
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Then Y is an exact signing of P. In fact, if w € I(X) and w ¢ I(Z), all the coatoms of
[w,1]p are the members of X and there exists exactly one positive coatom in [w,1]p by
the construction of xx, and if w € I(Y) and w ¢ I(Z), all the coatoms of [w,1]p are the
members of Y and again there is exactly one positive coatom in [w,1]p by the construction
of xy. fwe I(X)nI(Z)=1)NI(Z) =1(Z), [w,1]p has one positive coatom in X

and no positive coatom in Y, so there is exactly one positive coatom in [w, i] P. O

Corollary 4.11. Strongly constructible simplicial complexes are partitionable.
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Chapter 5

Why we study constructible
complexes?

As is mentioned in Section 3.1, a shellable complex is made by adding facets one by one.
This nature of shellable complexes provides us with the way of using inductions on the
number of the facets, and this is why shellable complexes are tractable and why we want
to show whether the complexes in interest are shellable or not. Although shellability makes
the problems easy to treat, the recognition problem of shellability is very difficult. So the
weaker notions are sometimes used instead of shellability. For example, the h-vectors of a
shellable simplicial complex are non-negative, but to prove the non-negativity, it is sufficient
to show that the complex is Cohen-Macaulay or partitionable (See [16], [19, Chapter 8]).
These notions such as partitionability or Cohen-Macaulayness is useful, but the definitions
of them are too far different from that of shellability and it is unlikely that the study of
these notions is of some help for the study of shellability.

Different from partitionability and Cohen-Macaulayness, constructibility resembles to
shellability. This notion is defined inductively and it fits the argument of inductions on
the number of facets as like as shellability. Moreover, constructibility is seemingly more
tractable than shellability. For instance, it seems that the study of non-shellable balls will
make some contribution to the understanding of shellability. To study non-shellable balls,

the balls to be studied has many variations and we have to treat too many cases. But as

32



Figure 5.1: Divide A into A; and A,.

for constructibility, we can reduce the number of the cases to be studied smaller as the

proposition below indicates.

Proposition 5.1. Let A be a d-dimensional ball and D be its (d — 1)-dimensional face
such that all of its faces are on the boundary of A except D itself. If we divide A by D,
we have two balls C and Cy such that C1 U Cy = A and C1 N Cy = D. In this case, A is

constructible if and only if both Cy and Cy are constructible.

Proof. The first part of the statement is clear. For the latter part, let C; and Cy are
constructible. Then it is obvious that A is constructible. Conversely, let A be constructible.
Then A can be divided into two constructible subcomplexes A; and A,. If A; N A, equals
to D, then {C1,Cy} = {A1, Ay}, hence both C; and Cy are constructible. If A; N A, does
not equal to D, then one of A; and Ay contains D conserving the condition. Without loss
of generality, we can assume that A; is contained in C;. (See Figure 5.1.) Here we use an
induction on the number of the facets of A. Because A, has smaller number of facets than
A, both C; N Ay and Cy are constructible. As for Cy, C is divided into A; and C7; N A,
and A1 N(C1NAy) = AN Ay, Since all Ay, C;N Ay, AjN A, are constructible, C; is also

constructible. O

By this proposition, in the study of non-constructible balls, we can assume that the

d-dimensional ball has no (d — 1)-dimensional face such that all of its faces are on the
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boundary except itself. Thus constructibility is tractable, and is not so different from
shellability, the study of this notion is expected to be of some help for the understanding

of shellability.
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Chapter 6

Remarks

In [17, Section 2 in Chapter III|, Cohen-Macaulay simplicial complexes are conjectured
to be partitionable. It is known that constructible complexes are Cohen-Macaulay, so it
is very likely that constructible complexes are partitionable, so our partial result of the
classification problem in Section 4.3 may further be extended in the future study. But
the method of proof of Section 4.3 cannot be extended further because there may be con-
structible complexes that are not strongly constructible. It is thinkable that the proof of
the fact that constructible complexes are partitionable will be done as a corollary of show-
ing more generally that Cohen-Macaulay complexes are partitionable, or by showing that
constructible complexes are always strongly constructible (or transforming constructible
complexes into strongly constructible complexes).

Figure 6.1 shows the known relation among the classes of complexes and corresponding

classes of posets. The following facts are known at present:

e Partitionability is strictly weaker than strong constructibility. (By Theorem 4.11.
It is strictly weaker because there even exist partitionable complexes that are not

connected.)
e Constructibility is weaker than strong constructibility. (By Proposition 4.4.)

e Strong constructibility is strictly weaker than shellability. (By Proposition 4.5.)
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Yet we have some questions as below. These questions are the subjects in the future work

Open Problems.

e Is constructibility strictly weaker than strong constructibility?

e Are all constructible complexes partitionable?

e Are there non-constructible simplicial balls?

Complex

partitionable

- - <

strongly
constructible

N shellable
\

L

Poset

signable

-“recursively
dividable

strongly
dividable

admit
coatom
ordering

~—_ -

Figure 6.1: The relation among the classes of complexes and posets
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Appendix A

Cohen-Macaulay complexes

Cohen-Macaulayness is the key notion to the Stanley’s solution of the Upper Bound The-
orem for simplicial spheres [16]. Here we review the definition briefly. For the detail, see
[7], [9], [16].

Definition A.1. Let A = k[X, X5, ..., X,] be the polynomial ring in n-variables over a
field k. For a simplicial complex A whose vertices are {vy, v, ..., v,}, let I be the ideal
generated by the monomials {X;, X;, - - Xi, | (viy, Vig, - - ., v5,) € A}, where (v, vy, ..., 0;,)
is the face whose vertices are v;,, v;,, ..., v;,. The quotient algebra Ax = A/IA is called
the face ring or the Stanley-Reisner ring of A. If Ax is Cohen-Macaulay ring over k, A is

called Cohen-Macaulay over k.

The link IkaF' of F' € A is the set of faces {G € A | GNF = ¢ and GU F € A}.

Reisner [14] showed the following theorem.

Theorem A.2. A simplicial complex A is Cohen-Macaulay over k if and only if the re-
duced homology of Ika F' over k vanishes in all dimensions except the dimension of Ika F,

for each F € A (including the empty set ¢).

For example, simplicial spheres and simplicial balls are Cohen-Macaulay over any field.

Constructible simplicial complexes are also Cohen-Macaulay over any field k.

Proposition A.3. Constructible simplicial complexes are Cohen-Macaulay over any field

k.
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Cohen-Macaulayness is known to be a topological property.

Proposition A.4. If A and A" are simplicial complezes such that ||A|| is homeomorphic

to ||A'||, then A is Cohen-Macaulay over k if and only if A’ is Cohen-Macaulay over k.
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